Compare commits
1 Commits
Author | SHA1 | Date |
---|---|---|
Marek Nečada | 9d8a0c1d45 |
83
.drone.yml
83
.drone.yml
|
@ -1,83 +0,0 @@
|
|||
---
|
||||
kind: pipeline
|
||||
type: docker
|
||||
name: buildqpms-alpine-preinstlibs
|
||||
|
||||
workspace:
|
||||
path: /home/qpmsbuild/qpms
|
||||
|
||||
# don't run in master until the python/lapacke linking problem is resolved
|
||||
trigger:
|
||||
branch:
|
||||
exclude:
|
||||
- master
|
||||
|
||||
steps:
|
||||
- name: chown
|
||||
image: qpms/buildenv/alpine/pkgdnumlib
|
||||
pull: never
|
||||
commands:
|
||||
- chown -R qpmsbuild.qpmsbuild .
|
||||
- name: submodules
|
||||
image: qpms/buildenv/alpine/pkgdnumlib
|
||||
pull: never
|
||||
user: qpmsbuild
|
||||
commands:
|
||||
- git submodule init
|
||||
- git submodule update
|
||||
- name: build
|
||||
image: qpms/buildenv/alpine/pkgdnumlib
|
||||
pull: never
|
||||
user: qpmsbuild
|
||||
commands:
|
||||
- cmake -DCMAKE_INSTALL_PREFIX=$HOME/.local .
|
||||
- make install
|
||||
- export LIBRARY_PATH=$HOME/.local/lib
|
||||
- python3 setup.py install --user
|
||||
- cd examples/rectangular/modes
|
||||
- pip3 install --user matplotlib #needed to run the example
|
||||
- export LD_LIBRARY_PATH=$HOME/.local/lib
|
||||
- ./01a_realfreq_svd.sh
|
||||
|
||||
---
|
||||
kind: pipeline
|
||||
type: docker
|
||||
name: buildqpms-debian-preinstlibs
|
||||
|
||||
workspace:
|
||||
path: /home/qpmsbuild/qpms
|
||||
|
||||
steps:
|
||||
- name: chown
|
||||
image: qpms/buildenv/debian/pkgdnumlib
|
||||
pull: never
|
||||
commands:
|
||||
- chown -R qpmsbuild.qpmsbuild .
|
||||
- name: submodules
|
||||
image: qpms/buildenv/debian/pkgdnumlib
|
||||
pull: never
|
||||
user: qpmsbuild
|
||||
commands:
|
||||
- git submodule init
|
||||
- git submodule update
|
||||
- name: build
|
||||
image: qpms/buildenv/debian/pkgdnumlib
|
||||
pull: never
|
||||
user: qpmsbuild
|
||||
commands:
|
||||
- cmake -DCMAKE_INSTALL_PREFIX=/home/qpmsbuild/.local .
|
||||
- make install
|
||||
- export LIBRARY_PATH=$HOME/.local/lib
|
||||
- python3 setup.py install --user
|
||||
- pip3 install --user matplotlib #needed to run the examples
|
||||
- export LD_LIBRARY_PATH=$HOME/.local/lib
|
||||
- cd examples/rectangular/modes
|
||||
- ./01a_realfreq_svd.sh
|
||||
- cd -
|
||||
- cd examples/hexagonal/modes
|
||||
#- ./01a_realfreq_svd.sh
|
||||
#- ./01_compute_modes.sh
|
||||
#- ./02b_compute_disp_0M.sh
|
||||
#- ./02_compute_disp.sh
|
||||
#- ./02x_compute_disp.sh
|
||||
|
|
@ -5,29 +5,4 @@
|
|||
*.pdf
|
||||
*.o
|
||||
docs/*
|
||||
|
||||
qpms/qpms_c.c
|
||||
qpms/cy*.c
|
||||
CMakeCache.txt
|
||||
CMakeFiles/*
|
||||
faddeeva/*
|
||||
qpms/CMakeFiles/*
|
||||
qpms/libqpms.so
|
||||
qpms/cmake_install.cmake
|
||||
qpms_version.c
|
||||
qpms.egg_info/*
|
||||
dist/*
|
||||
build/*
|
||||
Makefile
|
||||
CTestTestfile.cmake
|
||||
|
||||
amos/CMakeFiles/*
|
||||
amos/Makefile
|
||||
amos/amos_mangling.h
|
||||
cmake_install.cmake
|
||||
cython_debug/*
|
||||
qpms.egg-info/*
|
||||
tests/CmakeFiles/*
|
||||
tests/cmake_install.cmake
|
||||
tests/CMakeFiles/*
|
||||
|
||||
|
|
|
@ -1,4 +0,0 @@
|
|||
[submodule "camos"]
|
||||
path = camos
|
||||
url = https://codeberg.org/QPMS/zbessel.git
|
||||
branch = purec
|
43
CLIUTILS.md
43
CLIUTILS.md
|
@ -1,43 +0,0 @@
|
|||
Overview of QPMS command line utilities
|
||||
=======================================
|
||||
|
||||
The utilities are located in the `misc` directory. Run the
|
||||
utility with `-h` argument to get more info.
|
||||
|
||||
|
||||
Rectangular and square 2D lattices
|
||||
----------------------------------
|
||||
|
||||
These scripts deal with simple 2D rectangular lattices,
|
||||
finite or infinite, one scatterer per unit cell.
|
||||
\f$ D_{2h} \f$ or \f$ D_{4h} \f$ symmetric adapted bases
|
||||
are used where applicable.
|
||||
|
||||
### Finite lattices
|
||||
|
||||
* `finiterectlat-modes.py`: Search for resonances using Beyn's algorithm.
|
||||
* `finiterectlat-scatter.py`: Plane wave scattering.
|
||||
* `finiterectlat-constant-driving.py`: Rectangular array response to
|
||||
a driving where a subset of particles are excited by basis VSWFs with the
|
||||
same phase.
|
||||
|
||||
### Infinite lattices
|
||||
|
||||
* `rectlat_simple_modes.py`: Search for lattice modes using Beyn's algorithm.
|
||||
* `infiniterectlat-k0realfreqsvd.py`:
|
||||
Evaluate the lattice mode problem singular values at the Γ point for a real frequency interval.
|
||||
Useful as a starting point in lattice mode search before using Beyn's algorithm.
|
||||
* `infiniterectlat-scatter.py`: Plane wave scattering.
|
||||
|
||||
|
||||
General 2D lattices
|
||||
-------------------
|
||||
|
||||
### Infinite lattices
|
||||
|
||||
These can contain several scatterers per unit cell. Symmetry adapted bases currently not implemented.
|
||||
|
||||
* `lat2d_modes.py`: Search for lattice modes using Beyn's algorithm.
|
||||
* `lat2d_realfreqsvd.py`:
|
||||
Evaluate the lattice mode problem singular values at the Γ point for a real frequency interval.
|
||||
Useful as a starting point in lattice mode search before using Beyn's algorithm.
|
|
@ -1,17 +1,10 @@
|
|||
cmake_minimum_required(VERSION 3.0.2)
|
||||
|
||||
option(QPMS_USE_FORTRAN_AMOS "Use the original AMOS Fortran libraries instead of the C ones" OFF)
|
||||
|
||||
if (QPMS_USE_FORTRAN_AMOS)
|
||||
include(CMakeAddFortranSubdirectory)
|
||||
endif (QPMS_USE_FORTRAN_AMOS)
|
||||
set (CMAKE_MODULE_PATH "${CMAKE_MODULE_PATH};${CMAKE_CURRENT_SOURCE_DIR}/cmake-scripts")
|
||||
include(version.cmake)
|
||||
include(GNUInstallDirs)
|
||||
|
||||
project (QPMS)
|
||||
|
||||
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
|
||||
|
||||
macro(use_c99)
|
||||
if (CMAKE_VERSION VERSION_LESS "3.1")
|
||||
if (CMAKE_C_COMPILER_ID STREQUAL "GNU")
|
||||
|
@ -29,23 +22,6 @@ set(CMAKE_POSITION_INDEPENDENT_CODE ON)
|
|||
|
||||
set (QPMS_VERSION_MAJOR 0)
|
||||
#set (QPMS_VERSION_MINOR 3)
|
||||
|
||||
if (QPMS_USE_FORTRAN_AMOS)
|
||||
cmake_add_fortran_subdirectory (amos
|
||||
PROJECT amos
|
||||
LIBRARIES amos
|
||||
NO_EXTERNAL_INSTALL)
|
||||
set(QPMS_AMOSLIB amos)
|
||||
else (QPMS_USE_FORTRAN_AMOS)
|
||||
set(CAMOS_BUILD_STATIC ON)
|
||||
add_subdirectory (camos)
|
||||
set(QPMS_AMOSLIB camos)
|
||||
endif (QPMS_USE_FORTRAN_AMOS)
|
||||
|
||||
|
||||
set(FADDEEVA_BUILD_STATIC ON)
|
||||
add_subdirectory(faddeeva)
|
||||
|
||||
add_subdirectory (qpms)
|
||||
|
||||
|
||||
|
|
675
COPYING.md
675
COPYING.md
|
@ -1,675 +0,0 @@
|
|||
### GNU GENERAL PUBLIC LICENSE
|
||||
|
||||
Version 3, 29 June 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc.
|
||||
<https://fsf.org/>
|
||||
|
||||
Everyone is permitted to copy and distribute verbatim copies of this
|
||||
license document, but changing it is not allowed.
|
||||
|
||||
### Preamble
|
||||
|
||||
The GNU General Public License is a free, copyleft license for
|
||||
software and other kinds of works.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
the GNU General Public License is intended to guarantee your freedom
|
||||
to share and change all versions of a program--to make sure it remains
|
||||
free software for all its users. We, the Free Software Foundation, use
|
||||
the GNU General Public License for most of our software; it applies
|
||||
also to any other work released this way by its authors. You can apply
|
||||
it to your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to prevent others from denying you
|
||||
these rights or asking you to surrender the rights. Therefore, you
|
||||
have certain responsibilities if you distribute copies of the
|
||||
software, or if you modify it: responsibilities to respect the freedom
|
||||
of others.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must pass on to the recipients the same
|
||||
freedoms that you received. You must make sure that they, too, receive
|
||||
or can get the source code. And you must show them these terms so they
|
||||
know their rights.
|
||||
|
||||
Developers that use the GNU GPL protect your rights with two steps:
|
||||
(1) assert copyright on the software, and (2) offer you this License
|
||||
giving you legal permission to copy, distribute and/or modify it.
|
||||
|
||||
For the developers' and authors' protection, the GPL clearly explains
|
||||
that there is no warranty for this free software. For both users' and
|
||||
authors' sake, the GPL requires that modified versions be marked as
|
||||
changed, so that their problems will not be attributed erroneously to
|
||||
authors of previous versions.
|
||||
|
||||
Some devices are designed to deny users access to install or run
|
||||
modified versions of the software inside them, although the
|
||||
manufacturer can do so. This is fundamentally incompatible with the
|
||||
aim of protecting users' freedom to change the software. The
|
||||
systematic pattern of such abuse occurs in the area of products for
|
||||
individuals to use, which is precisely where it is most unacceptable.
|
||||
Therefore, we have designed this version of the GPL to prohibit the
|
||||
practice for those products. If such problems arise substantially in
|
||||
other domains, we stand ready to extend this provision to those
|
||||
domains in future versions of the GPL, as needed to protect the
|
||||
freedom of users.
|
||||
|
||||
Finally, every program is threatened constantly by software patents.
|
||||
States should not allow patents to restrict development and use of
|
||||
software on general-purpose computers, but in those that do, we wish
|
||||
to avoid the special danger that patents applied to a free program
|
||||
could make it effectively proprietary. To prevent this, the GPL
|
||||
assures that patents cannot be used to render the program non-free.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
### TERMS AND CONDITIONS
|
||||
|
||||
#### 0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU General Public License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds
|
||||
of works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of
|
||||
an exact copy. The resulting work is called a "modified version" of
|
||||
the earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user
|
||||
through a computer network, with no transfer of a copy, is not
|
||||
conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices" to
|
||||
the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
#### 1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work for
|
||||
making modifications to it. "Object code" means any non-source form of
|
||||
a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users can
|
||||
regenerate automatically from other parts of the Corresponding Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that same
|
||||
work.
|
||||
|
||||
#### 2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not convey,
|
||||
without conditions so long as your license otherwise remains in force.
|
||||
You may convey covered works to others for the sole purpose of having
|
||||
them make modifications exclusively for you, or provide you with
|
||||
facilities for running those works, provided that you comply with the
|
||||
terms of this License in conveying all material for which you do not
|
||||
control copyright. Those thus making or running the covered works for
|
||||
you must do so exclusively on your behalf, under your direction and
|
||||
control, on terms that prohibit them from making any copies of your
|
||||
copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under the
|
||||
conditions stated below. Sublicensing is not allowed; section 10 makes
|
||||
it unnecessary.
|
||||
|
||||
#### 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such
|
||||
circumvention is effected by exercising rights under this License with
|
||||
respect to the covered work, and you disclaim any intention to limit
|
||||
operation or modification of the work as a means of enforcing, against
|
||||
the work's users, your or third parties' legal rights to forbid
|
||||
circumvention of technological measures.
|
||||
|
||||
#### 4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
#### 5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these
|
||||
conditions:
|
||||
|
||||
- a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
- b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under
|
||||
section 7. This requirement modifies the requirement in section 4
|
||||
to "keep intact all notices".
|
||||
- c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
- d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
#### 6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms of
|
||||
sections 4 and 5, provided that you also convey the machine-readable
|
||||
Corresponding Source under the terms of this License, in one of these
|
||||
ways:
|
||||
|
||||
- a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
- b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the Corresponding
|
||||
Source from a network server at no charge.
|
||||
- c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
- d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
- e) Convey the object code using peer-to-peer transmission,
|
||||
provided you inform other peers where the object code and
|
||||
Corresponding Source of the work are being offered to the general
|
||||
public at no charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal,
|
||||
family, or household purposes, or (2) anything designed or sold for
|
||||
incorporation into a dwelling. In determining whether a product is a
|
||||
consumer product, doubtful cases shall be resolved in favor of
|
||||
coverage. For a particular product received by a particular user,
|
||||
"normally used" refers to a typical or common use of that class of
|
||||
product, regardless of the status of the particular user or of the way
|
||||
in which the particular user actually uses, or expects or is expected
|
||||
to use, the product. A product is a consumer product regardless of
|
||||
whether the product has substantial commercial, industrial or
|
||||
non-consumer uses, unless such uses represent the only significant
|
||||
mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to
|
||||
install and execute modified versions of a covered work in that User
|
||||
Product from a modified version of its Corresponding Source. The
|
||||
information must suffice to ensure that the continued functioning of
|
||||
the modified object code is in no case prevented or interfered with
|
||||
solely because modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or
|
||||
updates for a work that has been modified or installed by the
|
||||
recipient, or for the User Product in which it has been modified or
|
||||
installed. Access to a network may be denied when the modification
|
||||
itself materially and adversely affects the operation of the network
|
||||
or violates the rules and protocols for communication across the
|
||||
network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
#### 7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders
|
||||
of that material) supplement the terms of this License with terms:
|
||||
|
||||
- a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
- b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
- c) Prohibiting misrepresentation of the origin of that material,
|
||||
or requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
- d) Limiting the use for publicity purposes of names of licensors
|
||||
or authors of the material; or
|
||||
- e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
- f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions
|
||||
of it) with contractual assumptions of liability to the recipient,
|
||||
for any liability that these contractual assumptions directly
|
||||
impose on those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions; the
|
||||
above requirements apply either way.
|
||||
|
||||
#### 8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your license
|
||||
from a particular copyright holder is reinstated (a) provisionally,
|
||||
unless and until the copyright holder explicitly and finally
|
||||
terminates your license, and (b) permanently, if the copyright holder
|
||||
fails to notify you of the violation by some reasonable means prior to
|
||||
60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
#### 9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or run
|
||||
a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
#### 10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
#### 11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims owned
|
||||
or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within the
|
||||
scope of its coverage, prohibits the exercise of, or is conditioned on
|
||||
the non-exercise of one or more of the rights that are specifically
|
||||
granted under this License. You may not convey a covered work if you
|
||||
are a party to an arrangement with a third party that is in the
|
||||
business of distributing software, under which you make payment to the
|
||||
third party based on the extent of your activity of conveying the
|
||||
work, and under which the third party grants, to any of the parties
|
||||
who would receive the covered work from you, a discriminatory patent
|
||||
license (a) in connection with copies of the covered work conveyed by
|
||||
you (or copies made from those copies), or (b) primarily for and in
|
||||
connection with specific products or compilations that contain the
|
||||
covered work, unless you entered into that arrangement, or that patent
|
||||
license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
#### 12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under
|
||||
this License and any other pertinent obligations, then as a
|
||||
consequence you may not convey it at all. For example, if you agree to
|
||||
terms that obligate you to collect a royalty for further conveying
|
||||
from those to whom you convey the Program, the only way you could
|
||||
satisfy both those terms and this License would be to refrain entirely
|
||||
from conveying the Program.
|
||||
|
||||
#### 13. Use with the GNU Affero General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU Affero General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the special requirements of the GNU Affero General Public License,
|
||||
section 13, concerning interaction through a network will apply to the
|
||||
combination as such.
|
||||
|
||||
#### 14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions
|
||||
of the GNU General Public License from time to time. Such new versions
|
||||
will be similar in spirit to the present version, but may differ in
|
||||
detail to address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the Program
|
||||
specifies that a certain numbered version of the GNU General Public
|
||||
License "or any later version" applies to it, you have the option of
|
||||
following the terms and conditions either of that numbered version or
|
||||
of any later version published by the Free Software Foundation. If the
|
||||
Program does not specify a version number of the GNU General Public
|
||||
License, you may choose any version ever published by the Free
|
||||
Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future versions
|
||||
of the GNU General Public License can be used, that proxy's public
|
||||
statement of acceptance of a version permanently authorizes you to
|
||||
choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
#### 15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
|
||||
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
|
||||
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
|
||||
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
|
||||
CORRECTION.
|
||||
|
||||
#### 16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
|
||||
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
|
||||
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
|
||||
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
|
||||
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
|
||||
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
|
||||
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
|
||||
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
|
||||
|
||||
#### 17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
### How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these
|
||||
terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest to
|
||||
attach them to the start of each source file to most effectively state
|
||||
the exclusion of warranty; and each file should have at least the
|
||||
"copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper
|
||||
mail.
|
||||
|
||||
If the program does terminal interaction, make it output a short
|
||||
notice like this when it starts in an interactive mode:
|
||||
|
||||
<program> Copyright (C) <year> <name of author>
|
||||
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
This is free software, and you are welcome to redistribute it
|
||||
under certain conditions; type `show c' for details.
|
||||
|
||||
The hypothetical commands \`show w' and \`show c' should show the
|
||||
appropriate parts of the General Public License. Of course, your
|
||||
program's commands might be different; for a GUI interface, you would
|
||||
use an "about box".
|
||||
|
||||
You should also get your employer (if you work as a programmer) or
|
||||
school, if any, to sign a "copyright disclaimer" for the program, if
|
||||
necessary. For more information on this, and how to apply and follow
|
||||
the GNU GPL, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
The GNU General Public License does not permit incorporating your
|
||||
program into proprietary programs. If your program is a subroutine
|
||||
library, you may consider it more useful to permit linking proprietary
|
||||
applications with the library. If this is what you want to do, use the
|
||||
GNU Lesser General Public License instead of this License. But first,
|
||||
please read <https://www.gnu.org/licenses/why-not-lgpl.html>.
|
8
Doxyfile
8
Doxyfile
|
@ -51,7 +51,7 @@ PROJECT_BRIEF = "Electromagnetic multiple scattering library and toolki
|
|||
# and the maximum width should not exceed 200 pixels. Doxygen will copy the logo
|
||||
# to the output directory.
|
||||
|
||||
PROJECT_LOGO = farfield.png
|
||||
PROJECT_LOGO =
|
||||
|
||||
# The OUTPUT_DIRECTORY tag is used to specify the (relative or absolute) path
|
||||
# into which the generated documentation will be written. If a relative path is
|
||||
|
@ -753,7 +753,7 @@ WARN_LOGFILE =
|
|||
# spaces.
|
||||
# Note: If this tag is empty the current directory is searched.
|
||||
|
||||
INPUT = qpms notes misc finite_systems.md MIRRORS.md CLIUTILS.md README.md README.Triton.md finite_systems.md lattices.md TODO.md
|
||||
INPUT = qpms notes finite_systems.md README.md README.Triton.md finite_systems.md lattices.md TODO.md
|
||||
|
||||
# This tag can be used to specify the character encoding of the source files
|
||||
# that doxygen parses. Internally doxygen uses the UTF-8 encoding. Doxygen uses
|
||||
|
@ -773,7 +773,7 @@ INPUT_ENCODING = UTF-8
|
|||
# *.md, *.mm, *.dox, *.py, *.f90, *.f, *.for, *.tcl, *.vhd, *.vhdl, *.ucf,
|
||||
# *.qsf, *.as and *.js.
|
||||
|
||||
FILE_PATTERNS =
|
||||
FILE_PATTERNS =
|
||||
|
||||
# The RECURSIVE tag can be used to specify whether or not subdirectories should
|
||||
# be searched for input files as well.
|
||||
|
@ -1462,7 +1462,7 @@ MATHJAX_FORMAT = HTML-CSS
|
|||
# The default value is: http://cdn.mathjax.org/mathjax/latest.
|
||||
# This tag requires that the tag USE_MATHJAX is set to YES.
|
||||
|
||||
MATHJAX_RELPATH = https://uslugi.necada.org/js/mathjax
|
||||
MATHJAX_RELPATH = http://cdn.mathjax.org/mathjax/latest
|
||||
|
||||
# The MATHJAX_EXTENSIONS tag can be used to specify one or more MathJax
|
||||
# extension names that should be enabled during MathJax rendering. For example
|
||||
|
|
14
MIRRORS.md
14
MIRRORS.md
|
@ -1,14 +0,0 @@
|
|||
QPMS source code mirrors
|
||||
========================
|
||||
|
||||
QPMS source code is available at several locations; in all of the following,
|
||||
upstream `master` branch is kept up-to-date. Various development branches
|
||||
are not necessarily pushed everywhere (and they should be considered
|
||||
unstable in the sense that rebases and forced pushes are possible).
