qpms_scatsystem_t constructor done, untested.

Former-commit-id: c4ac2f33b354d435b985d43762716e7149dc57e8
This commit is contained in:
Marek Nečada 2019-02-28 12:09:13 +02:00
parent ed47640baf
commit ff79fb950a
3 changed files with 76 additions and 12 deletions

View File

@ -50,6 +50,6 @@ typedef struct qpms_finite_group_t {
} qpms_finite_group_t; } qpms_finite_group_t;
/// NOT IMPLEMENTED Get irrep index by name. /// NOT IMPLEMENTED Get irrep index by name.
qpms_iri_t qpms_finite_group_find_irrep_by_name(qpms_finite_group *G, char *name); qpms_iri_t qpms_finite_group_find_irrep_by_name(qpms_finite_group_t *G, char *name);
#endif // QPMS_GROUPS_H #endif // QPMS_GROUPS_H

View File

@ -10,6 +10,7 @@
#include <unistd.h> #include <unistd.h>
#include "vectors.h" #include "vectors.h"
#include "wigner.h" #include "wigner.h"
#include <string.h>
#define QPMS_SCATSYS_LEN_RTOL 1e-13 #define QPMS_SCATSYS_LEN_RTOL 1e-13
@ -258,6 +259,33 @@ qpms_tmatrix_t *qpms_tmatrix_interpolator_eval(const qpms_tmatrix_interpolator_t
#define MIN(x,y) (((x)<(y))?(x):(y)) #define MIN(x,y) (((x)<(y))?(x):(y))
#define MAX(x,y) (((x)>(y))?(x):(y)) #define MAX(x,y) (((x)>(y))?(x):(y))
// The following functions are just to make qpms_scatsys_apply_symmetry more readable.
// They are not to be used elsewhere, as they do not perform any array capacity checks etc.
/// Compare two orbit types in a scattering system.
static bool orbit_types_equal(const qpms_ss_orbit_type_t *a, const qpms_ss_orbit_type_t *b) {
if (a->size != b->size) return false;
if (memcmp(a->action, b->action, a->size*sizeof(qpms_ss_orbit_pi_t))) return false;
if (memcmp(a->tmatrices, b->tmatrices, a->size*sizeof(qpms_ss_tmi_t))) return false;
return true;
}
/// Add orbit type to a scattering system, updating the ss->otspace_end pointer accordingly
static void add_orbit_type(qpms_scatsys_t *ss, const qpms_ss_orbit_type_t *ot_current) {
qpms_ss_orbit_type_t * const ot_new = & (ss->orbit_types[ss->orbit_type_count]);
ot_new->size = ot_current->size;
const size_t actionsiz = sizeof(ot_current->action[0]) * ss->sym->order;
ot_new->action = (void *) (ss->otspace_end);
memcpy(ot_new->action, ot_current->action, actionsiz);
ss->otspace_end += actionsiz;
const size_t tmsiz = sizeof(ot_current->tmatrices[0]) * ot_current->size;
ot_new->tmatrices = (void *) (ss->otspace_end);
memcpy(ot_new->tmatrices, ot_current->tmatrices, tmsiz);
ss->otspace_end += tmsiz;
}
// Almost 200 lines. This whole thing deserves a rewrite!
qpms_scatsys_t *qpms_scatsys_apply_symmetry(const qpms_scatsys_t *orig, const qpms_finite_group_t *sym) { qpms_scatsys_t *qpms_scatsys_apply_symmetry(const qpms_scatsys_t *orig, const qpms_finite_group_t *sym) {
// TODO check data sanity // TODO check data sanity
@ -285,6 +313,7 @@ qpms_scatsys_t *qpms_scatsys_apply_symmetry(const qpms_scatsys_t *orig, const qp
// Allocate T-matrix, particle and particle orbit info arrays // Allocate T-matrix, particle and particle orbit info arrays
qpms_scatsys_t *ss = malloc(sizeof(qpms_scatsys_t)); qpms_scatsys_t *ss = malloc(sizeof(qpms_scatsys_t));
ss->lenscale = lenscale; ss->lenscale = lenscale;
ss->sym = sym;
ss->tm_capacity = sym->order * orig->tm_count; ss->tm_capacity = sym->order * orig->tm_count;
ss->tm = malloc(ss->tm_capacity * sizeof(qpms_tmatrix_t *)); ss->tm = malloc(ss->tm_capacity * sizeof(qpms_tmatrix_t *));
@ -292,13 +321,16 @@ qpms_scatsys_t *qpms_scatsys_apply_symmetry(const qpms_scatsys_t *orig, const qp
ss->p_capacity = sym->order * orig->p_count; ss->p_capacity = sym->order * orig->p_count;
ss->p = malloc(ss->p_capacity * sizeof(qpms_particle_tid_t)); ss->p = malloc(ss->p_capacity * sizeof(qpms_particle_tid_t));
ss->p_orbitinfo = malloc(ss->p_capacity * sizeof(qpms_ss_particle_orbitinfo_t)); ss->p_orbitinfo = malloc(ss->p_capacity * sizeof(qpms_ss_particle_orbitinfo_t));
for (qpms_ss_pi_t pi = 0; pi < ss->p_capacity; ++pi) {
ss->p_orbitinfo[pi].t = QPMS_SS_P_ORBITINFO_UNDEF;
ss->p_orbitinfo[pi].p = QPMS_SS_P_ORBITINFO_UNDEF;
}
// Copy T-matrices; checking for duplicitie // Copy T-matrices; checking for duplicities
qpms_ss_tmi_t tm_dupl_remap[ss->tm_capacity]; // Auxilliary array to label remapping the indices after ignoring t-matrix duplicities qpms_ss_tmi_t tm_dupl_remap[ss->tm_capacity]; // Auxilliary array to label remapping the indices after ignoring t-matrix duplicities
