Notes on τ vs. σ
Former-commit-id: 23add1dc0a6d0190e8fd61dceb9e39f7237dd4c8
This commit is contained in:
parent
e2584e3163
commit
fec399d16b
|
@ -216,6 +216,18 @@ e^{i\kappa\vect r\cdot\uvec r'}=4\pi\sum_{l,m}i^{n}\mathcal{J}'_{l}^{m}\left(\ka
|
|||
|
||||
\end_inset
|
||||
|
||||
This one should also be convention independent (similarly for
|
||||
\begin_inset Formula $\mathcal{H}_{l}^{m}$
|
||||
\end_inset
|
||||
|
||||
):
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\mathcal{J}_{l}^{m}\left(-\vect r\right)=\left(-1\right)^{l}\mathcal{J}_{l}^{m}\left(\vect r\right).
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
|
@ -245,11 +257,24 @@ G_{\pm}^{(\kappa)}\left(\vect x,\vect x_{0}\right) & =G_{\pm}^{(\kappa)}\left(\v
|
|||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $G_{\pm}^{(\kappa)}\left(\vect x,\vect x_{0}\right)=-\frac{i\kappa}{\ush 00}\mathcal{H}_{0}^{0}\left(\kappa\left|\vect x-\vect x_{0}\right|\right)$
|
||||
\end_inset
|
||||
|
||||
in case wacky conventions.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
Lattice GF [Linton (2.3)]:
|
||||
\begin_inset Formula
|
||||
\[
|
||||
G_{\Lambda}^{(\kappa)}\left(\vect s,\vect k\right)\equiv\sum_{\vect R\in\Lambda}G_{+}^{\kappa}\left(\vect s-\vect R\right)e^{i\vect k\cdot\vect R}
|
||||
\]
|
||||
\begin{equation}
|
||||
G_{\Lambda}^{(\kappa)}\left(\vect s,\vect k\right)\equiv\sum_{\vect R\in\Lambda}G_{+}^{\kappa}\left(\vect s-\vect R\right)e^{i\vect k\cdot\vect R}\label{eq:Lattice GF}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -264,7 +289,15 @@ GF expansion and lattice sum definition
|
|||
Let's define
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\sigma_{l}^{m}\left(\vect s,\vect k\right)=\sum_{\vect R\in\Lambda}\mathcal{H}_{l}^{m}\left(\kappa\left(\vect s-\vect R\right)\right)e^{i\vect k\cdot\vect R}.
|
||||
\sigma_{l}^{m}\left(\vect s,\vect k\right)=\sum_{\vect R\in\Lambda}\mathcal{H}_{l}^{m}\left(\kappa\left(\vect s+\vect R\right)\right)e^{i\vect k\cdot\vect R},
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
and also its dual version
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\sigma'_{l}^{m}\left(\vect s,\vect k\right)=\sum_{\vect R\in\Lambda}\mathcal{H}'_{l}^{m}\left(\kappa\left(\vect s+\vect R\right)\right)e^{i\vect k\cdot\vect R}.
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -287,11 +320,140 @@ Inspired by [Linton (4.1)]; assuming that
|
|||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\[
|
||||
G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)=-i\kappa\sum_{l,m}\tau_{l}^{m}\left(\vect s,\vect k\right)\mathcal{J}_{l}^{m}\left(\kappa\vect r\right).
|
||||
G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)=-i\kappa\sum_{l,m}\tau_{l}^{m}\left(\vect s,\vect k\right)\mathcal{J}_{l}^{m}\left(\kappa\vect r\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
and multiply with a dual SH + integrate
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)\ushD{l'}{m'}\left(\uvec r\right) & =-i\kappa\sum_{l,m}\tau_{l}^{m}\left(\vect s,\vect k\right)j_{l}\left(\kappa\left|\vect r\right|\right)\delta_{ll'}\delta_{mm'}\nonumber \\
|
||||
& =-i\kappa\tau_{l'}^{m'}\left(\vect s,\vect k\right)j_{l'}\left(\kappa\left|\vect r\right|\right)\label{eq:tau extraction}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
The expansion coefficients
|
||||
\begin_inset Formula $\tau_{l}^{m}\left(\vect s,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
is then typically extracted by taking the limit
|
||||
\begin_inset Formula $\left|\vect r\right|\to0$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The relation between
|
||||
\begin_inset Formula $\sigma_{l}^{m}\left(\vect s,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $\tau_{l}^{m}\left(\vect s,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
can be obtained e.g.