|
||||
|
||||
mirror | note | provider | backend
|
||||
----------------------------------------------- | ----------------------- | ------------------------------------------------- | ------
|
||||
<https://repo.or.cz/qpms.git> | primary public upstream | [repo.or.cz](https://repo.or.cz/) | girocco
|
||||
<https://codeberg.org/QPMS/qpms> | | [Codeberg](https://codeberg.org) | gitea
|
||||
<https://git.piraattipuolue.fi/QPMS/qpms.git> | | [Pirate Party Finland](https://piraattipuolue.fi) | gitea
|
||||
<https://version.aalto.fi/gitlab/qpms/qpms.git> | | [Aalto University](https://aalto.fi) | gitlab
|
127
README.md
127
README.md
|
@ -1,14 +1,10 @@
|
|||
[![Build Status](https://drone.perkele.eu/api/badges/QPMS/qpms/status.svg)](https://drone.perkele.eu/QPMS/qpms)
|
||||
|
||||
QPMS README
|
||||
===========
|
||||
|
||||
[QPMS][homepage] (standing for QPMS Photonic Multiple Scattering)
|
||||
is a toolkit for frequency-domain simulations of photonic systems
|
||||
QPMS is a toolkit for frequency-domain simulations of photonic systems
|
||||
consisting of compact objects (particles) inside a homogeneous medium. Scattering
|
||||
properties of the individual particles are described by their T-matrices
|
||||
(which can be obtained using one of the built-in generators or
|
||||
e.g. with the `scuff-tmatrix` tool from
|
||||
(which can be obtained e.g. with the `scuff-tmatrix` tool from
|
||||
the [SCUFF-EM] suite).
|
||||
|
||||
QPMS handles the multiple scattering of electromagnetic radiation between
|
||||
|
@ -16,39 +12,26 @@ the particles. The system can consist either of a finite number of particles
|
|||
or an infinite number of periodically arranged lattices (with finite number
|
||||
of particles in a single unit cell).
|
||||
|
||||
|
||||
Features
|
||||
========
|
||||
|
||||
|
||||
Finite systems
|
||||
--------------
|
||||
* Computing multipole excitations and fields scattered from nanoparticle
|
||||
* Computing multipole excitations *and fields (TODO)* scattered from nanoparticle
|
||||
clusters illuminated by plane, spherical or *cylindrical (TODO)* waves.
|
||||
* Finding eigenmodes (optical resonances).
|
||||
* Calculating cross sections.
|
||||
* Finding eigenmodes.
|
||||
* *Calculating cross sections (TODO).*
|
||||
* Reducing numerical complexity of the computations by exploiting
|
||||
symmetries of the cluster (decomposition to irreducible representations).
|
||||
|
||||
|
||||
Infinite systems (lattices)
|
||||
---------------------------
|
||||
* 2D-periodic systems with arbitrary unit cell geometry supported. (TODO 1D and 3D.)
|
||||
* Computing multipole excitations and fields scattered from nanoparticle
|
||||
* 2D-periodic systems supported. (TODO 1D and 3D.)
|
||||
* *Calculation of transmission and reflection properties (TODO).*
|
||||
* Finding eigenmodes and calculating dispersion relations.
|
||||
* Calculation of the scattered fields.
|
||||
* *Calculation of total transmission and reflection properties (TODO).*
|
||||
* *Reducing numerical complexity of the computations by exploiting
|
||||
symmetries of the lattice (decomposition to irreducible representations) (in development).*
|
||||
|
||||
|
||||
Getting the code
|
||||
================
|
||||
|
||||
The codebase is available at the main upstream public repository
|
||||
<https://repo.or.cz/qpms.git> or any of the [maintained mirrors][MIRRORS].
|
||||
Just clone the repository with `git` and proceed to the installation instructions
|
||||
below.
|
||||
* *Calculation of far-field radiation patterns of an excited array (TODO).*
|
||||
* Reducing numerical complexity of the computations by exploiting
|
||||
symmetries of the lattice (decomposition to irreducible representations).
|
||||
|
||||
|
||||
Installation
|
||||
|
@ -64,16 +47,7 @@ you can [get the source and compile it yourself][GSL].
|
|||
|
||||
You also need a fresh enough version of [cmake][].
|
||||
|
||||
QPMS uses a C version of the Amos library for calculating Bessel function
|
||||
from a submodule. Before proceeding with running `cmake`, the submodules
|
||||
need to be downloaded first (in the QPMS source root directory):
|
||||
|
||||
```{.sh}
|
||||
git submodule init
|
||||
git submodule update
|
||||
```
|
||||
|
||||
After GSL is installed and submodules updated, you can install qpms to your local python library using
|
||||
After GSL is installed, you can install qpms to your local python library using
|
||||
|
||||
```{.sh}
|
||||
cmake -DCMAKE_INSTALL_PREFIX=${YOUR_PREFIX} .
|
||||
|
@ -92,21 +66,13 @@ Special care might need to be taken when installing QPMS in cluster environments
|
|||
Specific installation instructions for Aalto University's Triton cluster
|
||||
can be found in a [separate document][TRITON-README].
|
||||
|
||||
Instructions for installation on Android-based devices are
|
||||
in [another document][INSTALL-ANDROID].
|
||||
|
||||
|
||||
Documentation
|
||||
=============
|
||||
|
||||
[QPMS documentation][homepage] is a work in progress. Most of the newer code
|
||||
is documented using [doxygen][] comments. Documentation generated for the
|
||||
upstream version is hosted on the QPMS homepage <https://qpms.necada.org>.
|
||||
|
||||
To build the documentation yourself,
|
||||
just run
|
||||
Documentation of QPMS is a work in progress. Most of the newer code
|
||||
is documented using [doxygen][] comments. To build the documentation, just run
|
||||
`doxygen`
|
||||
in the QPMS source root directory; the documentation will then be found in
|
||||
in the root directory; the documentation will then be found in
|
||||
`docs/html/index.html`.
|
||||
|
||||
Of course, the prerequisite of this is having doxygen installed.
|
||||
|
@ -118,77 +84,14 @@ under root.
|
|||
Tutorials
|
||||
---------
|
||||
|
||||
* [Infinite system (lattice) tutorial][tutorial-infinite]
|
||||
* [Finite system tutorial][tutorial-finite]
|
||||
|
||||
See also the examples directory in the source repository.
|
||||
|
||||
|
||||
Command line utilities
|
||||
----------------------
|
||||
|
||||
* [Overview of the Python command line utilities][cliutils]
|
||||
|
||||
|
||||
Acknowledgments
|
||||
================
|
||||
|
||||
This software has been developed in the [Quantum Dynamics research group][QD],
|
||||
Aalto University, Finland. If you use the code in your work, please cite
|
||||
**M. Nečada and P. Törmä, Multiple-scattering T-matrix simulations for nanophotonics: symmetries and periodic lattices, [arXiv: 2006.12968][lepaper] (2020)**
|
||||
in your publications, presentations, and similar.
|
||||
|
||||
Please also have a look at other publications by the group
|
||||
(google scholar Päivi Törmä), they may be useful for your work as well.
|
||||
|
||||
|
||||
Bug reports
|
||||
===========
|
||||
|
||||
If you believe that some parts of QPMS behave incorrectly, please mail
|
||||
a bug report to [marek@necada.org][authormail]. To ensure that your message is not
|
||||
considered spam, please start the subject line with `QPMS`.
|
||||
|
||||
If you were able to fix a bug yourself, please include the patch as well,
|
||||
see below.
|
||||
|
||||
|
||||
Contributions
|
||||
=============
|
||||
|
||||
Contributions to QPMS are welcome, be it bug fixes, improvements to the
|
||||
documentation, code quality, or new features.
|
||||
|
||||
You can send patches prepared using the
|
||||
[`git format-patch`](https://git-scm.com/docs/git-format-patch) tool
|
||||
to [marek@necada.org][authormail].
|
||||
|
||||
If you plan to contribute with major changes to the codebase, it is
|
||||
recommended to discuss that first (see the contact information below).
|
||||
|
||||
|
||||
Contact & discussion
|
||||
====================
|
||||
|
||||
You can contact the main author e.g. via [e-mail][authormail]
|
||||
or [Telegram](https://t.me/necadam).
|
||||
|
||||
You are also warmly welcome to the [QPMS user chat][telegramchat]
|
||||
in Telegram!
|
||||
|
||||
|
||||
[homepage]: https://qpms.necada.org
|
||||
[SCUFF-EM]: https://homerreid.github.io/scuff-em-documentation/
|
||||
[OpenBLAS]: https://www.openblas.net/
|
||||
[GSL]: https://www.gnu.org/software/gsl/
|
||||
[cmake]: https://cmake.org
|
||||
[TRITON-README]: README.Triton.md
|
||||
[INSTALL-ANDROID]: notes/INSTALL_ANDROID.md
|
||||
[tutorial-finite]: finite_systems.md
|
||||
[tutorial-infinite]: lattices.md
|
||||
[doxygen]: http://doxygen.nl/
|
||||
[QD]: https://www.aalto.fi/en/department-of-applied-physics/quantum-dynamics-qd
|
||||
[lepaper]: https://arxiv.org/abs/2006.12968
|
||||
[telegramchat]: https://t.me/QPMScattering
|
||||
[authormail]: mailto:marek@necada.org
|
||||
[cliutils]: CLIUTILS.md
|
||||
[MIRRORS]: MIRRORS.md
|
||||
|
|
29
TODO.md
29
TODO.md
|
@ -1,12 +1,11 @@
|
|||
TODO list before 1.0 release
|
||||
============================
|
||||
TODO list before public release
|
||||
===============================
|
||||
|
||||
- Tests!
|
||||
- Docs!
|
||||
- Cross section calculations. (Done in some Python scripts.)
|
||||
- Field calculations. (Partly done, needs more testing.)
|
||||
* Also test periodic vs. nonperiodic consistence (big finite lattice + absorbing medium vs. infinite lattice + absorbing medium).
|
||||
- Complex frequencies, n's, k's. (Mostly done.)
|
||||
- Cross section calculations.
|
||||
- Field calculations.
|
||||
- Complex frequencies, n's, k's.
|
||||
- Transforming point (meta)generators.
|
||||
- Check whether moble's quaternions and my
|
||||
quaternions give the same results in tmatrices.py
|
||||
|
@ -25,12 +24,11 @@ TODO list before 1.0 release
|
|||
* As a description of a T-matrix / particle metadata.
|
||||
- Nice CLI for all general enough utilities.
|
||||
- Remove legacy code.
|
||||
- Split `qpms_c.pyx`.
|
||||
- Split qpms_c.pyx.
|
||||
- Reduce compiler warnings.
|
||||
- Serialisation (saving, loading) of `ScatteringSystem` and other structures.
|
||||
- Python exceptions instead of hard crashes in the C library where possible.
|
||||
- Scatsystem init sometimes fail due to rounding errors and hardcoded absolute tolerance
|
||||
in the `qpms_tmatrix_isclose()` call.
|
||||
in the qpms_tmatrix_isclose() call.
|
||||
- Prefix all identifiers. Maybe think about a different prefix than qpms?
|
||||
- Consistent indentation and style overall.
|
||||
- Rewrite the parallelized translation matrix, mode problem matrix generators
|
||||
|
@ -41,16 +39,3 @@ Nice but less important features
|
|||
|
||||
- Static, thread-safe caches of constant coefficients + API without the current "calculators".
|
||||
|
||||
|
||||
Optimisations
|
||||
-------------
|
||||
|
||||
- Leaving out the irrelevant elements if a "rectangular" block of the translations matrix is needed.
|
||||
- Ewald sums with "non-parallel" shifts (are about 20 times slower than the purely parallel ones).
|
||||
- Reusing intermediate results (profiling needed)
|
||||
* Bessel, Legendre functions (see also branch `finite_lattice_speedup`)
|
||||
* Lattice points (sorting and scaling)
|
||||
* Γ/Δ functions (for periodic lattices)
|
||||
- More parallelisation.
|
||||
- Possibly pre-calculation of the (precise) coefficients in Bessel and Legendre functions (using gmp)
|
||||
- Asymptotic approximations of the Bessel functions for far fields.
|
||||
|
|
|
@ -1,18 +0,0 @@
|
|||
enable_language (Fortran)
|
||||
include(FortranCInterface)
|
||||
|
||||
FortranCInterface_HEADER(amos_mangling.h
|
||||
MACRO_NAMESPACE "AMOS_"
|
||||
SYMBOL_NAMESPACE "amos_"
|
||||
SYMBOLS zbesj zbesy zbesh zbesi zbesk zsqrt
|
||||
)
|
||||
|
||||
add_library(amos
|
||||
dgamln.f zabs.f zasyi.f zbinu.f zdiv.f zmlri.f zshch.f zunhj.f zunk1.f
|
||||
d1mach.f zacai.f zbesh.f zbknu.f zexp.f zmlt.f zsqrt.f zunik.f zunk2.f
|
||||
i1mach.f zacon.f zbesj.f zbuni.f zkscl.f zrati.f zs1s2.f zuni1.f zuoik.f
|
||||
xerror.f zairy.f zbesy.f zbunk.f zlog.f zseri.f zuchk.f zuni2.f zwrsk.f
|
||||
)
|
||||
|
||||
target_include_directories (amos PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
|
@ -1,31 +0,0 @@
|
|||
# AMOS
|
||||
|
||||
A Portable Package for Bessel Functions of a Complex Argument
|
||||
and Nonnegative Order
|
||||
|
||||
This algorithm is a package of subroutines for computing Bessel
|
||||
functions and Airy functions. The routines are updated
|
||||
versions of those routines found in TOMS algorithm 644.
|
||||
|
||||
## Disclaimer
|
||||
|
||||
```
|
||||
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
|
||||
* ISSUED BY SANDIA LABORATORIES,
|
||||
* A PRIME CONTRACTOR TO THE
|
||||
* UNITED STATES DEPARTMENT OF ENERGY
|
||||
* * * * * * * * * * * * * * NOTICE * * * * * * * * * * * * * * *
|
||||
* THIS REPORT WAS PREPARED AS AN ACCOUNT OF WORK SPONSORED BY THE
|
||||
* UNITED STATES GOVERNMENT. NEITHER THE UNITED STATES NOR THE
|
||||
* UNITED STATES DEPARTMENT OF ENERGY, NOR ANY OF THEIR
|
||||
* EMPLOYEES, NOR ANY OF THEIR CONTRACTORS, SUBCONTRACTORS, OR THEIR
|
||||
* EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY
|
||||
* LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS
|
||||
* OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT OR PROCESS
|
||||
* DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE
|
||||
* PRIVATELY OWNED RIGHTS.
|
||||
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
|
||||
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
|
||||
* THIS CODE HAS BEEN APPROVED FOR UNLIMITED RELEASE.
|
||||
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
|
||||
```
|
42
amos/amos.h
42
amos/amos.h
|
@ -1,42 +0,0 @@
|
|||
#ifndef AMOS_H
|
||||
#define AMOS_H
|
||||
#include "amos_mangling.h"
|
||||
|
||||
#define INTEGER_t int
|
||||
#define DOUBLE_PRECISION_t double
|
||||
|
||||
void amos_zbesj(const DOUBLE_PRECISION_t *zr,
|
||||
const DOUBLE_PRECISION_t *zi,
|
||||
const DOUBLE_PRECISION_t *fnu,
|
||||
const INTEGER_t *kode,
|
||||
const INTEGER_t *n,
|
||||
DOUBLE_PRECISION_t *cyr,
|
||||
DOUBLE_PRECISION_t *cyi,
|
||||
INTEGER_t *nz,
|
||||
INTEGER_t *ierr);
|
||||
|
||||
void amos_zbesy(const DOUBLE_PRECISION_t *zr,
|
||||
const DOUBLE_PRECISION_t *zi,
|
||||
const DOUBLE_PRECISION_t *fnu,
|
||||
const INTEGER_t *kode,
|
||||
const INTEGER_t *n,
|
||||
DOUBLE_PRECISION_t *cyr,
|
||||
DOUBLE_PRECISION_t *cyi,
|
||||
INTEGER_t *nz,
|
||||
DOUBLE_PRECISION_t *cwrkr,
|
||||
DOUBLE_PRECISION_t *cwrki,
|
||||
INTEGER_t *ierr);
|
||||
|
||||
void amos_zbesh(const DOUBLE_PRECISION_t *zr,
|
||||
const DOUBLE_PRECISION_t *zi,
|
||||
const DOUBLE_PRECISION_t *fnu,
|
||||
const INTEGER_t *kode,
|
||||
const INTEGER_t *m,
|
||||
const INTEGER_t *n,
|
||||
DOUBLE_PRECISION_t *cyr,
|
||||
DOUBLE_PRECISION_t *cyi,
|
||||
INTEGER_t *nz,
|
||||
INTEGER_t *ierr);
|
||||
|
||||
|
||||
#endif
|
30
amos/camos.h
30
amos/camos.h
|
@ -1,30 +0,0 @@
|
|||
#ifndef CAMOS_H_
|
||||
#define CAMOS_H_
|
||||
#include "amos.h"
|
||||
|
||||
// TODO what about all the INTEGER_t and DOUBLE_PRECISION_t?
|
||||
|
||||
static inline int camos_zbesh(double zr, double zi, double fnu, int kode, int m,
|
||||
int n, double *cyr, double *cyi, int *nz) {
|
||||
int ierr;
|
||||
amos_zbesh(&zr, &zi, &fnu, &kode, &m, &n, cyr, cyi, nz, &ierr);
|
||||
return ierr;
|
||||
}
|
||||
|
||||
static inline int camos_zbesj(double zr, double zi, double fnu, int kode, int n, double *cyr,
|
||||
double *cyi, int *nz) {
|
||||
int ierr;
|
||||
double cwrkr[n], cwrki[n];
|
||||
amos_zbesj(&zr, &zi, &fnu, &kode, &n, cyr, cyi, nz, &ierr);
|
||||
return ierr;
|
||||
}
|
||||
|
||||
static inline int camos_zbesy(double zr, double zi, double fnu, int kode, int n, double *cyr,
|
||||
double *cyi, int *nz, double *cwrkr, double *cwrki) {
|
||||
int ierr;
|
||||
amos_zbesy(&zr, &zi, &fnu, &kode, &n, cyr, cyi, nz, cwrkr, cwrki, &ierr);
|
||||
return ierr;
|
||||
}
|
||||
|
||||
|
||||
#endif // CAMOS_H_
|
209
amos/d1mach.f
209
amos/d1mach.f
|
@ -1,209 +0,0 @@
|
|||
DOUBLE PRECISION FUNCTION D1MACH(I)
|
||||
INTEGER I
|
||||
C
|
||||
C DOUBLE-PRECISION MACHINE CONSTANTS
|
||||
C D1MACH( 1) = B**(EMIN-1), THE SMALLEST POSITIVE MAGNITUDE.
|
||||
C D1MACH( 2) = B**EMAX*(1 - B**(-T)), THE LARGEST MAGNITUDE.
|
||||
C D1MACH( 3) = B**(-T), THE SMALLEST RELATIVE SPACING.
|
||||
C D1MACH( 4) = B**(1-T), THE LARGEST RELATIVE SPACING.
|
||||
C D1MACH( 5) = LOG10(B)
|
||||
C
|
||||
INTEGER SMALL(2)
|
||||
INTEGER LARGE(2)
|
||||
INTEGER RIGHT(2)
|
||||
INTEGER DIVER(2)
|
||||
INTEGER LOG10(2)
|
||||
INTEGER SC, CRAY1(38), J
|
||||
COMMON /D9MACH/ CRAY1
|
||||
SAVE SMALL, LARGE, RIGHT, DIVER, LOG10, SC
|
||||
DOUBLE PRECISION DMACH(5)
|
||||
EQUIVALENCE (DMACH(1),SMALL(1))
|
||||
EQUIVALENCE (DMACH(2),LARGE(1))
|
||||
EQUIVALENCE (DMACH(3),RIGHT(1))
|
||||
EQUIVALENCE (DMACH(4),DIVER(1))
|
||||
EQUIVALENCE (DMACH(5),LOG10(1))
|
||||
C THIS VERSION ADAPTS AUTOMATICALLY TO MOST CURRENT MACHINES.
|
||||
C R1MACH CAN HANDLE AUTO-DOUBLE COMPILING, BUT THIS VERSION OF
|
||||
C D1MACH DOES NOT, BECAUSE WE DO NOT HAVE QUAD CONSTANTS FOR
|
||||
C MANY MACHINES YET.
|
||||
C TO COMPILE ON OLDER MACHINES, ADD A C IN COLUMN 1
|
||||
C ON THE NEXT LINE
|
||||
DATA SC/0/
|
||||
C AND REMOVE THE C FROM COLUMN 1 IN ONE OF THE SECTIONS BELOW.
|
||||
C CONSTANTS FOR EVEN OLDER MACHINES CAN BE OBTAINED BY
|
||||
C mail netlib@research.bell-labs.com
|
||||
C send old1mach from blas
|
||||
C PLEASE SEND CORRECTIONS TO dmg OR ehg@bell-labs.com.
|
||||
C
|
||||
C MACHINE CONSTANTS FOR THE HONEYWELL DPS 8/70 SERIES.
|
||||
C DATA SMALL(1),SMALL(2) / O402400000000, O000000000000 /
|
||||
C DATA LARGE(1),LARGE(2) / O376777777777, O777777777777 /
|
||||
C DATA RIGHT(1),RIGHT(2) / O604400000000, O000000000000 /
|
||||
C DATA DIVER(1),DIVER(2) / O606400000000, O000000000000 /
|
||||
C DATA LOG10(1),LOG10(2) / O776464202324, O117571775714 /, SC/987/
|
||||
C
|
||||
C MACHINE CONSTANTS FOR PDP-11 FORTRANS SUPPORTING
|
||||
C 32-BIT INTEGERS.
|
||||
C DATA SMALL(1),SMALL(2) / 8388608, 0 /
|
||||
C DATA LARGE(1),LARGE(2) / 2147483647, -1 /
|
||||
C DATA RIGHT(1),RIGHT(2) / 612368384, 0 /
|
||||
C DATA DIVER(1),DIVER(2) / 620756992, 0 /
|
||||
C DATA LOG10(1),LOG10(2) / 1067065498, -2063872008 /, SC/987/
|
||||
C
|
||||
C MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES.
|
||||
C DATA SMALL(1),SMALL(2) / O000040000000, O000000000000 /
|
||||
C DATA LARGE(1),LARGE(2) / O377777777777, O777777777777 /
|
||||
C DATA RIGHT(1),RIGHT(2) / O170540000000, O000000000000 /
|
||||
C DATA DIVER(1),DIVER(2) / O170640000000, O000000000000 /
|
||||
C DATA LOG10(1),LOG10(2) / O177746420232, O411757177572 /, SC/987/
|
||||
C
|
||||
C ON FIRST CALL, IF NO DATA UNCOMMENTED, TEST MACHINE TYPES.