ss->tm_count = 0; ss->tm_count = 0;
for (qpms_ss_tmi_t i = 0; i < orig->tm_count; ++i) { for (qpms_ss_tmi_t i = 0; i < orig->tm_count; ++i) {
bool found_dupl = false;
qpms_ss_tmi_t j; qpms_ss_tmi_t j;
for (j = 0; j < ss->tm_count; ++j) for (j = 0; j < ss->tm_count; ++j)
if (qpms_tmatrix_isclose(orig->tm[i], ss->tm[j], QPMS_SCATSYS_TMATRIX_RTOL, QPMS_SCATSYS_TMATRIX_ATOL)) { if (qpms_tmatrix_isclose(orig->tm[i], ss->tm[j], QPMS_SCATSYS_TMATRIX_RTOL, QPMS_SCATSYS_TMATRIX_ATOL)) {
@ -358,8 +390,9 @@ qpms_scatsys_t *qpms_scatsys_apply_symmetry(const qpms_scatsys_t *orig, const qp
// Workspace for the orbit type determination // Workspace for the orbit type determination
qpms_ss_orbit_type_t ot_current; qpms_ss_orbit_type_t ot_current;
qpms_ss_orbit_pi_t ot_current_action[sym->order]; qpms_ss_orbit_pi_t ot_current_action[sym->order];
qpms_ss_pi_t current_orbit[sym->order];
qpms_ss_tmi_t ot_current_tmatrices[sym->order]; qpms_ss_tmi_t ot_current_tmatrices[sym->order];
qpms_ss_pi_t current_orbit[sym->order];
ot_current.action = ot_current_action; ot_current.action = ot_current_action;
ot_current.tmatrices = ot_current_tmatrices; ot_current.tmatrices = ot_current_tmatrices;
@ -368,7 +401,12 @@ qpms_scatsys_t *qpms_scatsys_apply_symmetry(const qpms_scatsys_t *orig, const qp
// have the correct symmetry // have the correct symmetry
// TODO this could be sped up to O(npart * log(npart)); let's see later whether needed. // TODO this could be sped up to O(npart * log(npart)); let's see later whether needed.
for (qpms_ss_pi_t pi = 0; pi < ss->p_count; ++pi) { for (qpms_ss_pi_t pi = 0; pi < ss->p_count; ++pi) {
const bool new_orbit = (ss->p_orbitinfo[pi].size == 0); // TODO build the orbit!!! const bool new_orbit = (ss->p_orbitinfo[pi].t == QPMS_SS_P_ORBITINFO_UNDEF); // TODO build the orbit!!!
if (new_orbit){
current_orbit[0] = pi;
ot_current.size = 1;
ot_current.tmatrices[0] = ss->p[pi].tmatrix_id;
}
for (qpms_gmi_t gmi = 0; gmi < sym->order; ++gmi) { for (qpms_gmi_t gmi = 0; gmi < sym->order; ++gmi) {
cart3_t newpoint = qpms_irot3_apply_cart3(sym->rep3d[gmi], ss->p[pi].pos); cart3_t newpoint = qpms_irot3_apply_cart3(sym->rep3d[gmi], ss->p[pi].pos);
@ -388,6 +426,32 @@ qpms_scatsys_t *qpms_scatsys_apply_symmetry(const qpms_scatsys_t *orig, const qp
++(ss->p_count); ++(ss->p_count);
} }
ss->p_sym_map[gmi + pi * sym->order] = pi; ss->p_sym_map[gmi + pi * sym->order] = pi;
if (new_orbit) {
// Now check whether the particle (result of the symmetry op) is already in the current orbit
qpms_ss_orbit_pi_t opj;
for (opj = 0; opj < ot_current.size; ++opj)
if (current_orbit[opj] == pj) break; // HIT, pj already on current orbit
if (opj == ot_current.size) { // MISS, pj is new on the orbit, extend the size and set the T-matrix id
++ot_current.size;
ot_current.tmatrices[opj] = ss->p[pj].tmatrix_id;
}
ot_current.action[gmi] = opj;
}
}
if (new_orbit) { // Now compare if the new orbit corresponds to some of the existing types.
qpms_ss_oti_t oti;
for(oti = 0; oti < ss->orbit_type_count; ++oti)
if (orbit_types_equal(&ot_current, &(ss->orbit_types[oti]))) break; // HIT, orbit type already exists
if (oti == ss->orbit_type_count) // MISS, add the new orbit type
add_orbit_type(ss, &ot_current);
// Walk through the orbit again and set up the orbit info of the particles
for (qpms_ss_orbit_pi_t opi = 0; opi < ot_current.size; ++opi) {
const qpms_ss_pi_t pi_opi = current_orbit[opi];
ss->p_orbitinfo[pi_opi].t = oti;
ss->p_orbitinfo[pi_opi].p = opi;
}
} }
} }
// Possibly free some space using the new ss->p_count instead of (old) ss->p_count*sym->order // Possibly free some space using the new ss->p_count instead of (old) ss->p_count*sym->order
@ -396,7 +460,6 @@ qpms_scatsys_t *qpms_scatsys_apply_symmetry(const qpms_scatsys_t *orig, const qp
ss->p_orbitinfo = realloc(ss->p_orbitinfo, sizeof(qpms_ss_particle_orbitinfo_t)*ss->p_count); ss->p_orbitinfo = realloc(ss->p_orbitinfo, sizeof(qpms_ss_particle_orbitinfo_t)*ss->p_count);
ss->p_capacity = ss->p_count; ss->p_capacity = ss->p_count;
ss->sym = sym;
// Set ss->fecv_size and ss->fecv_pstarts // Set ss->fecv_size and ss->fecv_pstarts
ss->fecv_size = 0; ss->fecv_size = 0;

