diff --git a/qpms/ewald.c b/qpms/ewald.c index 8f93bb9..d4d6a29 100644 --- a/qpms/ewald.c +++ b/qpms/ewald.c @@ -176,11 +176,11 @@ void qpms_ewald32_constants_free(qpms_ewald32_constants_t *c) { int ewald3_sigma0(complex double *result, double *err, const qpms_ewald32_constants_t *c, - const double eta, const double k) + const double eta, const complex double k) { qpms_csf_result gam; - int retval = complex_gamma_inc_e(-0.5, -sq(k/(2*eta)), &gam); - gam.val = conj(gam.val); // We take the other branch, cf. [Linton, p. 642 in the middle] + int retval = complex_gamma_inc_e(-0.5, -csq(k/(2*eta)), &gam); + // FIXME DO THIS CORRECTLY gam.val = conj(gam.val); // We take the other branch, cf. [Linton, p. 642 in the middle] if (0 != retval) abort(); *result = gam.val * c->legendre0[gsl_sf_legendre_array_index(0,0)] / 2 / M_SQRTPI; @@ -381,7 +381,7 @@ int ewald3_21_xy_sigma_long ( complex double *target, // must be c->nelem_sc long double *err, const qpms_ewald32_constants_t *c, - const double eta, const double k /* TODO COMPLEX */, + const double eta, const complex double k, const double unitcell_volume /* with the corresponding lattice dimensionality */, const LatticeDimensionality latdim, PGen *pgen_K, const bool pgen_generates_shifted_points @@ -394,6 +394,7 @@ int ewald3_21_xy_sigma_long ( const cart3_t particle_shift ) { + const bool k_is_real = (cimag(k) == 0); assert((latdim & LAT_XYONLY) && (latdim & SPACE3D)); assert((latdim & LAT1D) || (latdim & LAT2D)); const qpms_y_t nelem_sc = c->nelem_sc; @@ -408,8 +409,9 @@ int ewald3_21_xy_sigma_long ( memset(err, 0, nelem_sc * sizeof(double)); } - const double commonfac = 1/(k*k*unitcell_volume); // used in the very end (CFC) //TODO COMPLEX - assert(commonfac > 0); + const complex double commonfac = 1/(k*k*unitcell_volume); // used in the very end (CFC) + if (k_is_real) + assert(creal(commonfac) > 0); PGenSphReturnData pgen_retdata; #ifndef NDEBUG @@ -418,7 +420,7 @@ int ewald3_21_xy_sigma_long ( // recycleable values if rbeta_pq stays the same: complex double gamma_pq; complex double z; - double factor1d = 1; // the "additional" factor for the 1D case (then it is not 1) + complex double factor1d = 1; // the "additional" factor for the 1D case (then it is not 1) // space for Gamma_pq[j]'s qpms_csf_result Gamma_pq[lMax/2+1]; @@ -452,18 +454,18 @@ int ewald3_21_xy_sigma_long ( // R-DEPENDENT BEGIN if (new_rbeta_pq) { - gamma_pq = lilgamma(rbeta_pq/k /*TODO COMPLEX*/); - z = csq(gamma_pq*k/(2*eta)); // Když o tom tak přemýšlím, tak tohle je vlastně vždy reálné + gamma_pq = clilgamma(rbeta_pq/k); + z = csq(gamma_pq*k/(2*eta)); for(qpms_l_t j = 0; j <= lMax/2; ++j) { // TODO COMPLEX FIXME check the branches in the old lilgamma case int retval = complex_gamma_inc_e(0.5-j, z, Gamma_pq+j); // we take the other branch, cf. [Linton, p. 642 in the middle]: FIXME instead use the C11 CMPLX macros and fill in -O*I part to z in the line above - if(creal(z) < 0) - Gamma_pq[j].val = conj(Gamma_pq[j].val); //FIXME as noted above + //if(creal(z) < 0) + // Gamma_pq[j].val = conj(Gamma_pq[j].val); //FIXME as noted above if(!