|
||||
IF (SC .NE. 987) THEN
|
||||
DMACH(1) = 1.D13
|
||||
IF ( SMALL(1) .EQ. 1117925532
|
||||
* .AND. SMALL(2) .EQ. -448790528) THEN
|
||||
* *** IEEE BIG ENDIAN ***
|
||||
SMALL(1) = 1048576
|
||||
SMALL(2) = 0
|
||||
LARGE(1) = 2146435071
|
||||
LARGE(2) = -1
|
||||
RIGHT(1) = 1017118720
|
||||
RIGHT(2) = 0
|
||||
DIVER(1) = 1018167296
|
||||
DIVER(2) = 0
|
||||
LOG10(1) = 1070810131
|
||||
LOG10(2) = 1352628735
|
||||
ELSE IF ( SMALL(2) .EQ. 1117925532
|
||||
* .AND. SMALL(1) .EQ. -448790528) THEN
|
||||
* *** IEEE LITTLE ENDIAN ***
|
||||
SMALL(2) = 1048576
|
||||
SMALL(1) = 0
|
||||
LARGE(2) = 2146435071
|
||||
LARGE(1) = -1
|
||||
RIGHT(2) = 1017118720
|
||||
RIGHT(1) = 0
|
||||
DIVER(2) = 1018167296
|
||||
DIVER(1) = 0
|
||||
LOG10(2) = 1070810131
|
||||
LOG10(1) = 1352628735
|
||||
ELSE IF ( SMALL(1) .EQ. -2065213935
|
||||
* .AND. SMALL(2) .EQ. 10752) THEN
|
||||
* *** VAX WITH D_FLOATING ***
|
||||
SMALL(1) = 128
|
||||
SMALL(2) = 0
|
||||
LARGE(1) = -32769
|
||||
LARGE(2) = -1
|
||||
RIGHT(1) = 9344
|
||||
RIGHT(2) = 0
|
||||
DIVER(1) = 9472
|
||||
DIVER(2) = 0
|
||||
LOG10(1) = 546979738
|
||||
LOG10(2) = -805796613
|
||||
ELSE IF ( SMALL(1) .EQ. 1267827943
|
||||
* .AND. SMALL(2) .EQ. 704643072) THEN
|
||||
* *** IBM MAINFRAME ***
|
||||
SMALL(1) = 1048576
|
||||
SMALL(2) = 0
|
||||
LARGE(1) = 2147483647
|
||||
LARGE(2) = -1
|
||||
RIGHT(1) = 856686592
|
||||
RIGHT(2) = 0
|
||||
DIVER(1) = 873463808
|
||||
DIVER(2) = 0
|
||||
LOG10(1) = 1091781651
|
||||
LOG10(2) = 1352628735
|
||||
ELSE IF ( SMALL(1) .EQ. 1120022684
|
||||
* .AND. SMALL(2) .EQ. -448790528) THEN
|
||||
* *** CONVEX C-1 ***
|
||||
SMALL(1) = 1048576
|
||||
SMALL(2) = 0
|
||||
LARGE(1) = 2147483647
|
||||
LARGE(2) = -1
|
||||
RIGHT(1) = 1019215872
|
||||
RIGHT(2) = 0
|
||||
DIVER(1) = 1020264448
|
||||
DIVER(2) = 0
|
||||
LOG10(1) = 1072907283
|
||||
LOG10(2) = 1352628735
|
||||
ELSE IF ( SMALL(1) .EQ. 815547074
|
||||
* .AND. SMALL(2) .EQ. 58688) THEN
|
||||
* *** VAX G-FLOATING ***
|
||||
SMALL(1) = 16
|
||||
SMALL(2) = 0
|
||||
LARGE(1) = -32769
|
||||
LARGE(2) = -1
|
||||
RIGHT(1) = 15552
|
||||
RIGHT(2) = 0
|
||||
DIVER(1) = 15568
|
||||
DIVER(2) = 0
|
||||
LOG10(1) = 1142112243
|
||||
LOG10(2) = 2046775455
|
||||
ELSE
|
||||
DMACH(2) = 1.D27 + 1
|
||||
DMACH(3) = 1.D27
|
||||
LARGE(2) = LARGE(2) - RIGHT(2)
|
||||
IF (LARGE(2) .EQ. 64 .AND. SMALL(2) .EQ. 0) THEN
|
||||
CRAY1(1) = 67291416
|
||||
DO 10 J = 1, 20
|
||||
CRAY1(J+1) = CRAY1(J) + CRAY1(J)
|
||||
10 CONTINUE
|
||||
CRAY1(22) = CRAY1(21) + 321322
|
||||
DO 20 J = 22, 37
|
||||
CRAY1(J+1) = CRAY1(J) + CRAY1(J)
|
||||
20 CONTINUE
|
||||
IF (CRAY1(38) .EQ. SMALL(1)) THEN
|
||||
* *** CRAY ***
|
||||
CALL I1MCRY(SMALL(1), J, 8285, 8388608, 0)
|
||||
SMALL(2) = 0
|
||||
CALL I1MCRY(LARGE(1), J, 24574, 16777215, 16777215)
|
||||
CALL I1MCRY(LARGE(2), J, 0, 16777215, 16777214)
|
||||
CALL I1MCRY(RIGHT(1), J, 16291, 8388608, 0)
|
||||
RIGHT(2) = 0
|
||||
CALL I1MCRY(DIVER(1), J, 16292, 8388608, 0)
|
||||
DIVER(2) = 0
|
||||
CALL I1MCRY(LOG10(1), J, 16383, 10100890, 8715215)
|
||||
CALL I1MCRY(LOG10(2), J, 0, 16226447, 9001388)
|
||||
ELSE
|
||||
WRITE(*,9000)
|
||||
STOP 779
|
||||
END IF
|
||||
ELSE
|
||||
WRITE(*,9000)
|
||||
STOP 779
|
||||
END IF
|
||||
END IF
|
||||
SC = 987
|
||||
END IF
|
||||
* SANITY CHECK
|
||||
IF (DMACH(4) .GE. 1.0D0) STOP 778
|
||||
IF (I .LT. 1 .OR. I .GT. 5) THEN
|
||||
WRITE(*,*) 'D1MACH(I): I =',I,' is out of bounds.'
|
||||
STOP
|
||||
END IF
|
||||
D1MACH = DMACH(I)
|
||||
RETURN
|
||||
9000 FORMAT(/' Adjust D1MACH by uncommenting data statements'/
|
||||
*' appropriate for your machine.')
|
||||
* /* Standard C source for D1MACH -- remove the * in column 1 */
|
||||
*#include <stdio.h>
|
||||
*#include <float.h>
|
||||
*#include <math.h>
|
||||
*double d1mach_(long *i)
|
||||
*{
|
||||
* switch(*i){
|
||||
* case 1: return DBL_MIN;
|
||||
* case 2: return DBL_MAX;
|
||||
* case 3: return DBL_EPSILON/FLT_RADIX;
|
||||
* case 4: return DBL_EPSILON;
|
||||
* case 5: return log10(FLT_RADIX);
|
||||
* }
|
||||
* fprintf(stderr, "invalid argument: d1mach(%ld)\n", *i);
|
||||
* exit(1); return 0; /* some compilers demand return values */
|
||||
*}
|
||||
END
|
||||
SUBROUTINE I1MCRY(A, A1, B, C, D)
|
||||
**** SPECIAL COMPUTATION FOR OLD CRAY MACHINES ****
|
||||
INTEGER A, A1, B, C, D
|
||||
A1 = 16777216*B + C
|
||||
A = 16777216*A1 + D
|
||||
END
|
189
amos/dgamln.f
189
amos/dgamln.f
|
@ -1,189 +0,0 @@
|
|||
DOUBLE PRECISION FUNCTION DGAMLN(Z,IERR)
|
||||
C***BEGIN PROLOGUE DGAMLN
|
||||
C***DATE WRITTEN 830501 (YYMMDD)
|
||||
C***REVISION DATE 830501 (YYMMDD)
|
||||
C***CATEGORY NO. B5F
|
||||
C***KEYWORDS GAMMA FUNCTION,LOGARITHM OF GAMMA FUNCTION
|
||||
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
|
||||
C***PURPOSE TO COMPUTE THE LOGARITHM OF THE GAMMA FUNCTION
|
||||
C***DESCRIPTION
|
||||
C
|
||||
C **** A DOUBLE PRECISION ROUTINE ****
|
||||
C DGAMLN COMPUTES THE NATURAL LOG OF THE GAMMA FUNCTION FOR
|
||||
C Z.GT.0. THE ASYMPTOTIC EXPANSION IS USED TO GENERATE VALUES
|
||||
C GREATER THAN ZMIN WHICH ARE ADJUSTED BY THE RECURSION
|
||||
C G(Z+1)=Z*G(Z) FOR Z.LE.ZMIN. THE FUNCTION WAS MADE AS
|
||||
C PORTABLE AS POSSIBLE BY COMPUTIMG ZMIN FROM THE NUMBER OF BASE
|
||||
C 10 DIGITS IN A WORD, RLN=AMAX1(-ALOG10(R1MACH(4)),0.5E-18)
|
||||
C LIMITED TO 18 DIGITS OF (RELATIVE) ACCURACY.
|
||||
C
|
||||
C SINCE INTEGER ARGUMENTS ARE COMMON, A TABLE LOOK UP ON 100
|
||||
C VALUES IS USED FOR SPEED OF EXECUTION.
|
||||
C
|
||||
C DESCRIPTION OF ARGUMENTS
|
||||
C
|
||||
C INPUT Z IS D0UBLE PRECISION
|
||||
C Z - ARGUMENT, Z.GT.0.0D0
|
||||
C
|
||||
C OUTPUT DGAMLN IS DOUBLE PRECISION
|
||||
C DGAMLN - NATURAL LOG OF THE GAMMA FUNCTION AT Z.NE.0.0D0
|
||||
C IERR - ERROR FLAG
|
||||
C IERR=0, NORMAL RETURN, COMPUTATION COMPLETED
|
||||
C IERR=1, Z.LE.0.0D0, NO COMPUTATION
|
||||
C
|
||||
C
|
||||
C***REFERENCES COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
|
||||
C BY D. E. AMOS, SAND83-0083, MAY, 1983.
|
||||
C***ROUTINES CALLED I1MACH,D1MACH
|
||||
C***END PROLOGUE DGAMLN
|
||||
DOUBLE PRECISION CF, CON, FLN, FZ, GLN, RLN, S, TLG, TRM, TST,
|
||||
* T1, WDTOL, Z, ZDMY, ZINC, ZM, ZMIN, ZP, ZSQ, D1MACH
|
||||
INTEGER I, IERR, I1M, K, MZ, NZ, I1MACH
|
||||
DIMENSION CF(22), GLN(100)
|
||||
C LNGAMMA(N), N=1,100
|
||||
DATA GLN(1), GLN(2), GLN(3), GLN(4), GLN(5), GLN(6), GLN(7),
|
||||
1 GLN(8), GLN(9), GLN(10), GLN(11), GLN(12), GLN(13), GLN(14),
|
||||
2 GLN(15), GLN(16), GLN(17), GLN(18), GLN(19), GLN(20),
|
||||
3 GLN(21), GLN(22)/
|
||||
4 0.00000000000000000D+00, 0.00000000000000000D+00,
|
||||
5 6.93147180559945309D-01, 1.79175946922805500D+00,
|
||||
6 3.17805383034794562D+00, 4.78749174278204599D+00,
|
||||
7 6.57925121201010100D+00, 8.52516136106541430D+00,
|
||||
8 1.06046029027452502D+01, 1.28018274800814696D+01,
|
||||
9 1.51044125730755153D+01, 1.75023078458738858D+01,
|
||||
A 1.99872144956618861D+01, 2.25521638531234229D+01,
|
||||
B 2.51912211827386815D+01, 2.78992713838408916D+01,
|
||||
C 3.06718601060806728D+01, 3.35050734501368889D+01,
|
||||
D 3.63954452080330536D+01, 3.93398841871994940D+01,
|
||||
E 4.23356164607534850D+01, 4.53801388984769080D+01/
|
||||
DATA GLN(23), GLN(24), GLN(25), GLN(26), GLN(27), GLN(28),
|
||||
1 GLN(29), GLN(30), GLN(31), GLN(32), GLN(33), GLN(34),
|
||||
2 GLN(35), GLN(36), GLN(37), GLN(38), GLN(39), GLN(40),
|
||||
3 GLN(41), GLN(42), GLN(43), GLN(44)/
|
||||
4 4.84711813518352239D+01, 5.16066755677643736D+01,
|
||||
5 5.47847293981123192D+01, 5.80036052229805199D+01,
|
||||
6 6.12617017610020020D+01, 6.45575386270063311D+01,
|
||||
7 6.78897431371815350D+01, 7.12570389671680090D+01,
|
||||
8 7.46582363488301644D+01, 7.80922235533153106D+01,
|
||||
9 8.15579594561150372D+01, 8.50544670175815174D+01,
|
||||
A 8.85808275421976788D+01, 9.21361756036870925D+01,
|
||||
B 9.57196945421432025D+01, 9.93306124547874269D+01,
|
||||
C 1.02968198614513813D+02, 1.06631760260643459D+02,
|
||||
D 1.10320639714757395D+02, 1.14034211781461703D+02,
|
||||
E 1.17771881399745072D+02, 1.21533081515438634D+02/
|
||||
DATA GLN(45), GLN(46), GLN(47), GLN(48), GLN(49), GLN(50),
|
||||
1 GLN(51), GLN(52), GLN(53), GLN(54), GLN(55), GLN(56),
|
||||
2 GLN(57), GLN(58), GLN(59), GLN(60), GLN(61), GLN(62),
|
||||
3 GLN(63), GLN(64), GLN(65), GLN(66)/
|
||||
4 1.25317271149356895D+02, 1.29123933639127215D+02,
|
||||
5 1.32952575035616310D+02, 1.36802722637326368D+02,
|
||||
6 1.40673923648234259D+02, 1.44565743946344886D+02,
|
||||
7 1.48477766951773032D+02, 1.52409592584497358D+02,
|
||||
8 1.56360836303078785D+02, 1.60331128216630907D+02,
|
||||
9 1.64320112263195181D+02, 1.68327445448427652D+02,
|
||||
A 1.72352797139162802D+02, 1.76395848406997352D+02,
|
||||
B 1.80456291417543771D+02, 1.84533828861449491D+02,
|
||||
C 1.88628173423671591D+02, 1.92739047287844902D+02,
|
||||
D 1.96866181672889994D+02, 2.01009316399281527D+02,
|
||||
E 2.05168199482641199D+02, 2.09342586752536836D+02/
|
||||
DATA GLN(67), GLN(68), GLN(69), GLN(70), GLN(71), GLN(72),
|
||||
1 GLN(73), GLN(74), GLN(75), GLN(76), GLN(77), GLN(78),
|
||||
2 GLN(79), GLN(80), GLN(81), GLN(82), GLN(83), GLN(84),
|
||||
3 GLN(85), GLN(86), GLN(87), GLN(88)/
|
||||
4 2.13532241494563261D+02, 2.17736934113954227D+02,
|
||||
5 2.21956441819130334D+02, 2.26190548323727593D+02,
|
||||
6 2.30439043565776952D+02, 2.34701723442818268D+02,
|
||||
7 2.38978389561834323D+02, 2.43268849002982714D+02,
|
||||
8 2.47572914096186884D+02, 2.51890402209723194D+02,
|
||||
9 2.56221135550009525D+02, 2.60564940971863209D+02,
|
||||
A 2.64921649798552801D+02, 2.69291097651019823D+02,
|
||||
B 2.73673124285693704D+02, 2.78067573440366143D+02,
|
||||
C 2.82474292687630396D+02, 2.86893133295426994D+02,
|
||||
D 2.91323950094270308D+02, 2.95766601350760624D+02,
|
||||
E 3.00220948647014132D+02, 3.04686856765668715D+02/
|
||||
DATA GLN(89), GLN(90), GLN(91), GLN(92), GLN(93), GLN(94),
|
||||
1 GLN(95), GLN(96), GLN(97), GLN(98), GLN(99), GLN(100)/
|
||||
2 3.09164193580146922D+02, 3.13652829949879062D+02,
|
||||
3 3.18152639620209327D+02, 3.22663499126726177D+02,
|
||||
4 3.27185287703775217D+02, 3.31717887196928473D+02,
|
||||
5 3.36261181979198477D+02, 3.40815058870799018D+02,
|
||||
6 3.45379407062266854D+02, 3.49954118040770237D+02,
|
||||
7 3.54539085519440809D+02, 3.59134205369575399D+02/
|
||||
C COEFFICIENTS OF ASYMPTOTIC EXPANSION
|
||||
DATA CF(1), CF(2), CF(3), CF(4), CF(5), CF(6), CF(7), CF(8),
|
||||
1 CF(9), CF(10), CF(11), CF(12), CF(13), CF(14), CF(15),
|
||||
2 CF(16), CF(17), CF(18), CF(19), CF(20), CF(21), CF(22)/
|
||||
3 8.33333333333333333D-02, -2.77777777777777778D-03,
|
||||
4 7.93650793650793651D-04, -5.95238095238095238D-04,
|
||||
5 8.41750841750841751D-04, -1.91752691752691753D-03,
|
||||
6 6.41025641025641026D-03, -2.95506535947712418D-02,
|
||||
7 1.79644372368830573D-01, -1.39243221690590112D+00,
|
||||
8 1.34028640441683920D+01, -1.56848284626002017D+02,
|
||||
9 2.19310333333333333D+03, -3.61087712537249894D+04,
|
||||
A 6.91472268851313067D+05, -1.52382215394074162D+07,
|
||||
B 3.82900751391414141D+08, -1.08822660357843911D+10,
|
||||
C 3.47320283765002252D+11, -1.23696021422692745D+13,
|
||||
D 4.88788064793079335D+14, -2.13203339609193739D+16/
|
||||
C
|
||||
C LN(2*PI)
|
||||
DATA CON / 1.83787706640934548D+00/
|
||||
C
|
||||
C***FIRST EXECUTABLE STATEMENT DGAMLN
|
||||
IERR=0
|
||||
IF (Z.LE.0.0D0) GO TO 70
|
||||
IF (Z.GT.101.0D0) GO TO 10
|
||||
NZ = INT(SNGL(Z))
|
||||
FZ = Z - FLOAT(NZ)
|
||||
IF (FZ.GT.0.0D0) GO TO 10
|
||||
IF (NZ.GT.100) GO TO 10
|
||||
DGAMLN = GLN(NZ)
|
||||
RETURN
|
||||
10 CONTINUE
|
||||
WDTOL = D1MACH(4)
|
||||
WDTOL = DMAX1(WDTOL,0.5D-18)
|
||||
I1M = I1MACH(14)
|
||||
RLN = D1MACH(5)*FLOAT(I1M)
|
||||
FLN = DMIN1(RLN,20.0D0)
|
||||
FLN = DMAX1(FLN,3.0D0)
|
||||
FLN = FLN - 3.0D0
|
||||
ZM = 1.8000D0 + 0.3875D0*FLN
|
||||
MZ = INT(SNGL(ZM)) + 1
|
||||
ZMIN = FLOAT(MZ)
|
||||
ZDMY = Z
|
||||
ZINC = 0.0D0
|
||||
IF (Z.GE.ZMIN) GO TO 20
|
||||
ZINC = ZMIN - FLOAT(NZ)
|
||||
ZDMY = Z + ZINC
|
||||
20 CONTINUE
|
||||
ZP = 1.0D0/ZDMY
|
||||
T1 = CF(1)*ZP
|
||||
S = T1
|
||||
IF (ZP.LT.WDTOL) GO TO 40
|
||||
ZSQ = ZP*ZP
|
||||
TST = T1*WDTOL
|
||||
DO 30 K=2,22
|
||||
ZP = ZP*ZSQ
|
||||
TRM = CF(K)*ZP
|
||||
IF (DABS(TRM).LT.TST) GO TO 40
|
||||
S = S + TRM
|
||||
30 CONTINUE
|
||||
40 CONTINUE
|
||||
IF (ZINC.NE.0.0D0) GO TO 50
|
||||
TLG = DLOG(Z)
|
||||
DGAMLN = Z*(TLG-1.0D0) + 0.5D0*(CON-TLG) + S
|
||||
RETURN
|
||||
50 CONTINUE
|
||||
ZP = 1.0D0
|
||||
NZ = INT(SNGL(ZINC))
|
||||
DO 60 I=1,NZ
|
||||
ZP = ZP*(Z+FLOAT(I-1))
|
||||
60 CONTINUE
|
||||
TLG = DLOG(ZDMY)
|
||||
DGAMLN = ZDMY*(TLG-1.0D0) - DLOG(ZP) + 0.5D0*(CON-TLG) + S
|
||||
RETURN
|
||||
C
|
||||
C
|
||||
70 CONTINUE
|
||||
IERR=1
|
||||
RETURN
|
||||
END
|
291
amos/i1mach.f
291
amos/i1mach.f
|
@ -1,291 +0,0 @@
|
|||
INTEGER FUNCTION I1MACH(I)
|
||||
INTEGER I
|
||||
C
|
||||
C I1MACH( 1) = THE STANDARD INPUT UNIT.
|
||||
C I1MACH( 2) = THE STANDARD OUTPUT UNIT.
|
||||
C I1MACH( 3) = THE STANDARD PUNCH UNIT.
|
||||
C I1MACH( 4) = THE STANDARD ERROR MESSAGE UNIT.
|
||||
C I1MACH( 5) = THE NUMBER OF BITS PER INTEGER STORAGE UNIT.
|
||||
C I1MACH( 6) = THE NUMBER OF CHARACTERS PER CHARACTER STORAGE UNIT.
|
||||
C INTEGERS HAVE FORM SIGN ( X(S-1)*A**(S-1) + ... + X(1)*A + X(0) )
|
||||
C I1MACH( 7) = A, THE BASE.
|
||||
C I1MACH( 8) = S, THE NUMBER OF BASE-A DIGITS.
|
||||
C I1MACH( 9) = A**S - 1, THE LARGEST MAGNITUDE.
|
||||
C FLOATS HAVE FORM SIGN (B**E)*( (X(1)/B) + ... + (X(T)/B**T) )
|
||||
C WHERE EMIN .LE. E .LE. EMAX.
|
||||
C I1MACH(10) = B, THE BASE.
|
||||
C SINGLE-PRECISION
|
||||
C I1MACH(11) = T, THE NUMBER OF BASE-B DIGITS.
|
||||
C I1MACH(12) = EMIN, THE SMALLEST EXPONENT E.