View File

@ -199,7 +199,7 @@ typedef struct qpms_particle_tid_t {
struct qpms_finite_group_t; struct qpms_finite_group_t;
typedef qpms_gmi_t qpms_ss_orbit_pi_t; ///< Auxilliary type used in qpms_ss_orbit_type_t for labeling particles inside orbits. typedef qpms_gmi_t qpms_ss_orbit_pi_t; ///< Auxilliary type used in qpms_ss_orbit_type_t for labeling particles inside orbits.
typedef qpms_tmi_t qpms_ss_oti_t; ///< Auxilliary type used for labeling orbit types. typedef qpms_ss_tmi_t qpms_ss_oti_t; ///< Auxilliary type used for labeling orbit types.
/// Structure describing a particle's "orbit type" under symmetry group actions in a system. /// Structure describing a particle's "orbit type" under symmetry group actions in a system.
/** /**
@ -245,8 +245,9 @@ typedef struct qpms_ss_orbit_type_t {
/// Auxillary type used in qpms_scatsys_t that identifies the particle's orbit and its id inside that orbit. /// Auxillary type used in qpms_scatsys_t that identifies the particle's orbit and its id inside that orbit.
typedef struct qpms_ss_particle_orbitinfo { typedef struct qpms_ss_particle_orbitinfo {
qpms_oti_t orbit; ///< Orbit type. qpms_ss_oti_t t; ///< Orbit type.
qpms_ss_orbit_pi_t; ///< "Order" of the particle inside that orbit type. #define QPMS_SS_P_ORBITINFO_UNDEF (-1) ///< This labels that the particle has not yet been assigned to an orbit.
qpms_ss_orbit_pi_t p; ///< "Order" of the particle inside that orbit type.
} qpms_ss_particle_orbitinfo_t; } qpms_ss_particle_orbitinfo_t;
@ -260,7 +261,7 @@ typedef struct qpms_scatsys_t {
qpms_ss_pi_t p_capacity; ///< Capacity of p[]. qpms_ss_pi_t p_capacity; ///< Capacity of p[].
//TODO the index types do not need to be so big. //TODO the index types do not need to be so big.
struct qpms_finite_group_t *sym; ///< Symmetry group of the array const struct qpms_finite_group_t *sym; ///< Symmetry group of the array
qpms_ss_pi_t *p_sym_map; ///< Which particles map onto which by the symmetry ops. qpms_ss_pi_t *p_sym_map; ///< Which particles map onto which by the symmetry ops.
///< p_sym_map[idi + pi * sym->order] gives the index of pi-th particle under the idi'th sym op. ///< p_sym_map[idi + pi * sym->order] gives the index of pi-th particle under the idi'th sym op.
qpms_ss_tmi_t *tm_sym_map; ///< Which t-matrices map onto which by the symmetry ops. Lookup by tm_sum_map[idi + tmi * sym->order]. qpms_ss_tmi_t *tm_sym_map; ///< Which t-matrices map onto which by the symmetry ops. Lookup by tm_sum_map[idi + tmi * sym->order].
@ -282,7 +283,7 @@ typedef struct qpms_scatsys_t {
// private // private
// We keep the p_orbitinfo arrays in this chunk in order to avoid memory fragmentation // We keep the p_orbitinfo arrays in this chunk in order to avoid memory fragmentation
void *otspace; char *otspace;
char *otspace_end; char *otspace_end;
double lenscale; // radius of the array, used as a relative tolerance measure double lenscale; // radius of the array, used as a relative tolerance measure
} qpms_scatsys_t; } qpms_scatsys_t;