Progress on lattices2d.py; dudom
Former-commit-id: 0b9f718ce5cfff12f1d044dbf995f51092daf76b
This commit is contained in:
parent
97648ce214
commit
f925f2163d
|
@ -1,6 +1,9 @@
|
|||
import numpy as np
|
||||
import warnings
|
||||
from enum import Enum
|
||||
|
||||
nx = None
|
||||
|
||||
class LatticeType(Enum):
|
||||
"""
|
||||
All the five Bravais lattices in 2D
|
||||
|
@ -19,16 +22,19 @@ class LatticeType(Enum):
|
|||
RIGHT_ISOSCELE_TRIANGULAR=SQUARE
|
||||
HEXAGONAL=EQUILATERAL_TRIANGULAR
|
||||
|
||||
|
||||
|
||||
|
||||
def reduceBasisSingle(b1, b2):
|
||||
"""
|
||||
Lagrange-Gauss reduction of a 2D basis.
|
||||
cf. https://www.math.auckland.ac.nz/~sgal018/crypto-book/ch17.pdf
|
||||
TODO doc
|
||||
inputs and outputs are (2,)-shaped numpy arrays
|
||||
The output shall satisfy |b1| <= |b2| <= |b2 - b1|
|
||||
TODO doc
|
||||
|
||||
TODO perhaps have the (on-demand?) guarantee of obtuse angle between b1, b2?
|
||||
TODO possibility of returning the (in-order, no-obtuse angles) b as well?
|
||||
"""
|
||||
b1 = np.array(b1)
|
||||
b2 = np.array(b2)
|
||||
if b1.shape != (2,) or b2.shape != (2,):
|
||||
raise ValueError('Shape of b1 and b2 must be (2,)')
|
||||
B1 = np.sum(b1 * b1, axis=-1, keepdims=True)
|
||||
|
@ -43,7 +49,29 @@ def reduceBasisSingle(b1, b2):
|
|||
mu = np.sum(b1 * b2, axis=-1, keepdims=True) / B1
|
||||
b2 = b2 - np.rint(mu) * b1
|
||||
B2 = np.sum(b2*b2, axis=-1, keepdims=True)
|
||||
return (b1,b2)
|
||||
return(b1,b2)
|
||||
|
||||
def orderedReducedBasis(b1, b2):
|
||||
''' blah blab blah
|
||||
|b1| is still the shortest possible basis vector,
|
||||
but if there would be obtuse angle between b1 and b2, b2 - b1 is returned
|
||||
in place of the original b2. In other words, b1, b2 and b2-b1 are
|
||||
'''
|
||||
b1, b2 = reduceBasisSingle(b1,b2)
|
||||
|
||||
if b3s - b2s - b1s > eps: # obtuse angle between b1 and b2
|
||||
pass
|
||||
pass
|
||||
#-------- zde jsem skončil ------------
|
||||
|
||||
|
||||
def is_obtuse(b1, b2, tolerance=1e-13):
|
||||
b1s = np.sum(b1 ** 2)
|
||||
b2s = np.sum(b2 ** 2)
|
||||
b3 = b2 - b1
|
||||
b3s = np.sum(b3 ** 2)
|
||||
eps = tolerance * (b2s + b1s)
|
||||
return (b3s - b2s - b1s > eps)
|
||||
|
||||
def classifyLatticeSingle(b1, b2, tolerance=1e-13):
|
||||
"""
|
||||
|
@ -57,15 +85,17 @@ def classifyLatticeSingle(b1, b2, tolerance=1e-13):
|
|||
b3 = b2 - b1
|
||||
b3s = np.sum(b3 ** 2)
|
||||
eps = tolerance * (b2s + b1s)
|
||||
# avoid obtuse angle between b1 and b2
|
||||
if b3s - b2s - b1s < eps:
|
||||
# Avoid obtuse angle between b1 and b2. TODO This should be yet thoroughly tested.
|
||||
# TODO use is_obtuse here?
|
||||
if b3s - b2s - b1s > eps:
|
||||
b3 = b2
|
||||
b2 = b2 + b1
|
||||
# N. B. now the assumption |b3| >= |b2| is no longer valid
|
||||
#b3 = b2 - b1
|
||||
b2s = np.sum(b2 ** 2)
|
||||
b3 = b2 - b1
|
||||
b3s = np.sum(b3 ** 2)
|
||||
# This will, however, probably not happen due to the basis reduction
|
||||
print (sys.stderr, "it happened, obtuse angle!")
|
||||
if abs(b2s - b1s) < eps: # isoscele
|
||||
warnings.warn("obtuse angle between reduced basis vectors, the lattice type identification might is not well tested.")
|
||||
if abs(b2s - b1s) < eps or abs(b2s - b3s) < eps: # isoscele
|
||||
if abs(b3s - b1s) < eps:
|
||||
return LatticeType.EQUILATERAL_TRIANGULAR
|
||||
elif abs(b3s - 2 * b1s) < eps:
|
||||
|
@ -73,7 +103,7 @@ def classifyLatticeSingle(b1, b2, tolerance=1e-13):
|
|||
else:
|
||||
return LatticeType.RHOMBIC
|
||||
elif abs(b3s - b2s - b1s) < eps:
|
||||
return LatticeType.SQUARE
|
||||
return LatticeType.RECTANGULAR
|
||||
else:
|
||||
return LatticeType.OBLIQUE
|
||||
|
||||
|
@ -88,6 +118,41 @@ def range2D(maxN, mini=1, minj=0, minN = 0):
|
|||
for i in range(mini, maxn + 1):
|
||||
yield (i, maxn - i)
|
||||
|
||||
|
||||
def generateLattice(b1, b2, maxlayer=5, include_origin=False, order='leaves'):
|
||||
b1, b2 = reduceBasisSingle(b1, b2)
|
||||
latticeType = classifyLatticeSingle(b1, b2)
|
||||
|
||||
|
||||
if latticeType is LatticeType.RECTANGULAR or latticeType is LatticeType.SQUARE:
|
||||
bvs = (b1, b2, -b1, -b2)
|
||||
else:
|
||||
# Avoid obtuse angle between b1 and b2. TODO This should be yet thoroughly tested.
|
||||
if is_obtuse(b1,b2):
|
||||
b3 = b2
|
||||
b2 = b2 + b1
|
||||
# N. B. now the assumption |b3| >= |b2| is no longer valid
|
||||
warnings.warn("obtuse angle between reduced basis vectors, the lattice generation might is not well tested.")
|
||||
else:
|
||||
b3 = b2 - b1
|
||||
bvs = (b1, b2, b3, -b1, -b2, -b3)
|
||||
cc = len(bvs) # "corner count"
|
||||
|
||||
if order == 'leaves':
|
||||
indices = np.array(list(range2D(maxlayer)))
|
||||
ia = indices[:,0]
|
||||
ib = indices[:,1]
|
||||
cc = len(bvs) # 4 for square/rec,
|
||||
leaves = list()
|
||||
if include_origin: leaves.append(np.array([[0,0]]))
|
||||
for c in range(cc):
|
||||
ba = bvs[c]
|
||||
bb = bvs[(c+1)%cc]
|
||||
leaves.append(ia[:,nx]*ba + ib[:,nx]*bb)
|
||||
return np.concatenate(leaves)
|
||||
else:
|
||||
raise ValueError('Lattice point order not implemented: ', order)
|
||||
|
||||
def cellCornersWS(b1, b2,):
|
||||
"""
|
||||
Given basis vectors, returns the corners of the Wigner-Seitz unit cell
|
||||
|
@ -115,38 +180,32 @@ def cellCornersWS(b1, b2,):
|
|||
else:
|
||||
b3 = b2 - b1
|
||||
bvs = (b1, b2, b3, -b1, -b2, -b3)
|
||||
return np.array([solveWS(bvs[i], bvs[(i+1)%6]] for i in range(6)])
|
||||
return np.array([solveWS(bvs[i], bvs[(i+1)%6]) for i in range(6)])
|
||||
|
||||
def cutWS(points, b1, b2, scale=1.):
|
||||
"""
|
||||
From given points, return only those that are inside (or on the edge of)
|
||||
the Wigner-Seitz cell of a (scale*b1, scale*b2)-based lattice.
|
||||
"""
|
||||
# TODO check input dimensions?
|
||||
b1, b2 = reduceBasisSingle(b1, b2)
|
||||
b3 = b2 - b1
|
||||
bvs = (b1, b2, b3, -b1, -b2, -b3)
|
||||
points = np.array(points)
|
||||
for b in bvs:
|
||||
mask = (np.tensordot(points, b, axes=(-1, 0)) <= np.linalg.norm(b, ord=2) * scale/2)
|
||||
points = points[mask]
|
||||
return points
|
||||
|
||||
def filledWS(b1, b2, density=10, scale=1.):
|
||||
"""
|
||||
TODO doc
|
||||
TODO more intelligent generation, anisotropy balancing etc.
|
||||
"""
|
||||
b1, b2 = reduceBasisSingle(b1, b2)
|
||||
pass
|
||||
|
||||
|
||||
"""
|
||||
TODO pro všechny rozptylové a modální simulace
|
||||
|
||||
Implementovat podporu následujících parametrů (v závorce implicitní hodnota):
|
||||
--bz_coverage (1.):
|
||||
základní rozsah rovnoběžné části vlnového vektoru relativně k „délce“ 1. BZ.
|
||||
Ve výchozím nastavení právě 1. BZ (tj. Wignerova-Seitzova
|
||||
buňka v převráceném prostoru)
|
||||
--k_density (50.):
|
||||
základní počet bodů mezi středem a okrajem 1. BZ
|
||||
--bz_edge_width (0.):
|
||||
poloměr (relativně k vzdáleností mezi okrajem a středem 1. BZ) zhuštěného pásu kolem okraje 1. BZ
|
||||
--bz_edge_factor (8.):
|
||||
relativní hustota zhuštěného pásu (vzhledem k k_density)
|
||||
--bz_corner_width (0.):
|
||||
velikost zhuštěné oblasti kolem vrcholů 1. BZ (relativně k velikosti BZ)
|
||||
--bz_corner_factor (16.):
|
||||
relativní hustota zhuštěné „buněčky“ kolem 1. BZ (vzhledem k k_density)
|
||||
--bz_centre_width (0.):
|
||||
totéž kolem středu BZ
|
||||
--bz_centre_factor (8):
|
||||
totéž kolem středu BZ
|
||||
--bz_edge_twoside (?),
|
||||
--bz_corner_twoside (?):
|
||||
zda s pásem zasahovat přes okraj 1. BZ, nebo jen dovnitř
|
||||
|
||||
(nehoří) výhledově pořešit problém „hodně anisotropních“ mřížek (tj. kompensovat
|
||||
rozdílné délky základních vektorů).
|
||||
|
||||
"""
|
||||
|
||||
|
||||
def reciprocalBasis(a1, a2):
|
||||
pass
|
||||
|
|
Loading…
Reference in New Issue