|
||||
C I1MACH(13) = EMAX, THE LARGEST EXPONENT E.
|
||||
C DOUBLE-PRECISION
|
||||
C I1MACH(14) = T, THE NUMBER OF BASE-B DIGITS.
|
||||
C I1MACH(15) = EMIN, THE SMALLEST EXPONENT E.
|
||||
C I1MACH(16) = EMAX, THE LARGEST EXPONENT E.
|
||||
C
|
||||
INTEGER IMACH(16), OUTPUT, SC, SMALL(2)
|
||||
SAVE IMACH, SC
|
||||
REAL RMACH
|
||||
EQUIVALENCE (IMACH(4),OUTPUT), (RMACH,SMALL(1))
|
||||
INTEGER I3, J, K, T3E(3)
|
||||
DATA T3E(1) / 9777664 /
|
||||
DATA T3E(2) / 5323660 /
|
||||
DATA T3E(3) / 46980 /
|
||||
C THIS VERSION ADAPTS AUTOMATICALLY TO MOST CURRENT MACHINES,
|
||||
C INCLUDING AUTO-DOUBLE COMPILERS.
|
||||
C TO COMPILE ON OLDER MACHINES, ADD A C IN COLUMN 1
|
||||
C ON THE NEXT LINE
|
||||
DATA SC/0/
|
||||
C AND REMOVE THE C FROM COLUMN 1 IN ONE OF THE SECTIONS BELOW.
|
||||
C CONSTANTS FOR EVEN OLDER MACHINES CAN BE OBTAINED BY
|
||||
C mail netlib@research.bell-labs.com
|
||||
C send old1mach from blas
|
||||
C PLEASE SEND CORRECTIONS TO dmg OR ehg@bell-labs.com.
|
||||
C
|
||||
C MACHINE CONSTANTS FOR THE HONEYWELL DPS 8/70 SERIES.
|
||||
C
|
||||
C DATA IMACH( 1) / 5 /
|
||||
C DATA IMACH( 2) / 6 /
|
||||
C DATA IMACH( 3) / 43 /
|
||||
C DATA IMACH( 4) / 6 /
|
||||
C DATA IMACH( 5) / 36 /
|
||||
C DATA IMACH( 6) / 4 /
|
||||
C DATA IMACH( 7) / 2 /
|
||||
C DATA IMACH( 8) / 35 /
|
||||
C DATA IMACH( 9) / O377777777777 /
|
||||
C DATA IMACH(10) / 2 /
|
||||
C DATA IMACH(11) / 27 /
|
||||
C DATA IMACH(12) / -127 /
|
||||
C DATA IMACH(13) / 127 /
|
||||
C DATA IMACH(14) / 63 /
|
||||
C DATA IMACH(15) / -127 /
|
||||
C DATA IMACH(16) / 127 /, SC/987/
|
||||
C
|
||||
C MACHINE CONSTANTS FOR PDP-11 FORTRANS SUPPORTING
|
||||
C 32-BIT INTEGER ARITHMETIC.
|
||||
C
|
||||
C DATA IMACH( 1) / 5 /
|
||||
C DATA IMACH( 2) / 6 /
|
||||
C DATA IMACH( 3) / 7 /
|
||||
C DATA IMACH( 4) / 6 /
|
||||
C DATA IMACH( 5) / 32 /
|
||||
C DATA IMACH( 6) / 4 /
|
||||
C DATA IMACH( 7) / 2 /
|
||||
C DATA IMACH( 8) / 31 /
|
||||
C DATA IMACH( 9) / 2147483647 /
|
||||
C DATA IMACH(10) / 2 /
|
||||
C DATA IMACH(11) / 24 /
|
||||
C DATA IMACH(12) / -127 /
|
||||
C DATA IMACH(13) / 127 /
|
||||
C DATA IMACH(14) / 56 /
|
||||
C DATA IMACH(15) / -127 /
|
||||
C DATA IMACH(16) / 127 /, SC/987/
|
||||
C
|
||||
C MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES.
|
||||
C
|
||||
C NOTE THAT THE PUNCH UNIT, I1MACH(3), HAS BEEN SET TO 7
|
||||
C WHICH IS APPROPRIATE FOR THE UNIVAC-FOR SYSTEM.
|
||||
C IF YOU HAVE THE UNIVAC-FTN SYSTEM, SET IT TO 1.
|
||||
C
|
||||
C DATA IMACH( 1) / 5 /
|
||||
C DATA IMACH( 2) / 6 /
|
||||
C DATA IMACH( 3) / 7 /
|
||||
C DATA IMACH( 4) / 6 /
|
||||
C DATA IMACH( 5) / 36 /
|
||||
C DATA IMACH( 6) / 6 /
|
||||
C DATA IMACH( 7) / 2 /
|
||||
C DATA IMACH( 8) / 35 /
|
||||
C DATA IMACH( 9) / O377777777777 /
|
||||
C DATA IMACH(10) / 2 /
|
||||
C DATA IMACH(11) / 27 /
|
||||
C DATA IMACH(12) / -128 /
|
||||
C DATA IMACH(13) / 127 /
|
||||
C DATA IMACH(14) / 60 /
|
||||
C DATA IMACH(15) /-1024 /
|
||||
C DATA IMACH(16) / 1023 /, SC/987/
|
||||
C
|
||||
IF (SC .NE. 987) THEN
|
||||
* *** CHECK FOR AUTODOUBLE ***
|
||||
SMALL(2) = 0
|
||||
RMACH = 1E13
|
||||
IF (SMALL(2) .NE. 0) THEN
|
||||
* *** AUTODOUBLED ***
|
||||
IF ( (SMALL(1) .EQ. 1117925532
|
||||
* .AND. SMALL(2) .EQ. -448790528)
|
||||
* .OR. (SMALL(2) .EQ. 1117925532
|
||||
* .AND. SMALL(1) .EQ. -448790528)) THEN
|
||||
* *** IEEE ***
|
||||
IMACH(10) = 2
|
||||
IMACH(14) = 53
|
||||
IMACH(15) = -1021
|
||||
IMACH(16) = 1024
|
||||
ELSE IF ( SMALL(1) .EQ. -2065213935
|
||||
* .AND. SMALL(2) .EQ. 10752) THEN
|
||||
* *** VAX WITH D_FLOATING ***
|
||||
IMACH(10) = 2
|
||||
IMACH(14) = 56
|
||||
IMACH(15) = -127
|
||||
IMACH(16) = 127
|
||||
ELSE IF ( SMALL(1) .EQ. 1267827943
|
||||
* .AND. SMALL(2) .EQ. 704643072) THEN
|
||||
* *** IBM MAINFRAME ***
|
||||
IMACH(10) = 16
|
||||
IMACH(14) = 14
|
||||
IMACH(15) = -64
|
||||
IMACH(16) = 63
|
||||
ELSE
|
||||
WRITE(*,9010)
|
||||
STOP 777
|
||||
END IF
|
||||
IMACH(11) = IMACH(14)
|
||||
IMACH(12) = IMACH(15)
|
||||
IMACH(13) = IMACH(16)
|
||||
ELSE
|
||||
RMACH = 1234567.
|
||||
IF (SMALL(1) .EQ. 1234613304) THEN
|
||||
* *** IEEE ***
|
||||
IMACH(10) = 2
|
||||
IMACH(11) = 24
|
||||
IMACH(12) = -125
|
||||
IMACH(13) = 128
|
||||
IMACH(14) = 53
|
||||
IMACH(15) = -1021
|
||||
IMACH(16) = 1024
|
||||
SC = 987
|
||||
ELSE IF (SMALL(1) .EQ. -1271379306) THEN
|
||||
* *** VAX ***
|
||||
IMACH(10) = 2
|
||||
IMACH(11) = 24
|
||||
IMACH(12) = -127
|
||||
IMACH(13) = 127
|
||||
IMACH(14) = 56
|
||||
IMACH(15) = -127
|
||||
IMACH(16) = 127
|
||||
SC = 987
|
||||
ELSE IF (SMALL(1) .EQ. 1175639687) THEN
|
||||
* *** IBM MAINFRAME ***
|
||||
IMACH(10) = 16
|
||||
IMACH(11) = 6
|
||||
IMACH(12) = -64
|
||||
IMACH(13) = 63
|
||||
IMACH(14) = 14
|
||||
IMACH(15) = -64
|
||||
IMACH(16) = 63
|
||||
SC = 987
|
||||
ELSE IF (SMALL(1) .EQ. 1251390520) THEN
|
||||
* *** CONVEX C-1 ***
|
||||
IMACH(10) = 2
|
||||
IMACH(11) = 24
|
||||
IMACH(12) = -128
|
||||
IMACH(13) = 127
|
||||
IMACH(14) = 53
|
||||
IMACH(15) = -1024
|
||||
IMACH(16) = 1023
|
||||
ELSE
|
||||
DO 10 I3 = 1, 3
|
||||
J = SMALL(1) / 10000000
|
||||
K = SMALL(1) - 10000000*J
|
||||
IF (K .NE. T3E(I3)) GO TO 20
|
||||
SMALL(1) = J
|
||||
10 CONTINUE
|
||||
* *** CRAY T3E ***
|
||||
IMACH( 1) = 5
|
||||
IMACH( 2) = 6
|
||||
IMACH( 3) = 0
|
||||
IMACH( 4) = 0
|
||||
IMACH( 5) = 64
|
||||
IMACH( 6) = 8
|
||||
IMACH( 7) = 2
|
||||
IMACH( 8) = 63
|
||||
CALL I1MCR1(IMACH(9), K, 32767, 16777215, 16777215)
|
||||
IMACH(10) = 2
|
||||
IMACH(11) = 53
|
||||
IMACH(12) = -1021
|
||||
IMACH(13) = 1024
|
||||
IMACH(14) = 53
|
||||
IMACH(15) = -1021
|
||||
IMACH(16) = 1024
|
||||
GO TO 35
|
||||
20 CALL I1MCR1(J, K, 16405, 9876536, 0)
|
||||
IF (SMALL(1) .NE. J) THEN
|
||||
WRITE(*,9020)
|
||||
STOP 777
|
||||
END IF
|
||||
* *** CRAY 1, XMP, 2, AND 3 ***
|
||||
IMACH(1) = 5
|
||||
IMACH(2) = 6
|
||||
IMACH(3) = 102
|
||||
IMACH(4) = 6
|
||||
IMACH(5) = 46
|
||||
IMACH(6) = 8
|
||||
IMACH(7) = 2
|
||||
IMACH(8) = 45
|
||||
CALL I1MCR1(IMACH(9), K, 0, 4194303, 16777215)
|
||||
IMACH(10) = 2
|
||||
IMACH(11) = 47
|
||||
IMACH(12) = -8188
|
||||
IMACH(13) = 8189
|
||||
IMACH(14) = 94
|
||||
IMACH(15) = -8141
|
||||
IMACH(16) = 8189
|
||||
GO TO 35
|
||||
END IF
|
||||
END IF
|
||||
IMACH( 1) = 5
|
||||
IMACH( 2) = 6
|
||||
IMACH( 3) = 7
|
||||
IMACH( 4) = 6
|
||||
IMACH( 5) = 32
|
||||
IMACH( 6) = 4
|
||||
IMACH( 7) = 2
|
||||
IMACH( 8) = 31
|
||||
IMACH( 9) = 2147483647
|
||||
35 SC = 987
|
||||
END IF
|
||||
9010 FORMAT(/' Adjust autodoubled I1MACH by uncommenting data'/
|
||||
* ' statements appropriate for your machine and setting'/
|
||||
* ' IMACH(I) = IMACH(I+3) for I = 11, 12, and 13.')
|
||||
9020 FORMAT(/' Adjust I1MACH by uncommenting data statements'/
|
||||
* ' appropriate for your machine.')
|
||||
IF (I .LT. 1 .OR. I .GT. 16) GO TO 40
|
||||
I1MACH = IMACH(I)
|
||||
RETURN
|
||||
40 WRITE(*,*) 'I1MACH(I): I =',I,' is out of bounds.'
|
||||
STOP
|
||||
* /* C source for I1MACH -- remove the * in column 1 */
|
||||
* /* Note that some values may need changing. */
|
||||
*#include <stdio.h>
|
||||
*#include <float.h>
|
||||
*#include <limits.h>
|
||||
*#include <math.h>
|
||||
*
|
||||
*long i1mach_(long *i)
|
||||
*{
|
||||
* switch(*i){
|
||||
* case 1: return 5; /* standard input */
|
||||
* case 2: return 6; /* standard output */
|
||||
* case 3: return 7; /* standard punch */
|
||||
* case 4: return 0; /* standard error */
|
||||
* case 5: return 32; /* bits per integer */
|
||||
* case 6: return sizeof(int);
|
||||
* case 7: return 2; /* base for integers */
|
||||
* case 8: return 31; /* digits of integer base */
|
||||
* case 9: return LONG_MAX;
|
||||
* case 10: return FLT_RADIX;
|
||||
* case 11: return FLT_MANT_DIG;
|
||||
* case 12: return FLT_MIN_EXP;
|
||||
* case 13: return FLT_MAX_EXP;
|
||||
* case 14: return DBL_MANT_DIG;
|
||||
* case 15: return DBL_MIN_EXP;
|
||||
* case 16: return DBL_MAX_EXP;
|
||||
* }
|
||||
* fprintf(stderr, "invalid argument: i1mach(%ld)\n", *i);
|
||||
* exit(1);return 0; /* some compilers demand return values */
|
||||
*}
|
||||
END
|
||||
SUBROUTINE I1MCR1(A, A1, B, C, D)
|
||||
**** SPECIAL COMPUTATION FOR OLD CRAY MACHINES ****
|
||||
INTEGER A, A1, B, C, D
|
||||
A1 = 16777216*B + C
|
||||
A = 16777216*A1 + D
|
||||
END
|
|
@ -1,22 +0,0 @@
|
|||
SUBROUTINE XERROR(MESS,NMESS,L1,L2)
|
||||
C
|
||||
C THIS IS A DUMMY XERROR ROUTINE TO PRINT ERROR MESSAGES WITH NMESS
|
||||
C CHARACTERS. L1 AND L2 ARE DUMMY PARAMETERS TO MAKE THIS CALL
|
||||
C COMPATIBLE WITH THE SLATEC XERROR ROUTINE. THIS IS A FORTRAN 77
|
||||
C ROUTINE.
|
||||
C
|
||||
CHARACTER*(*) MESS
|
||||
NN=NMESS/70
|
||||
NR=NMESS-70*NN
|
||||
IF(NR.NE.0) NN=NN+1
|
||||
K=1
|
||||
PRINT 900
|
||||
900 FORMAT(/)
|
||||
DO 10 I=1,NN
|
||||
KMIN=MIN0(K+69,NMESS)
|
||||
PRINT *, MESS(K:KMIN)
|
||||
K=K+70
|
||||
10 CONTINUE
|
||||
PRINT 900
|
||||
RETURN
|
||||
END
|
29
amos/zabs.f
29
amos/zabs.f
|
@ -1,29 +0,0 @@
|
|||
DOUBLE PRECISION FUNCTION AZABS(ZR, ZI)
|
||||
C***BEGIN PROLOGUE AZABS
|
||||
C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY
|
||||
C
|
||||
C AZABS COMPUTES THE ABSOLUTE VALUE OR MAGNITUDE OF A DOUBLE
|
||||
C PRECISION COMPLEX VARIABLE CMPLX(ZR,ZI)
|
||||
C
|
||||
C***ROUTINES CALLED (NONE)
|
||||
C***END PROLOGUE AZABS
|
||||
DOUBLE PRECISION ZR, ZI, U, V, Q, S
|
||||
U = DABS(ZR)
|
||||
V = DABS(ZI)
|
||||
S = U + V
|
||||
C-----------------------------------------------------------------------
|
||||
C S*1.0D0 MAKES AN UNNORMALIZED UNDERFLOW ON CDC MACHINES INTO A
|
||||
C TRUE FLOATING ZERO
|
||||
C-----------------------------------------------------------------------
|
||||
S = S*1.0D+0
|
||||
IF (S.EQ.0.0D+0) GO TO 20
|
||||
IF (U.GT.V) GO TO 10
|
||||
Q = U/V
|
||||
AZABS = V*DSQRT(1.D+0+Q*Q)
|
||||
RETURN
|
||||
10 Q = V/U
|
||||
AZABS = U*DSQRT(1.D+0+Q*Q)
|
||||
RETURN
|
||||
20 AZABS = 0.0D+0
|
||||
RETURN
|
||||
END
|
99
amos/zacai.f
99
amos/zacai.f
|
@ -1,99 +0,0 @@
|
|||
SUBROUTINE ZACAI(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, RL, TOL,
|
||||
* ELIM, ALIM)
|
||||
C***BEGIN PROLOGUE ZACAI
|
||||
C***REFER TO ZAIRY
|
||||
C
|
||||
C ZACAI APPLIES THE ANALYTIC CONTINUATION FORMULA
|
||||
C
|
||||
C K(FNU,ZN*EXP(MP))=K(FNU,ZN)*EXP(-MP*FNU) - MP*I(FNU,ZN)
|
||||
C MP=PI*MR*CMPLX(0.0,1.0)
|
||||
C
|
||||
C TO CONTINUE THE K FUNCTION FROM THE RIGHT HALF TO THE LEFT
|
||||
C HALF Z PLANE FOR USE WITH ZAIRY WHERE FNU=1/3 OR 2/3 AND N=1.
|
||||
C ZACAI IS THE SAME AS ZACON WITH THE PARTS FOR LARGER ORDERS AND
|
||||
C RECURRENCE REMOVED. A RECURSIVE CALL TO ZACON CAN RESULT IF ZACON
|
||||
C IS CALLED FROM ZAIRY.
