diff --git a/notes/GF_vs_SWF.lyx b/notes/GF_vs_SWF.lyx index 4f0b5ff..818a399 100644 --- a/notes/GF_vs_SWF.lyx +++ b/notes/GF_vs_SWF.lyx @@ -216,6 +216,18 @@ e^{i\kappa\vect r\cdot\uvec r'}=4\pi\sum_{l,m}i^{n}\mathcal{J}'_{l}^{m}\left(\ka \end_inset +This one should also be convention independent (similarly for +\begin_inset Formula $\mathcal{H}_{l}^{m}$ +\end_inset + +): +\begin_inset Formula +\[ +\mathcal{J}_{l}^{m}\left(-\vect r\right)=\left(-1\right)^{l}\mathcal{J}_{l}^{m}\left(\vect r\right). +\] + +\end_inset + \end_layout @@ -245,11 +257,24 @@ G_{\pm}^{(\kappa)}\left(\vect x,\vect x_{0}\right) & =G_{\pm}^{(\kappa)}\left(\v \end_inset + +\begin_inset Marginal +status open + +\begin_layout Plain Layout +\begin_inset Formula $G_{\pm}^{(\kappa)}\left(\vect x,\vect x_{0}\right)=-\frac{i\kappa}{\ush 00}\mathcal{H}_{0}^{0}\left(\kappa\left|\vect x-\vect x_{0}\right|\right)$ +\end_inset + + in case wacky conventions. +\end_layout + +\end_inset + Lattice GF [Linton (2.3)]: \begin_inset Formula -\[ -G_{\Lambda}^{(\kappa)}\left(\vect s,\vect k\right)\equiv\sum_{\vect R\in\Lambda}G_{+}^{\kappa}\left(\vect s-\vect R\right)e^{i\vect k\cdot\vect R} -\] +\begin{equation} +G_{\Lambda}^{(\kappa)}\left(\vect s,\vect k\right)\equiv\sum_{\vect R\in\Lambda}G_{+}^{\kappa}\left(\vect s-\vect R\right)e^{i\vect k\cdot\vect R}\label{eq:Lattice GF} +\end{equation} \end_inset @@ -264,7 +289,15 @@ GF expansion and lattice sum definition Let's define \begin_inset Formula \[ -\sigma_{l}^{m}\left(\vect s,\vect k\right)=\sum_{\vect R\in\Lambda}\mathcal{H}_{l}^{m}\left(\kappa\left(\vect s-\vect R\right)\right)e^{i\vect k\cdot\vect R}. +\sigma_{l}^{m}\left(\vect s,\vect k\right)=\sum_{\vect R\in\Lambda}\mathcal{H}_{l}^{m}\left(\kappa\left(\vect s+\vect R\right)\right)e^{i\vect k\cdot\vect R}, +\] + +\end_inset + +and also its dual version +\begin_inset Formula +\[ +\sigma'_{l}^{m}\left(\vect s,\vect k\right)=\sum_{\vect R\in\Lambda}\mathcal{H}'_{l}^{m}\left(\kappa\left(\vect s+\vect R\right)\right)e^{i\vect k\cdot\vect R}. \] \end_inset @@ -287,11 +320,140 @@ Inspired by [Linton (4.1)]; assuming that \begin_layout Standard \begin_inset Formula \[ -G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)=-i\kappa\sum_{l,m}\tau_{l}^{m}\left(\vect s,\vect k\right)\mathcal{J}_{l}^{m}\left(\kappa\vect r\right). +G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)=-i\kappa\sum_{l,m}\tau_{l}^{m}\left(\vect s,\vect k\right)\mathcal{J}_{l}^{m}\left(\kappa\vect r\right) \] \end_inset +and multiply with a dual SH + integrate +\begin_inset Formula +\begin{align} +\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)\ushD{l'}{m'}\left(\uvec r\right) & =-i\kappa\sum_{l,m}\tau_{l}^{m}\left(\vect s,\vect k\right)j_{l}\left(\kappa\left|\vect r\right|\right)\delta_{ll'}\delta_{mm'}\nonumber \\ + & =-i\kappa\tau_{l'}^{m'}\left(\vect s,\vect k\right)j_{l'}\left(\kappa\left|\vect r\right|\right)\label{eq:tau extraction} +\end{align} + +\end_inset + +The expansion coefficients +\begin_inset Formula $\tau_{l}^{m}\left(\vect s,\vect k\right)$ +\end_inset + + is then typically extracted by taking the limit +\begin_inset Formula $\left|\vect r\right|\to0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +The relation between +\begin_inset Formula $\sigma_{l}^{m}\left(\vect s,\vect k\right)$ +\end_inset + + and +\begin_inset Formula $\tau_{l}^{m}\left(\vect s,\vect k\right)$ +\end_inset + + can be obtained e.g. + from the addition theorem for scalar spherical wavefunctions [Linton (C.3)], + +\begin_inset Formula +\[ +\mathcal{H}_{l}^{m}\left(\vect a+\vect b\right)=\sum_{l'm'}S_{ll'}^{mm'}\left(\vect b\right)\mathcal{J}_{l'}^{m'}\left(\vect a\right),\quad\left|\vect a\right|<\left|\vect b\right| +\] + +\end_inset + +where for the zeroth degree and order one has [Linton (C.3)] +\begin_inset Formula +\[ +S_{0l'}^{0m'}\left(\vect b\right)=\sqrt{4\pi}\mathcal{H}'_{l'}^{m'}\left(-\vect b\right) +\] + +\end_inset + + +\begin_inset Marginal +status open + +\begin_layout Plain Layout +In a totally convention-independent version probably looks like +\begin_inset Formula $S_{0l'}^{0m'}\left(\vect b\right)=\ush 00\mathcal{H}'_{l'}^{m'}\left(-\vect b\right)$ +\end_inset + +, but the +\begin_inset Formula $Y_{0}^{0}$ +\end_inset + + will cancel with the expression for GF anyways, so no harm to the final + result. +\end_layout + +\end_inset + +From the lattice GF definition +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:Lattice GF" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + +\begin_inset Formula +\begin{align*} +G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right) & \equiv\frac{-i\kappa}{\sqrt{4\pi}}\sum_{\vect R\in\Lambda}\mathcal{H}_{0}^{0}\left(\kappa\left(\vect s+\vect r-\vect R\right)\right)e^{i\vect k\cdot\vect R}\\ + & =\frac{-i\kappa}{\sqrt{4\pi}}\sum_{\vect R\in\Lambda}\mathcal{H}_{0}^{0}\left(\kappa\left(\vect s+\vect r-\vect R\right)\right)e^{i\vect k\cdot\vect R}\\ + & =\frac{-i\kappa}{\sqrt{4\pi}}\sum_{\vect R\in\Lambda}\sum_{l'm'}S_{0l'}^{0m'}\left(\kappa\left(\vect s-\vect R\right)\right)\mathcal{J}_{l'}^{m'}\left(\kappa\vect r\right)e^{i\vect k\cdot\vect R}\\ + & =-i\kappa\sum_{\vect R\in\Lambda}\sum_{lm}\mathcal{H}'_{l}^{m}\left(-\kappa\left(\vect s-\vect R\right)\right)\mathcal{J}_{l}^{m}\left(\kappa\vect r\right)e^{i\vect k\cdot\vect R} +\end{align*} + +\end_inset + +and mutliplying with dual SH and integrating +\begin_inset Formula +\begin{align*} +\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)\ushD{l'}{m'}\left(\uvec r\right) & =-i\kappa\sum_{\vect R\in\Lambda}\sum_{lm}\mathcal{H}'_{l}^{m}\left(-\kappa\left(\vect s-\vect R\right)\right)j_{l}\left(\kappa\left|\vect r\right|\right)\delta_{ll'}\delta_{mm'}e^{i\vect k\cdot\vect R}\\ + & =-i\kappa\sum_{\vect R\in\Lambda}\mathcal{H}'_{l'}^{m'}\left(\kappa\left(-\vect s+\vect R\right)\right)j_{l}\left(\kappa\left|\vect r\right|\right)e^{i\vect k\cdot\vect R}\\ + & =-i\kappa\sigma'_{l'}^{m'}\left(-\vect s,\vect k\right)j_{l}\left(\kappa\left|\vect r\right|\right) +\end{align*} + +\end_inset + +and comparing with +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:tau extraction" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + we have +\begin_inset Formula +\[ +\tau_{l}^{m}\left(\vect s,\vect k\right)=\sigma'_{l}^{m}\left(-\vect s,\vect k\right). +\] + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO maybe also define some +\begin_inset Formula $\tau'_{l}^{m}$ +\end_inset + + as expansion coefficients of GF into dual regular SSWFs. +\end_layout + +\end_inset + \end_layout