(retval==0 || retval==GSL_EUNDRFLW)) abort(); } if (latdim & LAT1D) - factor1d = k /*TODO COMPLEX */ * M_SQRT1_2 * .5 * gamma_pq; + factor1d = M_SQRT1_2 * .5 * k * gamma_pq; } // R-DEPENDENT END @@ -479,7 +481,7 @@ int ewald3_21_xy_sigma_long ( double jsum_err, jsum_err_c; kahaninit(&jsum_err, &jsum_err_c); // TODO do I really need to kahan sum errors? assert((n-abs(m))/2 == c->s1_jMaxes[y]); for(qpms_l_t j = 0; j <= c->s1_jMaxes[y]/*(n-abs(m))/2*/; ++j) { // FIXME legendre0[gsl_sf_legendre_array_index(n,abs(m))] * min1pow_m_neg(m) // This line can actually go outside j-loop * cpow(gamma_pq, 2*j-1) // * Gamma_pq[j] bellow (GGG) after error computation * c->s1_constfacs[y][j]; @@ -516,7 +518,7 @@ int ewald3_1_z_sigma_long ( complex double *target, // must be c->nelem_sc long double *err, const qpms_ewald32_constants_t *c, - const double eta, const double k, + const double eta, const complex double k, const double unitcell_volume /* length (periodicity) in this case */, const LatticeDimensionality latdim, PGen *pgen_K, const bool pgen_generates_shifted_points @@ -573,13 +575,13 @@ int ewald3_1_z_sigma_long ( const complex double phasefac = cexp(I * K_z * particle_shift_z); // POINT-DEPENDENT (PFC) // !!!CHECKSIGN!!! // R-DEPENDENT BEGIN - complex double gamma_pq = lilgamma(rbeta_mu/k); // For real beta and k this is real or pure imaginary ... + complex double gamma_pq = clilgamma(rbeta_mu/k); // For real beta and k this is real or pure imaginary ... const complex double z = csq(gamma_pq*k/(2*eta));// ... so the square (this) is in fact real. for(qpms_l_t j = 0; j <= lMax/2; ++j) { int retval = complex_gamma_inc_e(0.5-j, z, Gamma_pq+j); // we take the other branch, cf. [Linton, p. 642 in the middle]: FIXME instead use the C11 CMPLX macros and fill in -O*I part to z in the line above - if(creal(z) < 0) - Gamma_pq[j].val = conj(Gamma_pq[j].val); //FIXME as noted above + //if(creal(z) < 0) + // Gamma_pq[j].val = conj(Gamma_pq[j].val); //FIXME as noted above if(!(retval==0 || retval==GSL_EUNDRFLW)) abort(); } // R-DEPENDENT END @@ -632,7 +634,7 @@ int ewald3_sigma_long ( complex double *target, // must be c->nelem_sc long double *err, const qpms_ewald32_constants_t *c, - const double eta, const double k, + const double eta, const complex double k, const double unitcell_volume /* with the corresponding lattice dimensionality */, const LatticeDimensionality latdim, PGen *pgen_K, const bool pgen_generates_shifted_points @@ -880,7 +882,7 @@ int ewald3_sigma_short( complex double *target, // must be c->nelem_sc long double *err, // must be c->nelem_sc long or NULL const qpms_ewald32_constants_t *c, - const double eta, const double k /* TODO COMPLEX */, + const double eta, const complex double k /* TODO COMPLEX */, const LatticeDimensionality latdim, // apart from asserts and possible optimisations ignored, as the SR formula stays the same PGen *pgen_R, const bool pgen_generates_shifted_points /* If false, the behaviour corresponds to the old ewald32_sigma_short_points_and_shift, @@ -893,6 +895,8 @@ int ewald3_sigma_short( const cart3_t particle_shift ) { + const bool k_is_real = (cimag(k) == 0); // TODO check how the compiler optimises the loops + const double kreal = creal(k); const qpms_y_t nelem_sc = c->nelem_sc; const