|
||||
C
|
||||
C***ROUTINES CALLED ZASYI,ZBKNU,ZMLRI,ZSERI,ZS1S2,D1MACH,AZABS
|
||||
C***END PROLOGUE ZACAI
|
||||
C COMPLEX CSGN,CSPN,C1,C2,Y,Z,ZN,CY
|
||||
DOUBLE PRECISION ALIM, ARG, ASCLE, AZ, CSGNR, CSGNI, CSPNR,
|
||||
* CSPNI, C1R, C1I, C2R, C2I, CYR, CYI, DFNU, ELIM, FMR, FNU, PI,
|
||||
* RL, SGN, TOL, YY, YR, YI, ZR, ZI, ZNR, ZNI, D1MACH, AZABS
|
||||
INTEGER INU, IUF, KODE, MR, N, NN, NW, NZ
|
||||
DIMENSION YR(N), YI(N), CYR(2), CYI(2)
|
||||
DATA PI / 3.14159265358979324D0 /
|
||||
NZ = 0
|
||||
ZNR = -ZR
|
||||
ZNI = -ZI
|
||||
AZ = AZABS(ZR,ZI)
|
||||
NN = N
|
||||
DFNU = FNU + DBLE(FLOAT(N-1))
|
||||
IF (AZ.LE.2.0D0) GO TO 10
|
||||
IF (AZ*AZ*0.25D0.GT.DFNU+1.0D0) GO TO 20
|
||||
10 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C POWER SERIES FOR THE I FUNCTION
|
||||
C-----------------------------------------------------------------------
|
||||
CALL ZSERI(ZNR, ZNI, FNU, KODE, NN, YR, YI, NW, TOL, ELIM, ALIM)
|
||||
GO TO 40
|
||||
20 CONTINUE
|
||||
IF (AZ.LT.RL) GO TO 30
|
||||
C-----------------------------------------------------------------------
|
||||
C ASYMPTOTIC EXPANSION FOR LARGE Z FOR THE I FUNCTION
|
||||
C-----------------------------------------------------------------------
|
||||
CALL ZASYI(ZNR, ZNI, FNU, KODE, NN, YR, YI, NW, RL, TOL, ELIM,
|
||||
* ALIM)
|
||||
IF (NW.LT.0) GO TO 80
|
||||
GO TO 40
|
||||
30 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C MILLER ALGORITHM NORMALIZED BY THE SERIES FOR THE I FUNCTION
|
||||
C-----------------------------------------------------------------------
|
||||
CALL ZMLRI(ZNR, ZNI, FNU, KODE, NN, YR, YI, NW, TOL)
|
||||
IF(NW.LT.0) GO TO 80
|
||||
40 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C ANALYTIC CONTINUATION TO THE LEFT HALF PLANE FOR THE K FUNCTION
|
||||
C-----------------------------------------------------------------------
|
||||
CALL ZBKNU(ZNR, ZNI, FNU, KODE, 1, CYR, CYI, NW, TOL, ELIM, ALIM)
|
||||
IF (NW.NE.0) GO TO 80
|
||||
FMR = DBLE(FLOAT(MR))
|
||||
SGN = -DSIGN(PI,FMR)
|
||||
CSGNR = 0.0D0
|
||||
CSGNI = SGN
|
||||
IF (KODE.EQ.1) GO TO 50
|
||||
YY = -ZNI
|
||||
CSGNR = -CSGNI*DSIN(YY)
|
||||
CSGNI = CSGNI*DCOS(YY)
|
||||
50 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C CALCULATE CSPN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
|
||||
C WHEN FNU IS LARGE
|
||||
C-----------------------------------------------------------------------
|
||||
INU = INT(SNGL(FNU))
|
||||
ARG = (FNU-DBLE(FLOAT(INU)))*SGN
|
||||
CSPNR = DCOS(ARG)
|
||||
CSPNI = DSIN(ARG)
|
||||
IF (MOD(INU,2).EQ.0) GO TO 60
|
||||
CSPNR = -CSPNR
|
||||
CSPNI = -CSPNI
|
||||
60 CONTINUE
|
||||
C1R = CYR(1)
|
||||
C1I = CYI(1)
|
||||
C2R = YR(1)
|
||||
C2I = YI(1)
|
||||
IF (KODE.EQ.1) GO TO 70
|
||||
IUF = 0
|
||||
ASCLE = 1.0D+3*D1MACH(1)/TOL
|
||||
CALL ZS1S2(ZNR, ZNI, C1R, C1I, C2R, C2I, NW, ASCLE, ALIM, IUF)
|
||||
NZ = NZ + NW
|
||||
70 CONTINUE
|
||||
YR(1) = CSPNR*C1R - CSPNI*C1I + CSGNR*C2R - CSGNI*C2I
|
||||
YI(1) = CSPNR*C1I + CSPNI*C1R + CSGNR*C2I + CSGNI*C2R
|
||||
RETURN
|
||||
80 CONTINUE
|
||||
NZ = -1
|
||||
IF(NW.EQ.(-2)) NZ=-2
|
||||
RETURN
|
||||
END
|
203
amos/zacon.f
203
amos/zacon.f
|
@ -1,203 +0,0 @@
|
|||
SUBROUTINE ZACON(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, RL, FNUL,
|
||||
* TOL, ELIM, ALIM)
|
||||
C***BEGIN PROLOGUE ZACON
|
||||
C***REFER TO ZBESK,ZBESH
|
||||
C
|
||||
C ZACON APPLIES THE ANALYTIC CONTINUATION FORMULA
|
||||
C
|
||||
C K(FNU,ZN*EXP(MP))=K(FNU,ZN)*EXP(-MP*FNU) - MP*I(FNU,ZN)
|
||||
C MP=PI*MR*CMPLX(0.0,1.0)
|
||||
C
|
||||
C TO CONTINUE THE K FUNCTION FROM THE RIGHT HALF TO THE LEFT
|
||||
C HALF Z PLANE
|
||||
C
|
||||
C***ROUTINES CALLED ZBINU,ZBKNU,ZS1S2,D1MACH,AZABS,ZMLT
|
||||
C***END PROLOGUE ZACON
|
||||
C COMPLEX CK,CONE,CSCL,CSCR,CSGN,CSPN,CY,CZERO,C1,C2,RZ,SC1,SC2,ST,
|
||||
C *S1,S2,Y,Z,ZN
|
||||
DOUBLE PRECISION ALIM, ARG, ASCLE, AS2, AZN, BRY, BSCLE, CKI,
|
||||
* CKR, CONER, CPN, CSCL, CSCR, CSGNI, CSGNR, CSPNI, CSPNR,
|
||||
* CSR, CSRR, CSSR, CYI, CYR, C1I, C1M, C1R, C2I, C2R, ELIM, FMR,
|
||||
* FN, FNU, FNUL, PI, PTI, PTR, RAZN, RL, RZI, RZR, SC1I, SC1R,
|
||||
* SC2I, SC2R, SGN, SPN, STI, STR, S1I, S1R, S2I, S2R, TOL, YI, YR,
|
||||
* YY, ZEROR, ZI, ZNI, ZNR, ZR, D1MACH, AZABS
|
||||
INTEGER I, INU, IUF, KFLAG, KODE, MR, N, NN, NW, NZ
|
||||
DIMENSION YR(N), YI(N), CYR(2), CYI(2), CSSR(3), CSRR(3), BRY(3)
|
||||
DATA PI / 3.14159265358979324D0 /
|
||||
DATA ZEROR,CONER / 0.0D0,1.0D0 /
|
||||
NZ = 0
|
||||
ZNR = -ZR
|
||||
ZNI = -ZI
|
||||
NN = N
|
||||
CALL ZBINU(ZNR, ZNI, FNU, KODE, NN, YR, YI, NW, RL, FNUL, TOL,
|
||||
* ELIM, ALIM)
|
||||
IF (NW.LT.0) GO TO 90
|
||||
C-----------------------------------------------------------------------
|
||||
C ANALYTIC CONTINUATION TO THE LEFT HALF PLANE FOR THE K FUNCTION
|
||||
C-----------------------------------------------------------------------
|
||||
NN = MIN0(2,N)
|
||||
CALL ZBKNU(ZNR, ZNI, FNU, KODE, NN, CYR, CYI, NW, TOL, ELIM, ALIM)
|
||||
IF (NW.NE.0) GO TO 90
|
||||
S1R = CYR(1)
|
||||
S1I = CYI(1)
|
||||
FMR = DBLE(FLOAT(MR))
|
||||
SGN = -DSIGN(PI,FMR)
|
||||
CSGNR = ZEROR
|
||||
CSGNI = SGN
|
||||
IF (KODE.EQ.1) GO TO 10
|
||||
YY = -ZNI
|
||||
CPN = DCOS(YY)
|
||||
SPN = DSIN(YY)
|
||||
CALL ZMLT(CSGNR, CSGNI, CPN, SPN, CSGNR, CSGNI)
|
||||
10 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C CALCULATE CSPN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
|
||||
C WHEN FNU IS LARGE
|
||||
C-----------------------------------------------------------------------
|
||||
INU = INT(SNGL(FNU))
|
||||
ARG = (FNU-DBLE(FLOAT(INU)))*SGN
|
||||
CPN = DCOS(ARG)
|
||||
SPN = DSIN(ARG)
|
||||
CSPNR = CPN
|
||||
CSPNI = SPN
|
||||
IF (MOD(INU,2).EQ.0) GO TO 20
|
||||
CSPNR = -CSPNR
|
||||
CSPNI = -CSPNI
|
||||
20 CONTINUE
|
||||
IUF = 0
|
||||
C1R = S1R
|
||||
C1I = S1I
|
||||
C2R = YR(1)
|
||||
C2I = YI(1)
|
||||
ASCLE = 1.0D+3*D1MACH(1)/TOL
|
||||
IF (KODE.EQ.1) GO TO 30
|
||||
CALL ZS1S2(ZNR, ZNI, C1R, C1I, C2R, C2I, NW, ASCLE, ALIM, IUF)
|
||||
NZ = NZ + NW
|
||||
SC1R = C1R
|
||||
SC1I = C1I
|
||||
30 CONTINUE
|
||||
CALL ZMLT(CSPNR, CSPNI, C1R, C1I, STR, STI)
|
||||
CALL ZMLT(CSGNR, CSGNI, C2R, C2I, PTR, PTI)
|
||||
YR(1) = STR + PTR
|
||||
YI(1) = STI + PTI
|
||||
IF (N.EQ.1) RETURN
|
||||
CSPNR = -CSPNR
|
||||
CSPNI = -CSPNI
|
||||
S2R = CYR(2)
|
||||
S2I = CYI(2)
|
||||
C1R = S2R
|
||||
C1I = S2I
|
||||
C2R = YR(2)
|
||||
C2I = YI(2)
|
||||
IF (KODE.EQ.1) GO TO 40
|
||||
CALL ZS1S2(ZNR, ZNI, C1R, C1I, C2R, C2I, NW, ASCLE, ALIM, IUF)
|
||||
NZ = NZ + NW
|
||||
SC2R = C1R
|
||||
SC2I = C1I
|
||||
40 CONTINUE
|
||||
CALL ZMLT(CSPNR, CSPNI, C1R, C1I, STR, STI)
|
||||
CALL ZMLT(CSGNR, CSGNI, C2R, C2I, PTR, PTI)
|
||||
YR(2) = STR + PTR
|
||||
YI(2) = STI + PTI
|
||||
IF (N.EQ.2) RETURN
|
||||
CSPNR = -CSPNR
|
||||
CSPNI = -CSPNI
|
||||
AZN = AZABS(ZNR,ZNI)
|
||||
RAZN = 1.0D0/AZN
|
||||
STR = ZNR*RAZN
|
||||
STI = -ZNI*RAZN
|
||||
RZR = (STR+STR)*RAZN
|
||||
RZI = (STI+STI)*RAZN
|
||||
FN = FNU + 1.0D0
|
||||
CKR = FN*RZR
|
||||
CKI = FN*RZI
|
||||
C-----------------------------------------------------------------------
|
||||
C SCALE NEAR EXPONENT EXTREMES DURING RECURRENCE ON K FUNCTIONS
|
||||
C-----------------------------------------------------------------------
|
||||
CSCL = 1.0D0/TOL
|
||||
CSCR = TOL
|
||||
CSSR(1) = CSCL
|
||||
CSSR(2) = CONER
|
||||
CSSR(3) = CSCR
|
||||
CSRR(1) = CSCR
|
||||
CSRR(2) = CONER
|
||||
CSRR(3) = CSCL
|
||||
BRY(1) = ASCLE
|
||||
BRY(2) = 1.0D0/ASCLE
|
||||
BRY(3) = D1MACH(2)
|
||||
AS2 = AZABS(S2R,S2I)
|
||||
KFLAG = 2
|
||||
IF (AS2.GT.BRY(1)) GO TO 50
|
||||
KFLAG = 1
|
||||
GO TO 60
|
||||
50 CONTINUE
|
||||
IF (AS2.LT.BRY(2)) GO TO 60
|
||||
KFLAG = 3
|
||||
60 CONTINUE
|
||||
BSCLE = BRY(KFLAG)
|
||||
S1R = S1R*CSSR(KFLAG)
|
||||
S1I = S1I*CSSR(KFLAG)
|
||||
S2R = S2R*CSSR(KFLAG)
|
||||
S2I = S2I*CSSR(KFLAG)
|
||||
CSR = CSRR(KFLAG)
|
||||
DO 80 I=3,N
|
||||
STR = S2R
|
||||
STI = S2I
|
||||
S2R = CKR*STR - CKI*STI + S1R
|
||||
S2I = CKR*STI + CKI*STR + S1I
|
||||
S1R = STR
|
||||
S1I = STI
|
||||
C1R = S2R*CSR
|
||||
C1I = S2I*CSR
|
||||
STR = C1R
|
||||
STI = C1I
|
||||
C2R = YR(I)
|
||||
C2I = YI(I)
|
||||
IF (KODE.EQ.1) GO TO 70
|
||||
IF (IUF.LT.0) GO TO 70
|
||||
CALL ZS1S2(ZNR, ZNI, C1R, C1I, C2R, C2I, NW, ASCLE, ALIM, IUF)
|
||||
NZ = NZ + NW
|
||||
SC1R = SC2R
|
||||
SC1I = SC2I
|
||||
SC2R = C1R
|
||||
SC2I = C1I
|
||||
IF (IUF.NE.3) GO TO 70
|
||||
IUF = -4
|
||||
S1R = SC1R*CSSR(KFLAG)
|
||||
S1I = SC1I*CSSR(KFLAG)
|
||||
S2R = SC2R*CSSR(KFLAG)
|
||||
S2I = SC2I*CSSR(KFLAG)
|
||||
STR = SC2R
|
||||
STI = SC2I
|
||||
70 CONTINUE
|
||||
PTR = CSPNR*C1R - CSPNI*C1I
|
||||
PTI = CSPNR*C1I + CSPNI*C1R
|
||||
YR(I) = PTR + CSGNR*C2R - CSGNI*C2I
|
||||
YI(I) = PTI + CSGNR*C2I + CSGNI*C2R
|
||||
CKR = CKR + RZR
|
||||
CKI = CKI + RZI
|
||||
CSPNR = -CSPNR
|
||||
CSPNI = -CSPNI
|
||||
IF (KFLAG.GE.3) GO TO 80
|
||||
PTR = DABS(C1R)
|
||||
PTI = DABS(C1I)
|
||||
C1M = DMAX1(PTR,PTI)
|
||||
IF (C1M.LE.BSCLE) GO TO 80
|
||||
KFLAG = KFLAG + 1
|
||||
BSCLE = BRY(KFLAG)
|
||||
S1R = S1R*CSR
|
||||
S1I = S1I*CSR
|
||||
S2R = STR
|
||||
S2I = STI
|
||||
S1R = S1R*CSSR(KFLAG)
|
||||
S1I = S1I*CSSR(KFLAG)
|
||||
S2R = S2R*CSSR(KFLAG)
|
||||
S2I = S2I*CSSR(KFLAG)
|
||||
CSR = CSRR(KFLAG)
|
||||
80 CONTINUE
|
||||
RETURN
|
||||
90 CONTINUE
|
||||
NZ = -1
|
||||
IF(NW.EQ.(-2)) NZ=-2
|
||||
RETURN
|
||||
END
|
393
amos/zairy.f
393
amos/zairy.f
|
@ -1,393 +0,0 @@
|
|||
SUBROUTINE ZAIRY(ZR, ZI, ID, KODE, AIR, AII, NZ, IERR)
|
||||
C***BEGIN PROLOGUE ZAIRY
|
||||
C***DATE WRITTEN 830501 (YYMMDD)
|
||||
C***REVISION DATE 890801 (YYMMDD)
|
||||
C***CATEGORY NO. B5K
|
||||
C***KEYWORDS AIRY FUNCTION,BESSEL FUNCTIONS OF ORDER ONE THIRD
|
||||
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
|
||||
C***PURPOSE TO COMPUTE AIRY FUNCTIONS AI(Z) AND DAI(Z) FOR COMPLEX Z
|
||||
C***DESCRIPTION
|
||||
C
|
||||
C ***A DOUBLE PRECISION ROUTINE***
|
||||
C ON KODE=1, ZAIRY COMPUTES THE COMPLEX AIRY FUNCTION AI(Z) OR
|
||||
C ITS DERIVATIVE DAI(Z)/DZ ON ID=0 OR ID=1 RESPECTIVELY. ON
|
||||
C KODE=2, A SCALING OPTION CEXP(ZTA)*AI(Z) OR CEXP(ZTA)*
|
||||
C DAI(Z)/DZ IS PROVIDED TO REMOVE THE EXPONENTIAL DECAY IN
|
||||
C -PI/3.LT.ARG(Z).LT.PI/3 AND THE EXPONENTIAL GROWTH IN
|
||||
C PI/3.LT.ABS(ARG(Z)).LT.PI WHERE ZTA=(2/3)*Z*CSQRT(Z).
|
||||
C
|
||||
C WHILE THE AIRY FUNCTIONS AI(Z) AND DAI(Z)/DZ ARE ANALYTIC IN
|
||||
C THE WHOLE Z PLANE, THE CORRESPONDING SCALED FUNCTIONS DEFINED
|
||||
C FOR KODE=2 HAVE A CUT ALONG THE NEGATIVE REAL AXIS.
|
||||
C DEFINITIONS AND NOTATION ARE FOUND IN THE NBS HANDBOOK OF
|
||||
C MATHEMATICAL FUNCTIONS (REF. 1).
|
||||
C
|
||||
C INPUT ZR,ZI ARE DOUBLE PRECISION
|
||||
C ZR,ZI - Z=CMPLX(ZR,ZI)
|
||||
C ID - ORDER OF DERIVATIVE, ID=0 OR ID=1
|
||||
C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
|
||||
C KODE= 1 RETURNS
|
||||
C AI=AI(Z) ON ID=0 OR
|
||||
C AI=DAI(Z)/DZ ON ID=1
|
||||
C = 2 RETURNS
|
||||
C AI=CEXP(ZTA)*AI(Z) ON ID=0 OR
|
||||
C AI=CEXP(ZTA)*DAI(Z)/DZ ON ID=1 WHERE
|
||||
C ZTA=(2/3)*Z*CSQRT(Z)
|
||||
C
|
||||
C OUTPUT AIR,AII ARE DOUBLE PRECISION
|
||||
C AIR,AII- COMPLEX ANSWER DEPENDING ON THE CHOICES FOR ID AND
|
||||
C KODE
|
||||
C NZ - UNDERFLOW INDICATOR
|
||||
C NZ= 0 , NORMAL RETURN
|
||||
C NZ= 1 , AI=CMPLX(0.0D0,0.0D0) DUE TO UNDERFLOW IN
|
||||
C -PI/3.LT.ARG(Z).LT.PI/3 ON KODE=1
|
||||
C IERR - ERROR FLAG
|
||||
C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
|
||||
C IERR=1, INPUT ERROR - NO COMPUTATION
|
||||
C IERR=2, OVERFLOW - NO COMPUTATION, REAL(ZTA)
|
||||
C TOO LARGE ON KODE=1
|
||||
C IERR=3, CABS(Z) LARGE - COMPUTATION COMPLETED
|
||||
C LOSSES OF SIGNIFCANCE BY ARGUMENT REDUCTION
|
||||
C PRODUCE LESS THAN HALF OF MACHINE ACCURACY
|
||||
C IERR=4, CABS(Z) TOO LARGE - NO COMPUTATION
|
||||
C COMPLETE LOSS OF ACCURACY BY ARGUMENT
|
||||
C REDUCTION
|
||||
C IERR=5, ERROR - NO COMPUTATION,
|
||||
C ALGORITHM TERMINATION CONDITION NOT MET
|
||||
C
|
||||
C***LONG DESCRIPTION
|
||||
C
|
||||
C AI AND DAI ARE COMPUTED FOR CABS(Z).GT.1.0 FROM THE K BESSEL
|
||||
C FUNCTIONS BY
|
||||
C
|
||||
C AI(Z)=C*SQRT(Z)*K(1/3,ZTA) , DAI(Z)=-C*Z*K(2/3,ZTA)
|
||||
C C=1.0/(PI*SQRT(3.0))
|
||||
C ZTA=(2/3)*Z**(3/2)
|
||||
C
|
||||
C WITH THE POWER SERIES FOR CABS(Z).LE.1.0.
|
||||
C
|
||||
C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
|
||||
C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z IS LARGE, LOSSES
|
||||
C OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. CONSEQUENTLY, IF
|
||||
C THE MAGNITUDE OF ZETA=(2/3)*Z**1.5 EXCEEDS U1=SQRT(0.5/UR),
|
||||
C THEN LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR
|
||||
C FLAG IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
|
||||
C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
|
||||
C ALSO, IF THE MAGNITUDE OF ZETA IS LARGER THAN U2=0.5/UR, THEN
|
||||
C ALL SIGNIFICANCE IS LOST AND IERR=4. IN ORDER TO USE THE INT
|
||||
C FUNCTION, ZETA MUST BE FURTHER RESTRICTED NOT TO EXCEED THE
|
||||
C LARGEST INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF ZETA
|
||||
C MUST BE RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2,
|
||||
C AND U3 ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE
|
||||
C PRECISION ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE
|
||||
C PRECISION ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMIT-
|
||||
C ING IN THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT THE MAG-
|
||||
C NITUDE OF Z CANNOT EXCEED 3.1E+4 IN SINGLE AND 2.1E+6 IN
|
||||
C DOUBLE PRECISION ARITHMETIC. THIS ALSO MEANS THAT ONE CAN
|
||||
C EXPECT TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES,
|
||||
C NO DIGITS IN SINGLE PRECISION AND ONLY 7 DIGITS IN DOUBLE
|
||||
C PRECISION ARITHMETIC. SIMILAR CONSIDERATIONS HOLD FOR OTHER
|
||||
C MACHINES.
|
||||
C
|
||||
C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
|
||||
C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
|
||||
C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
|
||||
C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
|
||||
C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
|
||||
C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
|
||||
C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
|
||||
C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
|
||||
C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
|
||||
C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
|
||||
C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
|
||||
C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
|
||||
C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
|
||||
C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
|
||||
C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
|
||||
C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
|
||||
C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
|
||||
C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
|
||||
C OR -PI/2+P.
|
||||
C
|
||||
C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
|
||||
C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
|
||||
C COMMERCE, 1955.
|
||||
C
|
||||
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
|
||||
C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
|
||||
C
|
||||
C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
|
||||
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
|
||||
C 1018, MAY, 1985
|
||||
C
|
||||
C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
|
||||
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
|
||||
C MATH. SOFTWARE, 1986
|
||||
C
|
||||
C***ROUTINES CALLED ZACAI,ZBKNU,AZEXP,AZSQRT,I1MACH,D1MACH
|
||||
C***END PROLOGUE ZAIRY
|
||||
C COMPLEX AI,CONE,CSQ,CY,S1,S2,TRM1,TRM2,Z,ZTA,Z3
|
||||
DOUBLE PRECISION AA, AD, AII, AIR, AK, ALIM, ATRM, AZ, AZ3, BK,
|
||||
* CC, CK, COEF, CONEI, CONER, CSQI, CSQR, CYI, CYR, C1, C2, DIG,
|
||||
* DK, D1, D2, ELIM, FID, FNU, PTR, RL, R1M5, SFAC, STI, STR,
|
||||
* S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I, TRM2R, TTH, ZEROI,
|
||||
* ZEROR, ZI, ZR, ZTAI, ZTAR, Z3I, Z3R, D1MACH, AZABS, ALAZ, BB
|
||||
INTEGER ID, IERR, IFLAG, K, KODE, K1, K2, MR, NN, NZ, I1MACH
|
||||
DIMENSION CYR(1), CYI(1)
|
||||
DATA TTH, C1, C2, COEF /6.66666666666666667D-01,
|
||||
* 3.55028053887817240D-01,2.58819403792806799D-01,
|
||||
* 1.83776298473930683D-01/
|
||||
DATA ZEROR, ZEROI, CONER, CONEI /0.0D0,0.0D0,1.0D0,0.0D0/
|
||||
C***FIRST EXECUTABLE STATEMENT ZAIRY
|
||||
IERR = 0
|
||||
NZ=0
|
||||
IF (ID.LT.0 .OR. ID.GT.1) IERR=1
|
||||
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
|
||||
IF (IERR.NE.0) RETURN
|
||||
AZ = AZABS(ZR,ZI)
|
||||
TOL = DMAX1(D1MACH(4),1.0D-18)
|
||||
FID = DBLE(FLOAT(ID))
|
||||
IF (AZ.GT.1.0D0) GO TO 70
|
||||
C-----------------------------------------------------------------------
|
||||
C POWER SERIES FOR CABS(Z).LE.1.