|
||||
from the addition theorem for scalar spherical wavefunctions [Linton (C.3)],
|
||||
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\mathcal{H}_{l}^{m}\left(\vect a+\vect b\right)=\sum_{l'm'}S_{ll'}^{mm'}\left(\vect b\right)\mathcal{J}_{l'}^{m'}\left(\vect a\right),\quad\left|\vect a\right|<\left|\vect b\right|
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
where for the zeroth degree and order one has [Linton (C.3)]
|
||||
\begin_inset Formula
|
||||
\[
|
||||
S_{0l'}^{0m'}\left(\vect b\right)=\sqrt{4\pi}\mathcal{H}'_{l'}^{m'}\left(-\vect b\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
In a totally convention-independent version probably looks like
|
||||
\begin_inset Formula $S_{0l'}^{0m'}\left(\vect b\right)=\ush 00\mathcal{H}'_{l'}^{m'}\left(-\vect b\right)$
|
||||
\end_inset
|
||||
|
||||
, but the
|
||||
\begin_inset Formula $Y_{0}^{0}$
|
||||
\end_inset
|
||||
|
||||
will cancel with the expression for GF anyways, so no harm to the final
|
||||
result.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
From the lattice GF definition
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Lattice GF"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right) & \equiv\frac{-i\kappa}{\sqrt{4\pi}}\sum_{\vect R\in\Lambda}\mathcal{H}_{0}^{0}\left(\kappa\left(\vect s+\vect r-\vect R\right)\right)e^{i\vect k\cdot\vect R}\\
|
||||
& =\frac{-i\kappa}{\sqrt{4\pi}}\sum_{\vect R\in\Lambda}\mathcal{H}_{0}^{0}\left(\kappa\left(\vect s+\vect r-\vect R\right)\right)e^{i\vect k\cdot\vect R}\\
|
||||
& =\frac{-i\kappa}{\sqrt{4\pi}}\sum_{\vect R\in\Lambda}\sum_{l'm'}S_{0l'}^{0m'}\left(\kappa\left(\vect s-\vect R\right)\right)\mathcal{J}_{l'}^{m'}\left(\kappa\vect r\right)e^{i\vect k\cdot\vect R}\\
|
||||
& =-i\kappa\sum_{\vect R\in\Lambda}\sum_{lm}\mathcal{H}'_{l}^{m}\left(-\kappa\left(\vect s-\vect R\right)\right)\mathcal{J}_{l}^{m}\left(\kappa\vect r\right)e^{i\vect k\cdot\vect R}
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
and mutliplying with dual SH and integrating
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)\ushD{l'}{m'}\left(\uvec r\right) & =-i\kappa\sum_{\vect R\in\Lambda}\sum_{lm}\mathcal{H}'_{l}^{m}\left(-\kappa\left(\vect s-\vect R\right)\right)j_{l}\left(\kappa\left|\vect r\right|\right)\delta_{ll'}\delta_{mm'}e^{i\vect k\cdot\vect R}\\
|
||||
& =-i\kappa\sum_{\vect R\in\Lambda}\mathcal{H}'_{l'}^{m'}\left(\kappa\left(-\vect s+\vect R\right)\right)j_{l}\left(\kappa\left|\vect r\right|\right)e^{i\vect k\cdot\vect R}\\
|
||||
& =-i\kappa\sigma'_{l'}^{m'}\left(-\vect s,\vect k\right)j_{l}\left(\kappa\left|\vect r\right|\right)
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
and comparing with
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:tau extraction"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
we have
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\tau_{l}^{m}\left(\vect s,\vect k\right)=\sigma'_{l}^{m}\left(-\vect s,\vect k\right).
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TODO maybe also define some
|
||||
\begin_inset Formula $\tau'_{l}^{m}$
|
||||
\end_inset
|
||||
|
||||
as expansion coefficients of GF into dual regular SSWFs.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
|
|
Loading…
Reference in New Issue