qpms_l_t lMax = c->lMax; gsl_integration_workspace *workspace = @@ -916,6 +920,7 @@ int ewald3_sigma_short( #endif // recyclable variables if r_pq_shifted stays the same: double intres[lMax+1], interr[lMax+1]; + complex double cintres[lMax+1]; // CHOOSE POINT BEGIN // TODO check whether _next_sph is the optimal coordinate system choice here @@ -971,11 +976,18 @@ int ewald3_sigma_short( } for(qpms_l_t n = 0; n <= lMax; ++n) { - const double complex prefacn = - I * pow(2./k /*TODO COMPLEX*/, n+1) * M_2_SQRTPI / 2; // profiling TODO put outside the R-loop and multiply in the end? + const double complex prefacn = - I * (k_is_real ? pow(2./creal(k),n+1) : cpow(2./k, n+1)) * M_2_SQRTPI / 2; // profiling TODO put outside the R-loop and multiply in the end? const double R_pq_pown = pow(r_pq_shifted, n); // profiling TODO: maybe put this into the new_r_pq_shifted condition as well? if (new_r_pq_shifted) { - int retval = ewald32_sr_integral(r_pq_shifted, k /*TODO COMPLEX*/, n, eta, - intres + n, interr + n, workspace); + int retval; + if (k_is_real) { + double intres_real; + retval = ewald32_sr_integral(r_pq_shifted, kreal, n, eta, + &intres_real, interr + n, workspace); + cintres[n] = intres_real; + } else + retval = ewald32_sr_integral_ck(r_pq_shifted, k, n, eta, + cintres+n, interr + n, workspace); if (retval) abort(); } // otherwise recycle the integrals for (qpms_m_t m = -n; m <= n; ++m){ @@ -1000,7 +1012,7 @@ int ewald3_sigma_short( kahanadd(err + y, err_c + y, cabs(leg * (prefacn / I) * R_pq_pown * interr[n])); // TODO include also other errors ckahanadd(target + y, target_c + y, - prefacn * R_pq_pown * leg * intres[n] * e_beta_Rpq * e_imf * min1pow_m_neg(m)); + prefacn * R_pq_pown * leg * cintres[n] * e_beta_Rpq * e_imf * min1pow_m_neg(m)); } } diff --git a/qpms/ewald.h b/qpms/ewald.h index 4544c8a..a4a5a56 100644 --- a/qpms/ewald.h +++ b/qpms/ewald.h @@ -145,14 +145,14 @@ int ewald32_sr_integral(double r, double k, double n, double eta, double *result int ewald3_sigma0(complex double *result, double *err, const qpms_ewald32_constants_t *c, - double eta, double k + double eta, complex double k ); int ewald3_sigma_short( complex double *target_sigmasr_y, // must be c->nelem_sc long double *target_sigmasr_y_err, // must be c->nelem_sc long or NULL const qpms_ewald32_constants_t *c, - const double eta, const double k, + const double eta, const complex double k, const LatticeDimensionality latdim, // apart from asserts and possible optimisations ignored, as the SR formula stays the same PGen *pgen_R, const bool pgen_generates_shifted_points /* If false, the behaviour corresponds to the old ewald32_sigma_short_points_and_shift, @@ -169,7 +169,7 @@ int ewald3_sigma_long( // calls ewald3_21_sigma_long or ewald3_3_sigma_long, dep complex double *target_sigmalr_y, // must be c->nelem_sc long double *target_sigmalr_y_err, // must be c->nelem_sc long or NULL const qpms_ewald32_constants_t *c, - const double eta, const double k, + const double eta, const complex double k, const double unitcell_volume /* with the corresponding lattice dimensionality */, const LatticeDimensionality latdim, PGen *pgen_K, const bool pgen_generates_shifted_points