|
||||
C-----------------------------------------------------------------------
|
||||
S1R = CONER
|
||||
S1I = CONEI
|
||||
S2R = CONER
|
||||
S2I = CONEI
|
||||
IF (AZ.LT.TOL) GO TO 170
|
||||
AA = AZ*AZ
|
||||
IF (AA.LT.TOL/AZ) GO TO 40
|
||||
TRM1R = CONER
|
||||
TRM1I = CONEI
|
||||
TRM2R = CONER
|
||||
TRM2I = CONEI
|
||||
ATRM = 1.0D0
|
||||
STR = ZR*ZR - ZI*ZI
|
||||
STI = ZR*ZI + ZI*ZR
|
||||
Z3R = STR*ZR - STI*ZI
|
||||
Z3I = STR*ZI + STI*ZR
|
||||
AZ3 = AZ*AA
|
||||
AK = 2.0D0 + FID
|
||||
BK = 3.0D0 - FID - FID
|
||||
CK = 4.0D0 - FID
|
||||
DK = 3.0D0 + FID + FID
|
||||
D1 = AK*DK
|
||||
D2 = BK*CK
|
||||
AD = DMIN1(D1,D2)
|
||||
AK = 24.0D0 + 9.0D0*FID
|
||||
BK = 30.0D0 - 9.0D0*FID
|
||||
DO 30 K=1,25
|
||||
STR = (TRM1R*Z3R-TRM1I*Z3I)/D1
|
||||
TRM1I = (TRM1R*Z3I+TRM1I*Z3R)/D1
|
||||
TRM1R = STR
|
||||
S1R = S1R + TRM1R
|
||||
S1I = S1I + TRM1I
|
||||
STR = (TRM2R*Z3R-TRM2I*Z3I)/D2
|
||||
TRM2I = (TRM2R*Z3I+TRM2I*Z3R)/D2
|
||||
TRM2R = STR
|
||||
S2R = S2R + TRM2R
|
||||
S2I = S2I + TRM2I
|
||||
ATRM = ATRM*AZ3/AD
|
||||
D1 = D1 + AK
|
||||
D2 = D2 + BK
|
||||
AD = DMIN1(D1,D2)
|
||||
IF (ATRM.LT.TOL*AD) GO TO 40
|
||||
AK = AK + 18.0D0
|
||||
BK = BK + 18.0D0
|
||||
30 CONTINUE
|
||||
40 CONTINUE
|
||||
IF (ID.EQ.1) GO TO 50
|
||||
AIR = S1R*C1 - C2*(ZR*S2R-ZI*S2I)
|
||||
AII = S1I*C1 - C2*(ZR*S2I+ZI*S2R)
|
||||
IF (KODE.EQ.1) RETURN
|
||||
CALL AZSQRT(ZR, ZI, STR, STI)
|
||||
ZTAR = TTH*(ZR*STR-ZI*STI)
|
||||
ZTAI = TTH*(ZR*STI+ZI*STR)
|
||||
CALL AZEXP(ZTAR, ZTAI, STR, STI)
|
||||
PTR = AIR*STR - AII*STI
|
||||
AII = AIR*STI + AII*STR
|
||||
AIR = PTR
|
||||
RETURN
|
||||
50 CONTINUE
|
||||
AIR = -S2R*C2
|
||||
AII = -S2I*C2
|
||||
IF (AZ.LE.TOL) GO TO 60
|
||||
STR = ZR*S1R - ZI*S1I
|
||||
STI = ZR*S1I + ZI*S1R
|
||||
CC = C1/(1.0D0+FID)
|
||||
AIR = AIR + CC*(STR*ZR-STI*ZI)
|
||||
AII = AII + CC*(STR*ZI+STI*ZR)
|
||||
60 CONTINUE
|
||||
IF (KODE.EQ.1) RETURN
|
||||
CALL AZSQRT(ZR, ZI, STR, STI)
|
||||
ZTAR = TTH*(ZR*STR-ZI*STI)
|
||||
ZTAI = TTH*(ZR*STI+ZI*STR)
|
||||
CALL AZEXP(ZTAR, ZTAI, STR, STI)
|
||||
PTR = STR*AIR - STI*AII
|
||||
AII = STR*AII + STI*AIR
|
||||
AIR = PTR
|
||||
RETURN
|
||||
C-----------------------------------------------------------------------
|
||||
C CASE FOR CABS(Z).GT.1.0
|
||||
C-----------------------------------------------------------------------
|
||||
70 CONTINUE
|
||||
FNU = (1.0D0+FID)/3.0D0
|
||||
C-----------------------------------------------------------------------
|
||||
C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
|
||||
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0D-18.
|
||||
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
|
||||
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
|
||||
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
|
||||
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
|
||||
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
|
||||
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
|
||||
C-----------------------------------------------------------------------
|
||||
K1 = I1MACH(15)
|
||||
K2 = I1MACH(16)
|
||||
R1M5 = D1MACH(5)
|
||||
K = MIN0(IABS(K1),IABS(K2))
|
||||
ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
|
||||
K1 = I1MACH(14) - 1
|
||||
AA = R1M5*DBLE(FLOAT(K1))
|
||||
DIG = DMIN1(AA,18.0D0)
|
||||
AA = AA*2.303D0
|
||||
ALIM = ELIM + DMAX1(-AA,-41.45D0)
|
||||
RL = 1.2D0*DIG + 3.0D0
|
||||
ALAZ = DLOG(AZ)
|
||||
C--------------------------------------------------------------------------
|
||||
C TEST FOR PROPER RANGE
|
||||
C-----------------------------------------------------------------------
|
||||
AA=0.5D0/TOL
|
||||
BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
|
||||
AA=DMIN1(AA,BB)
|
||||
AA=AA**TTH
|
||||
IF (AZ.GT.AA) GO TO 260
|
||||
AA=DSQRT(AA)
|
||||
IF (AZ.GT.AA) IERR=3
|
||||
CALL AZSQRT(ZR, ZI, CSQR, CSQI)
|
||||
ZTAR = TTH*(ZR*CSQR-ZI*CSQI)
|
||||
ZTAI = TTH*(ZR*CSQI+ZI*CSQR)
|
||||
C-----------------------------------------------------------------------
|
||||
C RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL
|
||||
C-----------------------------------------------------------------------
|
||||
IFLAG = 0
|
||||
SFAC = 1.0D0
|
||||
AK = ZTAI
|
||||
IF (ZR.GE.0.0D0) GO TO 80
|
||||
BK = ZTAR
|
||||
CK = -DABS(BK)
|
||||
ZTAR = CK
|
||||
ZTAI = AK
|
||||
80 CONTINUE
|
||||
IF (ZI.NE.0.0D0) GO TO 90
|
||||
IF (ZR.GT.0.0D0) GO TO 90
|
||||
ZTAR = 0.0D0
|
||||
ZTAI = AK
|
||||
90 CONTINUE
|
||||
AA = ZTAR
|
||||
IF (AA.GE.0.0D0 .AND. ZR.GT.0.0D0) GO TO 110
|
||||
IF (KODE.EQ.2) GO TO 100
|
||||
C-----------------------------------------------------------------------
|
||||
C OVERFLOW TEST
|
||||
C-----------------------------------------------------------------------
|
||||
IF (AA.GT.(-ALIM)) GO TO 100
|
||||
AA = -AA + 0.25D0*ALAZ
|
||||
IFLAG = 1
|
||||
SFAC = TOL
|
||||
IF (AA.GT.ELIM) GO TO 270
|
||||
100 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C CBKNU AND CACON RETURN EXP(ZTA)*K(FNU,ZTA) ON KODE=2
|
||||
C-----------------------------------------------------------------------
|
||||
MR = 1
|
||||
IF (ZI.LT.0.0D0) MR = -1
|
||||
CALL ZACAI(ZTAR, ZTAI, FNU, KODE, MR, 1, CYR, CYI, NN, RL, TOL,
|
||||
* ELIM, ALIM)
|
||||
IF (NN.LT.0) GO TO 280
|
||||
NZ = NZ + NN
|
||||
GO TO 130
|
||||
110 CONTINUE
|
||||
IF (KODE.EQ.2) GO TO 120
|
||||
C-----------------------------------------------------------------------
|
||||
C UNDERFLOW TEST
|
||||
C-----------------------------------------------------------------------
|
||||
IF (AA.LT.ALIM) GO TO 120
|
||||
AA = -AA - 0.25D0*ALAZ
|
||||
IFLAG = 2
|
||||
SFAC = 1.0D0/TOL
|
||||
IF (AA.LT.(-ELIM)) GO TO 210
|
||||
120 CONTINUE
|
||||
CALL ZBKNU(ZTAR, ZTAI, FNU, KODE, 1, CYR, CYI, NZ, TOL, ELIM,
|
||||
* ALIM)
|
||||
130 CONTINUE
|
||||
S1R = CYR(1)*COEF
|
||||
S1I = CYI(1)*COEF
|
||||
IF (IFLAG.NE.0) GO TO 150
|
||||
IF (ID.EQ.1) GO TO 140
|
||||
AIR = CSQR*S1R - CSQI*S1I
|
||||
AII = CSQR*S1I + CSQI*S1R
|
||||
RETURN
|
||||
140 CONTINUE
|
||||
AIR = -(ZR*S1R-ZI*S1I)
|
||||
AII = -(ZR*S1I+ZI*S1R)
|
||||
RETURN
|
||||
150 CONTINUE
|
||||
S1R = S1R*SFAC
|
||||
S1I = S1I*SFAC
|
||||
IF (ID.EQ.1) GO TO 160
|
||||
STR = S1R*CSQR - S1I*CSQI
|
||||
S1I = S1R*CSQI + S1I*CSQR
|
||||
S1R = STR
|
||||
AIR = S1R/SFAC
|
||||
AII = S1I/SFAC
|
||||
RETURN
|
||||
160 CONTINUE
|
||||
STR = -(S1R*ZR-S1I*ZI)
|
||||
S1I = -(S1R*ZI+S1I*ZR)
|
||||
S1R = STR
|
||||
AIR = S1R/SFAC
|
||||
AII = S1I/SFAC
|
||||
RETURN
|
||||
170 CONTINUE
|
||||
AA = 1.0D+3*D1MACH(1)
|
||||
S1R = ZEROR
|
||||
S1I = ZEROI
|
||||
IF (ID.EQ.1) GO TO 190
|
||||
IF (AZ.LE.AA) GO TO 180
|
||||
S1R = C2*ZR
|
||||
S1I = C2*ZI
|
||||
180 CONTINUE
|
||||
AIR = C1 - S1R
|
||||
AII = -S1I
|
||||
RETURN
|
||||
190 CONTINUE
|
||||
AIR = -C2
|
||||
AII = 0.0D0
|
||||
AA = DSQRT(AA)
|
||||
IF (AZ.LE.AA) GO TO 200
|
||||
S1R = 0.5D0*(ZR*ZR-ZI*ZI)
|
||||
S1I = ZR*ZI
|
||||
200 CONTINUE
|
||||
AIR = AIR + C1*S1R
|
||||
AII = AII + C1*S1I
|
||||
RETURN
|
||||
210 CONTINUE
|
||||
NZ = 1
|
||||
AIR = ZEROR
|
||||
AII = ZEROI
|
||||
RETURN
|
||||
270 CONTINUE
|
||||
NZ = 0
|
||||
IERR=2
|
||||
RETURN
|
||||
280 CONTINUE
|
||||
IF(NN.EQ.(-1)) GO TO 270
|
||||
NZ=0
|
||||
IERR=5
|
||||
RETURN
|
||||
260 CONTINUE
|
||||
IERR=4
|
||||
NZ=0
|
||||
RETURN
|
||||
END
|
165
amos/zasyi.f
165
amos/zasyi.f
|
@ -1,165 +0,0 @@
|
|||
SUBROUTINE ZASYI(ZR, ZI, FNU, KODE, N, YR, YI, NZ, RL, TOL, ELIM,
|
||||
* ALIM)
|
||||
C***BEGIN PROLOGUE ZASYI
|
||||
C***REFER TO ZBESI,ZBESK
|
||||
C
|
||||
C ZASYI COMPUTES THE I BESSEL FUNCTION FOR REAL(Z).GE.0.0 BY
|
||||
C MEANS OF THE ASYMPTOTIC EXPANSION FOR LARGE CABS(Z) IN THE
|
||||
C REGION CABS(Z).GT.MAX(RL,FNU*FNU/2). NZ=0 IS A NORMAL RETURN.
|
||||
C NZ.LT.0 INDICATES AN OVERFLOW ON KODE=1.
|
||||
C
|
||||
C***ROUTINES CALLED D1MACH,AZABS,ZDIV,AZEXP,ZMLT,AZSQRT
|
||||
C***END PROLOGUE ZASYI
|
||||
C COMPLEX AK1,CK,CONE,CS1,CS2,CZ,CZERO,DK,EZ,P1,RZ,S2,Y,Z
|
||||
DOUBLE PRECISION AA, AEZ, AK, AK1I, AK1R, ALIM, ARG, ARM, ATOL,
|
||||
* AZ, BB, BK, CKI, CKR, CONEI, CONER, CS1I, CS1R, CS2I, CS2R, CZI,
|
||||
* CZR, DFNU, DKI, DKR, DNU2, ELIM, EZI, EZR, FDN, FNU, PI, P1I,
|
||||
* P1R, RAZ, RL, RTPI, RTR1, RZI, RZR, S, SGN, SQK, STI, STR, S2I,
|
||||
* S2R, TOL, TZI, TZR, YI, YR, ZEROI, ZEROR, ZI, ZR, D1MACH, AZABS
|
||||
INTEGER I, IB, IL, INU, J, JL, K, KODE, KODED, M, N, NN, NZ
|
||||
DIMENSION YR(N), YI(N)
|
||||
DATA PI, RTPI /3.14159265358979324D0 , 0.159154943091895336D0 /
|
||||
DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 /
|
||||
C
|
||||
NZ = 0
|
||||
AZ = AZABS(ZR,ZI)
|
||||
ARM = 1.0D+3*D1MACH(1)
|
||||
RTR1 = DSQRT(ARM)
|
||||
IL = MIN0(2,N)
|
||||
DFNU = FNU + DBLE(FLOAT(N-IL))
|
||||
C-----------------------------------------------------------------------
|
||||
C OVERFLOW TEST
|
||||
C-----------------------------------------------------------------------
|
||||
RAZ = 1.0D0/AZ
|
||||
STR = ZR*RAZ
|
||||
STI = -ZI*RAZ
|
||||
AK1R = RTPI*STR*RAZ
|
||||
AK1I = RTPI*STI*RAZ
|
||||
CALL AZSQRT(AK1R, AK1I, AK1R, AK1I)
|
||||
CZR = ZR
|
||||
CZI = ZI
|
||||
IF (KODE.NE.2) GO TO 10
|
||||
CZR = ZEROR
|
||||
CZI = ZI
|
||||
10 CONTINUE
|
||||
IF (DABS(CZR).GT.ELIM) GO TO 100
|
||||
DNU2 = DFNU + DFNU
|
||||
KODED = 1
|
||||
IF ((DABS(CZR).GT.ALIM) .AND. (N.GT.2)) GO TO 20
|
||||
KODED = 0
|
||||
CALL AZEXP(CZR, CZI, STR, STI)
|
||||
CALL ZMLT(AK1R, AK1I, STR, STI, AK1R, AK1I)
|
||||
20 CONTINUE
|
||||
FDN = 0.0D0
|
||||
IF (DNU2.GT.RTR1) FDN = DNU2*DNU2
|
||||
EZR = ZR*8.0D0
|
||||
EZI = ZI*8.0D0
|
||||
C-----------------------------------------------------------------------
|
||||
C WHEN Z IS IMAGINARY, THE ERROR TEST MUST BE MADE RELATIVE TO THE
|
||||
C FIRST RECIPROCAL POWER SINCE THIS IS THE LEADING TERM OF THE
|
||||
C EXPANSION FOR THE IMAGINARY PART.
|
||||
C-----------------------------------------------------------------------
|
||||
AEZ = 8.0D0*AZ
|
||||
S = TOL/AEZ
|
||||
JL = INT(SNGL(RL+RL)) + 2
|
||||
P1R = ZEROR
|
||||
P1I = ZEROI
|
||||
IF (ZI.EQ.0.0D0) GO TO 30
|
||||
C-----------------------------------------------------------------------
|
||||
C CALCULATE EXP(PI*(0.5+FNU+N-IL)*I) TO MINIMIZE LOSSES OF
|
||||
C SIGNIFICANCE WHEN FNU OR N IS LARGE
|
||||
C-----------------------------------------------------------------------
|
||||
INU = INT(SNGL(FNU))
|
||||
ARG = (FNU-DBLE(FLOAT(INU)))*PI
|
||||
INU = INU + N - IL
|
||||
AK = -DSIN(ARG)
|
||||
BK = DCOS(ARG)
|
||||
IF (ZI.LT.0.0D0) BK = -BK
|
||||
P1R = AK
|
||||
P1I = BK
|
||||
IF (MOD(INU,2).EQ.0) GO TO 30
|
||||
P1R = -P1R
|
||||
P1I = -P1I
|
||||
30 CONTINUE
|
||||
DO 70 K=1,IL
|
||||
SQK = FDN - 1.0D0
|
||||
ATOL = S*DABS(SQK)
|
||||
SGN = 1.0D0
|
||||
CS1R = CONER
|
||||
CS1I = CONEI
|
||||
CS2R = CONER
|
||||
CS2I = CONEI
|
||||
CKR = CONER
|
||||
CKI = CONEI
|
||||
AK = 0.0D0
|
||||
AA = 1.0D0
|
||||
BB = AEZ
|
||||
DKR = EZR
|
||||
DKI = EZI
|
||||
DO 40 J=1,JL
|
||||
CALL ZDIV(CKR, CKI, DKR, DKI, STR, STI)
|
||||
CKR = STR*SQK
|
||||
CKI = STI*SQK
|
||||
CS2R = CS2R + CKR
|
||||
CS2I = CS2I + CKI
|
||||
SGN = -SGN
|
||||
CS1R = CS1R + CKR*SGN
|
||||
CS1I = CS1I + CKI*SGN
|
||||
DKR = DKR + EZR
|
||||
DKI = DKI + EZI
|
||||
AA = AA*DABS(SQK)/BB
|
||||
BB = BB + AEZ
|
||||
AK = AK + 8.0D0
|
||||
SQK = SQK - AK
|
||||
IF (AA.LE.ATOL) GO TO 50
|
||||
40 CONTINUE
|
||||
GO TO 110
|
||||
50 CONTINUE
|
||||
S2R = CS1R
|
||||
S2I = CS1I
|
||||
IF (ZR+ZR.GE.ELIM) GO TO 60
|
||||
TZR = ZR + ZR
|
||||
TZI = ZI + ZI
|
||||
CALL AZEXP(-TZR, -TZI, STR, STI)
|
||||
CALL ZMLT(STR, STI, P1R, P1I, STR, STI)
|
||||
CALL ZMLT(STR, STI, CS2R, CS2I, STR, STI)
|
||||
S2R = S2R + STR
|
||||
S2I = S2I + STI
|
||||
60 CONTINUE
|
||||
FDN = FDN + 8.0D0*DFNU + 4.0D0
|
||||
P1R = -P1R
|
||||
P1I = -P1I
|
||||
M = N - IL + K
|
||||
YR(M) = S2R*AK1R - S2I*AK1I
|
||||
YI(M) = S2R*AK1I + S2I*AK1R
|
||||
70 CONTINUE
|
||||
IF (N.LE.2) RETURN
|
||||
NN = N
|
||||
K = NN - 2
|
||||
AK = DBLE(FLOAT(K))
|
||||
STR = ZR*RAZ
|
||||
STI = -ZI*RAZ
|
||||
RZR = (STR+STR)*RAZ
|
||||
RZI = (STI+STI)*RAZ
|
||||
IB = 3
|
||||
DO 80 I=IB,NN
|
||||
YR(K) = (AK+FNU)*(RZR*YR(K+1)-RZI*YI(K+1)) + YR(K+2)
|
||||
YI(K) = (AK+FNU)*(RZR*YI(K+1)+RZI*YR(K+1)) + YI(K+2)
|
||||
AK = AK - 1.0D0
|
||||
K = K - 1
|
||||
80 CONTINUE
|
||||
IF (KODED.EQ.0) RETURN
|
||||
CALL AZEXP(CZR, CZI, CKR, CKI)
|
||||
DO 90 I=1,NN
|
||||
STR = YR(I)*CKR - YI(I)*CKI
|
||||
YI(I) = YR(I)*CKI + YI(I)*CKR
|
||||
YR(I) = STR
|
||||
90 CONTINUE
|
||||
RETURN
|
||||
100 CONTINUE
|
||||
NZ = -1
|
||||
RETURN
|
||||
110 CONTINUE
|
||||
NZ=-2
|
||||
RETURN
|
||||
END
|
348
amos/zbesh.f
348
amos/zbesh.f
|
@ -1,348 +0,0 @@
|
|||
SUBROUTINE ZBESH(ZR, ZI, FNU, KODE, M, N, CYR, CYI, NZ, IERR)
|
||||
C***BEGIN PROLOGUE ZBESH
|
||||
C***DATE WRITTEN 830501 (YYMMDD)
|
||||
C***REVISION DATE 890801 (YYMMDD)
|
||||
C***CATEGORY NO. B5K
|
||||
C***KEYWORDS H-BESSEL FUNCTIONS,BESSEL FUNCTIONS OF COMPLEX ARGUMENT,
|
||||
C BESSEL FUNCTIONS OF THIRD KIND,HANKEL FUNCTIONS
|
||||
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
|
||||
C***PURPOSE TO COMPUTE THE H-BESSEL FUNCTIONS OF A COMPLEX ARGUMENT
|
||||
C***DESCRIPTION
|
||||
C
|
||||
C ***A DOUBLE PRECISION ROUTINE***
|
||||
C ON KODE=1, ZBESH COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
|
||||
C HANKEL (BESSEL) FUNCTIONS CY(J)=H(M,FNU+J-1,Z) FOR KINDS M=1
|
||||
C OR 2, REAL, NONNEGATIVE ORDERS FNU+J-1, J=1,...,N, AND COMPLEX
|
||||
C Z.NE.CMPLX(0.0,0.0) IN THE CUT PLANE -PI.LT.ARG(Z).LE.PI.
|
||||
C ON KODE=2, ZBESH RETURNS THE SCALED HANKEL FUNCTIONS
|
||||
C
|
||||
C CY(I)=EXP(-MM*Z*I)*H(M,FNU+J-1,Z) MM=3-2*M, I**2=-1.
|
||||
C
|
||||
C WHICH REMOVES THE EXPONENTIAL BEHAVIOR IN BOTH THE UPPER AND
|
||||
C LOWER HALF PLANES. DEFINITIONS AND NOTATION ARE FOUND IN THE
|
||||
C NBS HANDBOOK OF MATHEMATICAL FUNCTIONS (REF. 1).
|
||||
C
|
||||
C INPUT ZR,ZI,FNU ARE DOUBLE PRECISION
|
||||
C ZR,ZI - Z=CMPLX(ZR,ZI), Z.NE.CMPLX(0.0D0,0.0D0),
|
||||
C -PT.LT.ARG(Z).LE.PI
|
||||
C FNU - ORDER OF INITIAL H FUNCTION, FNU.GE.0.0D0
|
||||
C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
|
||||
C KODE= 1 RETURNS
|
||||
C CY(J)=H(M,FNU+J-1,Z), J=1,...,N
|
||||
C = 2 RETURNS
|
||||
C CY(J)=H(M,FNU+J-1,Z)*EXP(-I*Z*(3-2M))
|
||||
C J=1,...,N , I**2=-1
|
||||
C M - KIND OF HANKEL FUNCTION, M=1 OR 2
|
||||
C N - NUMBER OF MEMBERS IN THE SEQUENCE, N.GE.1
|
||||
C
|
||||
C OUTPUT CYR,CYI ARE DOUBLE PRECISION
|
||||
C CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
|
||||
C CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
|
||||
C CY(J)=H(M,FNU+J-1,Z) OR
|
||||
C CY(J)=H(M,FNU+J-1,Z)*EXP(-I*Z*(3-2M)) J=1,...,N
|
||||
C DEPENDING ON KODE, I**2=-1.
