Make the choice for stupid-convention A,B parts of trans. op. in the docs.
Former-commit-id: 2cd1ab77b9c456701d1ec5135f88c7e603f3b22b
This commit is contained in:
parent
f239ae0afe
commit
fda3c620f4
|
@ -63,6 +63,65 @@ GSL computes \f$ \rawFer{l}{m} \f$ unless the corresponding `csphase` argument i
|
|||
but can be tested by running `gsl_sf_legendre_array_e` for some specific arguments and comparing signs.
|
||||
|
||||
|
||||
Convention effect on translation operators
|
||||
------------------------------------------
|
||||
|
||||
Let us declare VSWFs in Kristensson's conventions below,
|
||||
\f$ \wfkc \f$ \cite kristensson_spherical_2014,
|
||||
\f$ \wfkr \f$ \cite kristensson_scattering_2016, as the "canonical"
|
||||
spherical waves based on complex and real spherical harmonics, respectively.
|
||||
They both have the property that the translation operators \f$ \tropRrr{}{},\tropSrr{}{} \f$
|
||||
that transform
|
||||
the VSWF field expansion coefficients between different origins, e.g.
|
||||
\f[
|
||||
\wfkcreg(\vect{r}) = \tropRrr{\vect r}{\vect r'} \wfkcreg(\vect{r'}),
|
||||
\f]
|
||||
actually consist of two different submatrices $A,B$ for the same-type and different-type
|
||||
(in the sense of "electric" versus "magnetic" waves) that repeat themselves once:
|
||||
\f[
|
||||
\begin{bmatrix} \wfkcreg_1(\vect{r}) \\ \wfkcreg_2(\vect{r}) \end{bmatrix}
|
||||
= \begin{bmatrix} A & B \\ B & A \end{bmatrix}(\vect{r} \leftarrow \vect{r'})
|
||||
\begin{bmatrix} \wfkcreg_1(\vect{r'}) \\ \wfkcreg_2(\vect{r'}) \end{bmatrix}.
|
||||
\f]
|
||||
(This symmetry holds also for singular translation operators \f$ \tropSrr{}{} \f$
|
||||
and real spherical harmonics based VSWFs \f$ \wfkr \f$.)
|
||||
|
||||
However, the symmetry above will not hold like this in some stupider convention.
|
||||
Let's suppose that one uses a different convention with some additional coefficients
|
||||
compared to the canonical one,
|
||||
\f[
|
||||
\wfm_{lm} = \alpha_{\wfm lm} \wfkc_{1lm},\\
|
||||
\wfe_{lm} = \alpha_{\wfe lm} \wfkc_{2lm}.\\
|
||||
\f]
|
||||
and with field expansion (WLOG assume regular fields only)
|
||||
\f[ \vect E = c_{\wfe l m} \wfe_{lm} + c_{\wfm l m } \wfm_{lm}. \f]
|
||||
Under translations, the coefficients then transform like
|
||||
\f[
|
||||
\begin{bmatrix} \alpha_\wfe(\vect{r}) \\ \alpha_\wfm(\vect{r}) \end{bmatrix}
|
||||
= \begin{bmatrix} R_{\wfe\wfe} & R_{\wfe\wfm} \\
|
||||
R_{\wfm\wfe} & R_{\wfm\wfm}
|
||||
\end{bmatrix}(\vect{r} \leftarrow \vect{r'})
|
||||
\begin{bmatrix} \alpha_\wfe(\vect{r'}) \\ \alpha_\wfm(\vect{r'}) \end{bmatrix},
|
||||
\f]
|
||||
and by substituting and comparing the expressions for canonical waves above, one gets
|
||||
\f[
|
||||
R_{\wfe,lm;\wfe,l'm'} = \alpha_{\wfe lm}^{-1} A \alpha_{\wfe l'm'},\\
|
||||
R_{\wfe,lm;\wfm,l'm'} = \alpha_{\wfe lm}^{-1} B \alpha_{\wfm l'm'},\\
|
||||
R_{\wfm,lm;\wfe,l'm'} = \alpha_{\wfm lm}^{-1} B \alpha_{\wfe l'm'},\\
|
||||
R_{\wfm,lm;\wfm,l'm'} = \alpha_{\wfm lm}^{-1} A \alpha_{\wfm l'm'}.
|
||||
\f]
|
||||
|
||||
If the coefficients for magnetic and electric waves are the same,
|
||||
\f$ \alpha_{\wfm lm} = \alpha_{\wfe lm} \f$, the translation operator
|
||||
can be written in the same symmetric form as with the canonical convention,
|
||||
just the matrices \f$ A, B\f$ will be different inside.
|
||||
|
||||
If the coefficients differ (as in SCUFF-EM convention, where there
|
||||
is a relative \a i -factor between electric and magnetic waves),
|
||||
the functions such as qpms_trans_calculator_get_AB_arrays() will
|
||||
compute \f$ R_{\wfe\wfe}, R_{\wfe\wfm} \f$ for A, B arrays.
|
||||
|
||||
|
||||
Literature convention tables
|
||||
----------------------------
|
||||
|
||||
|
|
|
@ -31,6 +31,8 @@ MathJax.Hub.Config({
|
|||
spharm: ["{{Y_{\\mathrm{#1}}}_{#2}^{#3}}", 3, ""], // Spherical harmonics
|
||||
spharmR: ["{{Y_{\\mathrm{#1}}}_{\\mathrm{#1}{#2}{#3}}", 4, ""], // Spherical harmonics
|
||||
csphase: "\\mathsf{C_{CS}}", // Condon-Shortley phase
|
||||
tropSrr: ["{{S^\\mathrm{#1}}\\pr{{#2} \\leftarrow {#3}}}", 3, ""], // Translation operator singular
|
||||
tropRrr: ["{{R^\\mathrm{#1}}\\pr{{#2} \\leftarrow {#3}}}", 3, ""], // Translation operator regular
|
||||
|
||||
// Kristensson's VSWFs, complex version (2014 notes)
|
||||
wfkc: "{\\vect{y}}", // any wave
|
||||
|
|
Loading…
Reference in New Issue