|
||||
C NZ - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW,
|
||||
C NZ= 0 , NORMAL RETURN
|
||||
C NZ.GT.0 , FIRST NZ COMPONENTS OF CY SET TO ZERO DUE
|
||||
C TO UNDERFLOW, CY(J)=CMPLX(0.0D0,0.0D0)
|
||||
C J=1,...,NZ WHEN Y.GT.0.0 AND M=1 OR
|
||||
C Y.LT.0.0 AND M=2. FOR THE COMPLMENTARY
|
||||
C HALF PLANES, NZ STATES ONLY THE NUMBER
|
||||
C OF UNDERFLOWS.
|
||||
C IERR - ERROR FLAG
|
||||
C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
|
||||
C IERR=1, INPUT ERROR - NO COMPUTATION
|
||||
C IERR=2, OVERFLOW - NO COMPUTATION, FNU TOO
|
||||
C LARGE OR CABS(Z) TOO SMALL OR BOTH
|
||||
C IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
|
||||
C BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
|
||||
C REDUCTION PRODUCE LESS THAN HALF OF MACHINE
|
||||
C ACCURACY
|
||||
C IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
|
||||
C TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
|
||||
C CANCE BY ARGUMENT REDUCTION
|
||||
C IERR=5, ERROR - NO COMPUTATION,
|
||||
C ALGORITHM TERMINATION CONDITION NOT MET
|
||||
C
|
||||
C***LONG DESCRIPTION
|
||||
C
|
||||
C THE COMPUTATION IS CARRIED OUT BY THE RELATION
|
||||
C
|
||||
C H(M,FNU,Z)=(1/MP)*EXP(-MP*FNU)*K(FNU,Z*EXP(-MP))
|
||||
C MP=MM*HPI*I, MM=3-2*M, HPI=PI/2, I**2=-1
|
||||
C
|
||||
C FOR M=1 OR 2 WHERE THE K BESSEL FUNCTION IS COMPUTED FOR THE
|
||||
C RIGHT HALF PLANE RE(Z).GE.0.0. THE K FUNCTION IS CONTINUED
|
||||
C TO THE LEFT HALF PLANE BY THE RELATION
|
||||
C
|
||||
C K(FNU,Z*EXP(MP)) = EXP(-MP*FNU)*K(FNU,Z)-MP*I(FNU,Z)
|
||||
C MP=MR*PI*I, MR=+1 OR -1, RE(Z).GT.0, I**2=-1
|
||||
C
|
||||
C WHERE I(FNU,Z) IS THE I BESSEL FUNCTION.
|
||||
C
|
||||
C EXPONENTIAL DECAY OF H(M,FNU,Z) OCCURS IN THE UPPER HALF Z
|
||||
C PLANE FOR M=1 AND THE LOWER HALF Z PLANE FOR M=2. EXPONENTIAL
|
||||
C GROWTH OCCURS IN THE COMPLEMENTARY HALF PLANES. SCALING
|
||||
C BY EXP(-MM*Z*I) REMOVES THE EXPONENTIAL BEHAVIOR IN THE
|
||||
C WHOLE Z PLANE FOR Z TO INFINITY.
|
||||
C
|
||||
C FOR NEGATIVE ORDERS,THE FORMULAE
|
||||
C
|
||||
C H(1,-FNU,Z) = H(1,FNU,Z)*CEXP( PI*FNU*I)
|
||||
C H(2,-FNU,Z) = H(2,FNU,Z)*CEXP(-PI*FNU*I)
|
||||
C I**2=-1
|
||||
C
|
||||
C CAN BE USED.
|
||||
C
|
||||
C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
|
||||
C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
|
||||
C LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
|
||||
C CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
|
||||
C LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
|
||||
C IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
|
||||
C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
|
||||
C IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
|
||||
C LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
|
||||
C MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
|
||||
C INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
|
||||
C RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
|
||||
C ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
|
||||
C ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
|
||||
C ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
|
||||
C THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
|
||||
C TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
|
||||
C IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
|
||||
C SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
|
||||
C
|
||||
C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
|
||||
C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
|
||||
C ROUNDOFF,1.0D-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
|
||||
C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
|
||||
C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
|
||||
C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
|
||||
C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
|
||||
C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
|
||||
C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
|
||||
C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
|
||||
C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
|
||||
C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
|
||||
C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
|
||||
C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
|
||||
C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
|
||||
C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
|
||||
C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
|
||||
C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
|
||||
C OR -PI/2+P.
|
||||
C
|
||||
C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
|
||||
C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
|
||||
C COMMERCE, 1955.
|
||||
C
|
||||
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
|
||||
C BY D. E. AMOS, SAND83-0083, MAY, 1983.
|
||||
C
|
||||
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
|
||||
C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
|
||||
C
|
||||
C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
|
||||
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
|
||||
C 1018, MAY, 1985
|
||||
C
|
||||
C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
|
||||
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
|
||||
C MATH. SOFTWARE, 1986
|
||||
C
|
||||
C***ROUTINES CALLED ZACON,ZBKNU,ZBUNK,ZUOIK,AZABS,I1MACH,D1MACH
|
||||
C***END PROLOGUE ZBESH
|
||||
C
|
||||
C COMPLEX CY,Z,ZN,ZT,CSGN
|
||||
DOUBLE PRECISION AA, ALIM, ALN, ARG, AZ, CYI, CYR, DIG, ELIM,
|
||||
* FMM, FN, FNU, FNUL, HPI, RHPI, RL, R1M5, SGN, STR, TOL, UFL, ZI,
|
||||
* ZNI, ZNR, ZR, ZTI, D1MACH, AZABS, BB, ASCLE, RTOL, ATOL, STI,
|
||||
* CSGNR, CSGNI
|
||||
INTEGER I, IERR, INU, INUH, IR, K, KODE, K1, K2, M,
|
||||
* MM, MR, N, NN, NUF, NW, NZ, I1MACH
|
||||
DIMENSION CYR(N), CYI(N)
|
||||
C
|
||||
DATA HPI /1.57079632679489662D0/
|
||||
C
|
||||
C***FIRST EXECUTABLE STATEMENT ZBESH
|
||||
IERR = 0
|
||||
NZ=0
|
||||
IF (ZR.EQ.0.0D0 .AND. ZI.EQ.0.0D0) IERR=1
|
||||
IF (FNU.LT.0.0D0) IERR=1
|
||||
IF (M.LT.1 .OR. M.GT.2) IERR=1
|
||||
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
|
||||
IF (N.LT.1) IERR=1
|
||||
IF (IERR.NE.0) RETURN
|
||||
NN = N
|
||||
C-----------------------------------------------------------------------
|
||||
C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
|
||||
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
|
||||
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
|
||||
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
|
||||
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
|
||||
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
|
||||
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
|
||||
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
|
||||
C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU
|
||||
C-----------------------------------------------------------------------
|
||||
TOL = DMAX1(D1MACH(4),1.0D-18)
|
||||
K1 = I1MACH(15)
|
||||
K2 = I1MACH(16)
|
||||
R1M5 = D1MACH(5)
|
||||
K = MIN0(IABS(K1),IABS(K2))
|
||||
ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
|
||||
K1 = I1MACH(14) - 1
|
||||
AA = R1M5*DBLE(FLOAT(K1))
|
||||
DIG = DMIN1(AA,18.0D0)
|
||||
AA = AA*2.303D0
|
||||
ALIM = ELIM + DMAX1(-AA,-41.45D0)
|
||||
FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
|
||||
RL = 1.2D0*DIG + 3.0D0
|
||||
FN = FNU + DBLE(FLOAT(NN-1))
|
||||
MM = 3 - M - M
|
||||
FMM = DBLE(FLOAT(MM))
|
||||
ZNR = FMM*ZI
|
||||
ZNI = -FMM*ZR
|
||||
C-----------------------------------------------------------------------
|
||||
C TEST FOR PROPER RANGE
|
||||
C-----------------------------------------------------------------------
|
||||
AZ = AZABS(ZR,ZI)
|
||||
AA = 0.5D0/TOL
|
||||
BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
|
||||
AA = DMIN1(AA,BB)
|
||||
IF (AZ.GT.AA) GO TO 260
|
||||
IF (FN.GT.AA) GO TO 260
|
||||
AA = DSQRT(AA)
|
||||
IF (AZ.GT.AA) IERR=3
|
||||
IF (FN.GT.AA) IERR=3
|
||||
C-----------------------------------------------------------------------
|
||||
C OVERFLOW TEST ON THE LAST MEMBER OF THE SEQUENCE
|
||||
C-----------------------------------------------------------------------
|
||||
UFL = D1MACH(1)*1.0D+3
|
||||
IF (AZ.LT.UFL) GO TO 230
|
||||
IF (FNU.GT.FNUL) GO TO 90
|
||||
IF (FN.LE.1.0D0) GO TO 70
|
||||
IF (FN.GT.2.0D0) GO TO 60
|
||||
IF (AZ.GT.TOL) GO TO 70
|
||||
ARG = 0.5D0*AZ
|
||||
ALN = -FN*DLOG(ARG)
|
||||
IF (ALN.GT.ELIM) GO TO 230
|
||||
GO TO 70
|
||||
60 CONTINUE
|
||||
CALL ZUOIK(ZNR, ZNI, FNU, KODE, 2, NN, CYR, CYI, NUF, TOL, ELIM,
|
||||
* ALIM)
|
||||
IF (NUF.LT.0) GO TO 230
|
||||
NZ = NZ + NUF
|
||||
NN = NN - NUF
|
||||
C-----------------------------------------------------------------------
|
||||
C HERE NN=N OR NN=0 SINCE NUF=0,NN, OR -1 ON RETURN FROM CUOIK
|
||||
C IF NUF=NN, THEN CY(I)=CZERO FOR ALL I
|
||||
C-----------------------------------------------------------------------
|
||||
IF (NN.EQ.0) GO TO 140
|
||||
70 CONTINUE
|
||||
IF ((ZNR.LT.0.0D0) .OR. (ZNR.EQ.0.0D0 .AND. ZNI.LT.0.0D0 .AND.
|
||||
* M.EQ.2)) GO TO 80
|
||||
C-----------------------------------------------------------------------
|
||||
C RIGHT HALF PLANE COMPUTATION, XN.GE.0. .AND. (XN.NE.0. .OR.
|
||||
C YN.GE.0. .OR. M=1)
|
||||
C-----------------------------------------------------------------------
|
||||
CALL ZBKNU(ZNR, ZNI, FNU, KODE, NN, CYR, CYI, NZ, TOL, ELIM, ALIM)
|
||||
GO TO 110
|
||||
C-----------------------------------------------------------------------
|
||||
C LEFT HALF PLANE COMPUTATION
|
||||
C-----------------------------------------------------------------------
|
||||
80 CONTINUE
|
||||
MR = -MM
|
||||
CALL ZACON(ZNR, ZNI, FNU, KODE, MR, NN, CYR, CYI, NW, RL, FNUL,
|
||||
* TOL, ELIM, ALIM)
|
||||
IF (NW.LT.0) GO TO 240
|
||||
NZ=NW
|
||||
GO TO 110
|
||||
90 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C UNIFORM ASYMPTOTIC EXPANSIONS FOR FNU.GT.FNUL
|
||||
C-----------------------------------------------------------------------
|
||||
MR = 0
|
||||
IF ((ZNR.GE.0.0D0) .AND. (ZNR.NE.0.0D0 .OR. ZNI.GE.0.0D0 .OR.
|
||||
* M.NE.2)) GO TO 100
|
||||
MR = -MM
|
||||
IF (ZNR.NE.0.0D0 .OR. ZNI.GE.0.0D0) GO TO 100
|
||||
ZNR = -ZNR
|
||||
ZNI = -ZNI
|
||||
100 CONTINUE
|
||||
CALL ZBUNK(ZNR, ZNI, FNU, KODE, MR, NN, CYR, CYI, NW, TOL, ELIM,
|
||||
* ALIM)
|
||||
IF (NW.LT.0) GO TO 240
|
||||
NZ = NZ + NW
|
||||
110 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C H(M,FNU,Z) = -FMM*(I/HPI)*(ZT**FNU)*K(FNU,-Z*ZT)
|
||||
C
|
||||
C ZT=EXP(-FMM*HPI*I) = CMPLX(0.0,-FMM), FMM=3-2*M, M=1,2
|
||||
C-----------------------------------------------------------------------
|
||||
SGN = DSIGN(HPI,-FMM)
|
||||
C-----------------------------------------------------------------------
|
||||
C CALCULATE EXP(FNU*HPI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
|
||||
C WHEN FNU IS LARGE
|
||||
C-----------------------------------------------------------------------
|
||||
INU = INT(SNGL(FNU))
|
||||
INUH = INU/2
|
||||
IR = INU - 2*INUH
|
||||
ARG = (FNU-DBLE(FLOAT(INU-IR)))*SGN
|
||||
RHPI = 1.0D0/SGN
|
||||
C ZNI = RHPI*DCOS(ARG)
|
||||
C ZNR = -RHPI*DSIN(ARG)
|
||||
CSGNI = RHPI*DCOS(ARG)
|
||||
CSGNR = -RHPI*DSIN(ARG)
|
||||
IF (MOD(INUH,2).EQ.0) GO TO 120
|
||||
C ZNR = -ZNR
|
||||
C ZNI = -ZNI
|
||||
CSGNR = -CSGNR
|
||||
CSGNI = -CSGNI
|
||||
120 CONTINUE
|
||||
ZTI = -FMM
|
||||
RTOL = 1.0D0/TOL
|
||||
ASCLE = UFL*RTOL
|
||||
DO 130 I=1,NN
|
||||
C STR = CYR(I)*ZNR - CYI(I)*ZNI
|
||||
C CYI(I) = CYR(I)*ZNI + CYI(I)*ZNR
|
||||
C CYR(I) = STR
|
||||
C STR = -ZNI*ZTI
|
||||
C ZNI = ZNR*ZTI
|
||||
C ZNR = STR
|
||||
AA = CYR(I)
|
||||
BB = CYI(I)
|
||||
ATOL = 1.0D0
|
||||
IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 135
|
||||
AA = AA*RTOL
|
||||
BB = BB*RTOL
|
||||
ATOL = TOL
|
||||
135 CONTINUE
|
||||
STR = AA*CSGNR - BB*CSGNI
|
||||
STI = AA*CSGNI + BB*CSGNR
|
||||
CYR(I) = STR*ATOL
|
||||
CYI(I) = STI*ATOL
|
||||
STR = -CSGNI*ZTI
|
||||
CSGNI = CSGNR*ZTI
|
||||
CSGNR = STR
|
||||
130 CONTINUE
|
||||
RETURN
|
||||
140 CONTINUE
|
||||
IF (ZNR.LT.0.0D0) GO TO 230
|
||||
RETURN
|
||||
230 CONTINUE
|
||||
NZ=0
|
||||
IERR=2
|
||||
RETURN
|
||||
240 CONTINUE
|
||||
IF(NW.EQ.(-1)) GO TO 230
|
||||
NZ=0
|
||||
IERR=5
|
||||
RETURN
|
||||
260 CONTINUE
|
||||
NZ=0
|
||||
IERR=4
|
||||
RETURN
|
||||
END
|
269
amos/zbesi.f
269
amos/zbesi.f
|
@ -1,269 +0,0 @@
|
|||
SUBROUTINE ZBESI(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR)
|
||||
C***BEGIN PROLOGUE ZBESI
|
||||
C***DATE WRITTEN 830501 (YYMMDD)
|
||||
C***REVISION DATE 890801 (YYMMDD)
|
||||
C***CATEGORY NO. B5K
|
||||
C***KEYWORDS I-BESSEL FUNCTION,COMPLEX BESSEL FUNCTION,
|
||||
C MODIFIED BESSEL FUNCTION OF THE FIRST KIND
|
||||
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
|
||||
C***PURPOSE TO COMPUTE I-BESSEL FUNCTIONS OF COMPLEX ARGUMENT
|
||||
C***DESCRIPTION
|
||||
C
|
||||
C ***A DOUBLE PRECISION ROUTINE***
|
||||
C ON KODE=1, ZBESI COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
|
||||
C BESSEL FUNCTIONS CY(J)=I(FNU+J-1,Z) FOR REAL, NONNEGATIVE
|
||||
C ORDERS FNU+J-1, J=1,...,N AND COMPLEX Z IN THE CUT PLANE
|
||||
C -PI.LT.ARG(Z).LE.PI. ON KODE=2, ZBESI RETURNS THE SCALED
|
||||
C FUNCTIONS
|
||||
C
|
||||
C CY(J)=EXP(-ABS(X))*I(FNU+J-1,Z) J = 1,...,N , X=REAL(Z)
|
||||
C
|
||||
C WITH THE EXPONENTIAL GROWTH REMOVED IN BOTH THE LEFT AND
|
||||
C RIGHT HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND NOTATION
|
||||
C ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL FUNCTIONS
|
||||
C (REF. 1).
|
||||
C
|
||||
C INPUT ZR,ZI,FNU ARE DOUBLE PRECISION
|
||||
C ZR,ZI - Z=CMPLX(ZR,ZI), -PI.LT.ARG(Z).LE.PI
|
||||
C FNU - ORDER OF INITIAL I FUNCTION, FNU.GE.0.0D0
|
||||
C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
|
||||
C KODE= 1 RETURNS
|
||||
C CY(J)=I(FNU+J-1,Z), J=1,...,N
|
||||
C = 2 RETURNS
|
||||
C CY(J)=I(FNU+J-1,Z)*EXP(-ABS(X)), J=1,...,N
|
||||
C N - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
|
||||
C
|
||||
C OUTPUT CYR,CYI ARE DOUBLE PRECISION
|
||||
C CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
|
||||
C CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
|
||||
C CY(J)=I(FNU+J-1,Z) OR
|
||||
C CY(J)=I(FNU+J-1,Z)*EXP(-ABS(X)) J=1,...,N
|
||||
C DEPENDING ON KODE, X=REAL(Z)
|
||||
C NZ - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW,
|
||||
C NZ= 0 , NORMAL RETURN
|
||||
C NZ.GT.0 , LAST NZ COMPONENTS OF CY SET TO ZERO
|
||||
C TO UNDERFLOW, CY(J)=CMPLX(0.0D0,0.0D0)
|
||||
C J = N-NZ+1,...,N
|
||||
C IERR - ERROR FLAG
|
||||
C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
|
||||
C IERR=1, INPUT ERROR - NO COMPUTATION
|
||||
C IERR=2, OVERFLOW - NO COMPUTATION, REAL(Z) TOO
|
||||
C LARGE ON KODE=1
|
||||
C IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
|
||||
C BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
|
||||
C REDUCTION PRODUCE LESS THAN HALF OF MACHINE
|
||||
C ACCURACY
|
||||
C IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
|
||||
C TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
|
||||
C CANCE BY ARGUMENT REDUCTION
|
||||
C IERR=5, ERROR - NO COMPUTATION,
|
||||
C ALGORITHM TERMINATION CONDITION NOT MET
|
||||
C
|
||||
C***LONG DESCRIPTION
|
||||
C
|
||||
C THE COMPUTATION IS CARRIED OUT BY THE POWER SERIES FOR
|
||||
C SMALL CABS(Z), THE ASYMPTOTIC EXPANSION FOR LARGE CABS(Z),
|
||||
C THE MILLER ALGORITHM NORMALIZED BY THE WRONSKIAN AND A
|
||||
C NEUMANN SERIES FOR IMTERMEDIATE MAGNITUDES, AND THE
|
||||
C UNIFORM ASYMPTOTIC EXPANSIONS FOR I(FNU,Z) AND J(FNU,Z)
|
||||
C FOR LARGE ORDERS. BACKWARD RECURRENCE IS USED TO GENERATE
|
||||
C SEQUENCES OR REDUCE ORDERS WHEN NECESSARY.
|
||||
C
|
||||
C THE CALCULATIONS ABOVE ARE DONE IN THE RIGHT HALF PLANE AND
|
||||
C CONTINUED INTO THE LEFT HALF PLANE BY THE FORMULA
|
||||
C
|
||||
C I(FNU,Z*EXP(M*PI)) = EXP(M*PI*FNU)*I(FNU,Z) REAL(Z).GT.0.0
|
||||
C M = +I OR -I, I**2=-1
|
||||
C
|
||||
C FOR NEGATIVE ORDERS,THE FORMULA
|
||||
C
|
||||
C I(-FNU,Z) = I(FNU,Z) + (2/PI)*SIN(PI*FNU)*K(FNU,Z)
|
||||
C
|
||||
C CAN BE USED. HOWEVER,FOR LARGE ORDERS CLOSE TO INTEGERS, THE
|
||||
C THE FUNCTION CHANGES RADICALLY. WHEN FNU IS A LARGE POSITIVE
|
||||
C INTEGER,THE MAGNITUDE OF I(-FNU,Z)=I(FNU,Z) IS A LARGE
|
||||
C NEGATIVE POWER OF TEN. BUT WHEN FNU IS NOT AN INTEGER,
|
||||
C K(FNU,Z) DOMINATES IN MAGNITUDE WITH A LARGE POSITIVE POWER OF
|
||||
C TEN AND THE MOST THAT THE SECOND TERM CAN BE REDUCED IS BY
|
||||
C UNIT ROUNDOFF FROM THE COEFFICIENT. THUS, WIDE CHANGES CAN
|
||||
C OCCUR WITHIN UNIT ROUNDOFF OF A LARGE INTEGER FOR FNU. HERE,
|
||||
C LARGE MEANS FNU.GT.CABS(Z).
|
||||
C
|
||||
C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
|
||||
C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
|
||||
C LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
|
||||
C CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
|
||||
C LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
|
||||
C IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
|
||||
C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
|
||||
C IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
|
||||
C LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
|
||||
C MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
|
||||
C INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
|
||||
C RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
|
||||
C ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
|
||||
C ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
|
||||
C ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
|
||||
C THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
|
||||
C TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
|
||||
C IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
|
||||
C SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
|
||||
C
|
||||
C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
|
||||
C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
|
||||
C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
|
||||
C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
|
||||
C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
|
||||
C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
|
||||
C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
|
||||
C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
|
||||
C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
|
||||
C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
|
||||
C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
|
||||
C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
|
||||
C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
|
||||
C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
|
||||
C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
|
||||
C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
|
||||
C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
|
||||
C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
|
||||
C OR -PI/2+P.
|
||||
C
|
||||
C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
|
||||
C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
|
||||
C COMMERCE, 1955.
|
||||
C
|
||||
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
|
||||
C BY D. E. AMOS, SAND83-0083, MAY, 1983.
|
||||
C
|
||||
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
|
||||
C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
|
||||
C
|
||||
C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
|
||||
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
|
||||
C 1018, MAY, 1985
|
||||
C
|
||||
C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
|
||||
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
|
||||
C MATH. SOFTWARE, 1986
|
||||
C
|
||||
C***ROUTINES CALLED ZBINU,I1MACH,D1MACH
|
||||
C***END PROLOGUE ZBESI
|
||||
C COMPLEX CONE,CSGN,CW,CY,CZERO,Z,ZN
|
||||
DOUBLE PRECISION AA, ALIM, ARG, CONEI, CONER, CSGNI, CSGNR, CYI,
|
||||
* CYR, DIG, ELIM, FNU, FNUL, PI, RL, R1M5, STR, TOL, ZI, ZNI, ZNR,
|
||||
* ZR, D1MACH, AZ, BB, FN, AZABS, ASCLE, RTOL, ATOL, STI
|
||||
INTEGER I, IERR, INU, K, KODE, K1,K2,N,NZ,NN, I1MACH
|
||||
DIMENSION CYR(N), CYI(N)
|
||||
DATA PI /3.14159265358979324D0/
|
||||
DATA CONER, CONEI /1.0D0,0.0D0/
|
||||
C
|
||||
C***FIRST EXECUTABLE STATEMENT ZBESI
|
||||
IERR = 0
|
||||
NZ=0
|
||||
IF (FNU.LT.0.0D0) IERR=1
|
||||
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
|
||||
IF (N.LT.1) IERR=1
|
||||
IF (IERR.NE.0) RETURN
|
||||
C-----------------------------------------------------------------------
|
||||
C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
|
||||
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
|
||||
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
|
||||
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
|
||||
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
|
||||
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
|
||||
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
|
||||
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
|
||||
C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
|
||||
C-----------------------------------------------------------------------
|
||||
TOL = DMAX1(D1MACH(4),1.0D-18)
|
||||
K1 = I1MACH(15)
|
||||
K2 = I1MACH(16)
|
||||
R1M5 = D1MACH(5)
|
||||
K = MIN0(IABS(K1),IABS(K2))
|
||||
ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
|
||||
K1 = I1MACH(14) - 1
|
||||
AA = R1M5*DBLE(FLOAT(K1))
|
||||
DIG = DMIN1(AA,18.0D0)
|
||||
AA = AA*2.303D0
|
||||
ALIM = ELIM + DMAX1(-AA,-41.45D0)
|
||||
RL = 1.2D0*DIG + 3.0D0
|
||||
FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
|
||||
C-----------------------------------------------------------------------------
|
||||
C TEST FOR PROPER RANGE
|
||||
C-----------------------------------------------------------------------
|
||||
AZ = AZABS(ZR,ZI)
|
||||
FN = FNU+DBLE(FLOAT(N-1))
|
||||
AA = 0.5D0/TOL
|
||||
BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
|
||||
AA = DMIN1(AA,BB)
|
||||
IF (AZ.GT.AA) GO TO 260
|
||||
IF (FN.GT.AA) GO TO 260
|
||||
AA = DSQRT(AA)
|
||||
IF (AZ.GT.AA) IERR=3
|
||||
IF (FN.GT.AA) IERR=3
|
||||
ZNR = ZR
|
||||
ZNI = ZI
|
||||
CSGNR = CONER
|
||||
CSGNI = CONEI
|
||||
IF (ZR.GE.0.0D0) GO TO 40
|
||||
ZNR = -ZR
|
||||
ZNI = -ZI
|
||||
C-----------------------------------------------------------------------
|
||||
C CALCULATE CSGN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
|
||||
C WHEN FNU IS LARGE
|
||||
C-----------------------------------------------------------------------
|
||||
INU = INT(SNGL(FNU))
|
||||
ARG = (FNU-DBLE(FLOAT(INU)))*PI
|
||||
IF (ZI.LT.0.0D0) ARG = -ARG
|
||||
CSGNR = DCOS(ARG)
|
||||
CSGNI = DSIN(ARG)
|
||||
IF (MOD(INU,2).EQ.0) GO TO 40
|
||||
CSGNR = -CSGNR
|
||||
CSGNI = -CSGNI
|
||||
40 CONTINUE
|
||||
CALL ZBINU(ZNR, ZNI, FNU, KODE, N, CYR, CYI, NZ, RL, FNUL, TOL,
|
||||
* ELIM, ALIM)
|
||||
IF (NZ.LT.0) GO TO 120
|
||||
IF (ZR.GE.0.0D0) RETURN
|
||||
C-----------------------------------------------------------------------
|
||||
C ANALYTIC CONTINUATION TO THE LEFT HALF PLANE
|
||||
C-----------------------------------------------------------------------
|
||||
NN = N - NZ
|
||||
IF (NN.EQ.0) RETURN
|
||||
RTOL = 1.0D0/TOL
|
||||
ASCLE = D1MACH(1)*RTOL*1.0D+3
|
||||
DO 50 I=1,NN
|
||||
C STR = CYR(I)*CSGNR - CYI(I)*CSGNI
|
||||
C CYI(I) = CYR(I)*CSGNI + CYI(I)*CSGNR
|
||||
C CYR(I) = STR
|
||||
AA = CYR(I)
|
||||
BB = CYI(I)
|
||||
ATOL = 1.0D0
|
||||
IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 55
|
||||
AA = AA*RTOL
|
||||
BB = BB*RTOL
|
||||
ATOL = TOL
|
||||
55 CONTINUE
|
||||
STR = AA*CSGNR - BB*CSGNI
|
||||
STI = AA*CSGNI + BB*CSGNR
|
||||
CYR(I) = STR*ATOL
|
||||
CYI(I) = STI*ATOL
|
||||
CSGNR = -CSGNR
|
||||
CSGNI = -CSGNI
|
||||
50 CONTINUE
|
||||
RETURN
|
||||
120 CONTINUE
|
||||
IF(NZ.EQ.(-2)) GO TO 130
|
||||
NZ = 0
|
||||
IERR=2
|
||||
RETURN
|
||||
130 CONTINUE
|
||||
NZ=0
|
||||
IERR=5
|
||||
RETURN
|
||||
260 CONTINUE
|
||||
NZ=0
|
||||
IERR=4
|
||||
RETURN
|
||||
END
|
266
amos/zbesj.f
266
amos/zbesj.f
|
@ -1,266 +0,0 @@
|
|||
SUBROUTINE ZBESJ(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR)
|
||||
C***BEGIN PROLOGUE ZBESJ
|
||||
C***DATE WRITTEN 830501 (YYMMDD)
|
||||
C***REVISION DATE 890801 (YYMMDD)
|
||||
C***CATEGORY NO. B5K
|
||||
C***KEYWORDS J-BESSEL FUNCTION,BESSEL FUNCTION OF COMPLEX ARGUMENT,
|
||||
C BESSEL FUNCTION OF FIRST KIND
|
||||
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
|
||||
C***PURPOSE TO COMPUTE THE J-BESSEL FUNCTION OF A COMPLEX ARGUMENT
|
||||
C***DESCRIPTION
|
||||
C
|
||||
C ***A DOUBLE PRECISION ROUTINE***
|
||||
C ON KODE=1, CBESJ COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
|
||||
C BESSEL FUNCTIONS CY(I)=J(FNU+I-1,Z) FOR REAL, NONNEGATIVE
|
||||
C ORDERS FNU+I-1, I=1,...,N AND COMPLEX Z IN THE CUT PLANE
|
||||
C -PI.LT.ARG(Z).LE.PI. ON KODE=2, CBESJ RETURNS THE SCALED
|
||||
C FUNCTIONS
|
||||
C
|
||||
C CY(I)=EXP(-ABS(Y))*J(FNU+I-1,Z) I = 1,...,N , Y=AIMAG(Z)
|
||||
C
|
||||
C WHICH REMOVE THE EXPONENTIAL GROWTH IN BOTH THE UPPER AND
|
||||
C LOWER HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND NOTATION
|
||||
C ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL FUNCTIONS
|
||||
C (REF. 1).
|
||||
C
|
||||
C INPUT ZR,ZI,FNU ARE DOUBLE PRECISION
|
||||
C ZR,ZI - Z=CMPLX(ZR,ZI), -PI.LT.ARG(Z).LE.PI
|
||||
C FNU - ORDER OF INITIAL J FUNCTION, FNU.GE.0.0D0
|
||||
C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
|
||||
C KODE= 1 RETURNS
|
||||
C CY(I)=J(FNU+I-1,Z), I=1,...,N
|
||||
C = 2 RETURNS
|
||||
C CY(I)=J(FNU+I-1,Z)EXP(-ABS(Y)), I=1,...,N
|
||||
C N - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
|
||||
C
|
||||
C OUTPUT CYR,CYI ARE DOUBLE PRECISION
|
||||
C CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
|
||||
C CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
|
||||
C CY(I)=J(FNU+I-1,Z) OR
|
||||
C CY(I)=J(FNU+I-1,Z)EXP(-ABS(Y)) I=1,...,N
|
||||
C DEPENDING ON KODE, Y=AIMAG(Z).
|
||||
C NZ - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW,
|
||||
C NZ= 0 , NORMAL RETURN
|
||||
C NZ.GT.0 , LAST NZ COMPONENTS OF CY SET ZERO DUE
|
||||
C TO UNDERFLOW, CY(I)=CMPLX(0.0D0,0.0D0),
|
||||
C I = N-NZ+1,...,N
|
||||
C IERR - ERROR FLAG
|
||||
C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
|
||||
C IERR=1, INPUT ERROR - NO COMPUTATION
|
||||
C IERR=2, OVERFLOW - NO COMPUTATION, AIMAG(Z)
|
||||
C TOO LARGE ON KODE=1
|
||||
C IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
|
||||
C BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
|
||||
C REDUCTION PRODUCE LESS THAN HALF OF MACHINE
|
||||
C ACCURACY
|
||||
C IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
|
||||
C TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
|
||||
C CANCE BY ARGUMENT REDUCTION
|
||||
C IERR=5, ERROR - NO COMPUTATION,
|
||||
C ALGORITHM TERMINATION CONDITION NOT MET
|
||||
C
|
||||
C***LONG DESCRIPTION
|
||||
C
|
||||
C THE COMPUTATION IS CARRIED OUT BY THE FORMULA
|
||||
C
|
||||
C J(FNU,Z)=EXP( FNU*PI*I/2)*I(FNU,-I*Z) AIMAG(Z).GE.0.0
|
||||
C
|
||||
C J(FNU,Z)=EXP(-FNU*PI*I/2)*I(FNU, I*Z) AIMAG(Z).LT.0.0
|
||||
C
|
||||
C WHERE I**2 = -1 AND I(FNU,Z) IS THE I BESSEL FUNCTION.
|
||||
C
|
||||
C FOR NEGATIVE ORDERS,THE FORMULA
|
||||
C
|
||||
C J(-FNU,Z) = J(FNU,Z)*COS(PI*FNU) - Y(FNU,Z)*SIN(PI*FNU)
|
||||
C
|
||||
C CAN BE USED. HOWEVER,FOR LARGE ORDERS CLOSE TO INTEGERS, THE
|
||||
C THE FUNCTION CHANGES RADICALLY. WHEN FNU IS A LARGE POSITIVE
|
||||
C INTEGER,THE MAGNITUDE OF J(-FNU,Z)=J(FNU,Z)*COS(PI*FNU) IS A
|
||||
C LARGE NEGATIVE POWER OF TEN. BUT WHEN FNU IS NOT AN INTEGER,
|
||||
C Y(FNU,Z) DOMINATES IN MAGNITUDE WITH A LARGE POSITIVE POWER OF
|
||||
C TEN AND THE MOST THAT THE SECOND TERM CAN BE REDUCED IS BY
|
||||
C UNIT ROUNDOFF FROM THE COEFFICIENT. THUS, WIDE CHANGES CAN
|
||||
C OCCUR WITHIN UNIT ROUNDOFF OF A LARGE INTEGER FOR FNU. HERE,
|
||||
C LARGE MEANS FNU.GT.CABS(Z).
|
||||
C
|
||||
C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
|
||||
C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
|
||||
C LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
|
||||
C CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
|
||||
C LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
|
||||
C IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
|
||||
C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
|
||||
C IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
|
||||
C LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
|
||||
C MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
|
||||
C INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
|
||||
C RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
|
||||
C ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
|
||||
C ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
|
||||
C ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
|
||||
C THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
|
||||
C TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
|
||||
C IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
|
||||
C SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
|
||||
C
|
||||
C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
|
||||
C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
|
||||
C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
|
||||
C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
|
||||
C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
|
||||
C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
|
||||
C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
|
||||
C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
|
||||
C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
|
||||
C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
|
||||
C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
|
||||
C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
|
||||
C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
|
||||
C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
|
||||
C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
|
||||
C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
|
||||
C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
|
||||
C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
|
||||
C OR -PI/2+P.
|
||||
C
|
||||
C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
|
||||
C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
|
||||
C COMMERCE, 1955.
|
||||
C
|
||||
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
|
||||
C BY D. E. AMOS, SAND83-0083, MAY, 1983.
|
||||
C
|
||||
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
|
||||
C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
|
||||
C
|
||||
C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
|
||||
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
|
||||
C 1018, MAY, 1985
|
||||
C
|
||||
C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
|
||||
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
|
||||
C MATH. SOFTWARE, 1986
|
||||
C
|
||||
C***ROUTINES CALLED ZBINU,I1MACH,D1MACH
|
||||
C***END PROLOGUE ZBESJ
|
||||
C
|
||||
C COMPLEX CI,CSGN,CY,Z,ZN
|
||||
DOUBLE PRECISION AA, ALIM, ARG, CII, CSGNI, CSGNR, CYI, CYR, DIG,
|
||||
* ELIM, FNU, FNUL, HPI, RL, R1M5, STR, TOL, ZI, ZNI, ZNR, ZR,
|
||||
* D1MACH, BB, FN, AZ, AZABS, ASCLE, RTOL, ATOL, STI
|
||||
INTEGER I, IERR, INU, INUH, IR, K, KODE, K1, K2, N, NL, NZ, I1MACH
|
||||
DIMENSION CYR(N), CYI(N)
|
||||
DATA HPI /1.57079632679489662D0/
|
||||
C
|
||||
C***FIRST EXECUTABLE STATEMENT ZBESJ
|
||||
IERR = 0
|
||||
NZ=0
|
||||
IF (FNU.LT.0.0D0) IERR=1
|
||||
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
|
||||
IF (N.LT.1) IERR=1
|
||||
IF (IERR.NE.0) RETURN
|
||||
C-----------------------------------------------------------------------
|
||||
C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
|
||||
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
|
||||
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
|
||||
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
|
||||
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
|
||||
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
|
||||
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
|
||||
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
|
||||
C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
|
||||
C-----------------------------------------------------------------------
|
||||
TOL = DMAX1(D1MACH(4),1.0D-18)
|
||||
K1 = I1MACH(15)
|
||||
K2 = I1MACH(16)
|
||||
R1M5 = D1MACH(5)
|
||||
K = MIN0(IABS(K1),IABS(K2))
|
||||
ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
|
||||
K1 = I1MACH(14) - 1
|
||||
AA = R1M5*DBLE(FLOAT(K1))
|
||||
DIG = DMIN1(AA,18.0D0)
|
||||
AA = AA*2.303D0
|
||||
ALIM = ELIM + DMAX1(-AA,-41.45D0)
|
||||
RL = 1.2D0*DIG + 3.0D0
|
||||
FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
|
||||
C-----------------------------------------------------------------------
|
||||
C TEST FOR PROPER RANGE
|
||||
C-----------------------------------------------------------------------
|
||||
AZ = AZABS(ZR,ZI)
|
||||
FN = FNU+DBLE(FLOAT(N-1))
|
||||
AA = 0.5D0/TOL
|
||||
BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
|
||||
AA = DMIN1(AA,BB)
|
||||
IF (AZ.GT.AA) GO TO 260
|
||||
IF (FN.GT.AA) GO TO 260
|
||||
AA = DSQRT(AA)
|
||||
IF (AZ.GT.AA) IERR=3
|
||||
IF (FN.GT.AA) IERR=3
|
||||
C-----------------------------------------------------------------------
|
||||
C CALCULATE CSGN=EXP(FNU*HPI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
|
||||
C WHEN FNU IS LARGE
|
||||
C-----------------------------------------------------------------------
|
||||
CII = 1.0D0
|
||||
INU = INT(SNGL(FNU))
|
||||
INUH = INU/2
|
||||
IR = INU - 2*INUH
|
||||
ARG = (FNU-DBLE(FLOAT(INU-IR)))*HPI
|
||||
CSGNR = DCOS(ARG)
|
||||
CSGNI = DSIN(ARG)
|
||||
IF (MOD(INUH,2).EQ.0) GO TO 40
|
||||
CSGNR = -CSGNR
|
||||
CSGNI = -CSGNI
|
||||
40 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C ZN IS IN THE RIGHT HALF PLANE
|
||||
C-----------------------------------------------------------------------
|
||||
ZNR = ZI
|
||||
ZNI = -ZR
|
||||
IF (ZI.GE.0.0D0) GO TO 50
|
||||
ZNR = -ZNR
|
||||
ZNI = -ZNI
|
||||
CSGNI = -CSGNI
|
||||
CII = -CII
|
||||
50 CONTINUE
|
||||
CALL ZBINU(ZNR, ZNI, FNU, KODE, N, CYR, CYI, NZ, RL, FNUL, TOL,
|
||||
* ELIM, ALIM)
|
||||
IF (NZ.LT.0) GO TO 130
|
||||
NL = N - NZ
|
||||
IF (NL.EQ.0) RETURN
|
||||
RTOL = 1.0D0/TOL
|
||||
ASCLE = D1MACH(1)*RTOL*1.0D+3
|
||||
DO 60 I=1,NL
|
||||
C STR = CYR(I)*CSGNR - CYI(I)*CSGNI
|
||||
C CYI(I) = CYR(I)*CSGNI + CYI(I)*CSGNR
|
||||
C CYR(I) = STR
|
||||
AA = CYR(I)
|
||||
BB = CYI(I)
|
||||
ATOL = 1.0D0
|
||||
IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 55
|
||||
AA = AA*RTOL
|
||||
BB = BB*RTOL
|
||||
ATOL = TOL
|
||||
55 CONTINUE
|
||||
STR = AA*CSGNR - BB*CSGNI
|
||||
STI = AA*CSGNI + BB*CSGNR
|
||||
CYR(I) = STR*ATOL
|
||||
CYI(I) = STI*ATOL
|
||||
STR = -CSGNI*CII
|
||||
CSGNI = CSGNR*CII
|
||||
CSGNR = STR
|
||||
60 CONTINUE
|
||||
RETURN
|
||||
130 CONTINUE
|
||||
IF(NZ.EQ.(-2)) GO TO 140
|
||||
NZ = 0
|
||||
IERR = 2
|
||||
RETURN
|
||||
140 CONTINUE
|
||||
NZ=0
|
||||
IERR=5
|
||||
RETURN
|
||||
260 CONTINUE
|
||||
NZ=0
|
||||
IERR=4
|
||||
RETURN
|
||||
END
|
281
amos/zbesk.f
281
amos/zbesk.f
|
@ -1,281 +0,0 @@
|
|||
SUBROUTINE ZBESK(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR)
|
||||
C***BEGIN PROLOGUE ZBESK
|
||||
C***DATE WRITTEN 830501 (YYMMDD)
|
||||
C***REVISION DATE 890801 (YYMMDD)
|
||||
C***CATEGORY NO. B5K
|
||||
C***KEYWORDS K-BESSEL FUNCTION,COMPLEX BESSEL FUNCTION,
|
||||
C MODIFIED BESSEL FUNCTION OF THE SECOND KIND,
|
||||
C BESSEL FUNCTION OF THE THIRD KIND
|
||||
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
|
||||
C***PURPOSE TO COMPUTE K-BESSEL FUNCTIONS OF COMPLEX ARGUMENT
|
||||
C***DESCRIPTION
|
||||
C
|
||||
C ***A DOUBLE PRECISION ROUTINE***
|
||||
C
|
||||
C ON KODE=1, CBESK COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
|
||||
C BESSEL FUNCTIONS CY(J)=K(FNU+J-1,Z) FOR REAL, NONNEGATIVE
|
||||
C ORDERS FNU+J-1, J=1,...,N AND COMPLEX Z.NE.CMPLX(0.0,0.0)
|
||||
C IN THE CUT PLANE -PI.LT.ARG(Z).LE.PI. ON KODE=2, CBESK
|
||||
C RETURNS THE SCALED K FUNCTIONS,
|
||||
C
|
||||
C CY(J)=EXP(Z)*K(FNU+J-1,Z) , J=1,...,N,
|
||||
C
|
||||
C WHICH REMOVE THE EXPONENTIAL BEHAVIOR IN BOTH THE LEFT AND
|
||||
C RIGHT HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND
|
||||
C NOTATION ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL
|
||||
C FUNCTIONS (REF. 1).
|
||||
C
|
||||
C INPUT ZR,ZI,FNU ARE DOUBLE PRECISION
|
||||
C ZR,ZI - Z=CMPLX(ZR,ZI), Z.NE.CMPLX(0.0D0,0.0D0),
|
||||
C -PI.LT.ARG(Z).LE.PI
|
||||
C FNU - ORDER OF INITIAL K FUNCTION, FNU.GE.0.0D0
|
||||
C N - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
|
||||
C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
|
||||
C KODE= 1 RETURNS
|
||||
C CY(I)=K(FNU+I-1,Z), I=1,...,N
|
||||
C = 2 RETURNS
|
||||
C CY(I)=K(FNU+I-1,Z)*EXP(Z), I=1,...,N
|
||||
C
|
||||
C OUTPUT CYR,CYI ARE DOUBLE PRECISION
|
||||
C CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
|
||||
C CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
|
||||
C CY(I)=K(FNU+I-1,Z), I=1,...,N OR
|
||||
C CY(I)=K(FNU+I-1,Z)*EXP(Z), I=1,...,N
|
||||
C DEPENDING ON KODE
|
||||
C NZ - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW.
|
||||
C NZ= 0 , NORMAL RETURN
|
||||
C NZ.GT.0 , FIRST NZ COMPONENTS OF CY SET TO ZERO DUE
|
||||
C TO UNDERFLOW, CY(I)=CMPLX(0.0D0,0.0D0),
|
||||
C I=1,...,N WHEN X.GE.0.0. WHEN X.LT.0.0
|
||||
C NZ STATES ONLY THE NUMBER OF UNDERFLOWS
|
||||
C IN THE SEQUENCE.
|
||||
C
|
||||
C IERR - ERROR FLAG
|
||||
C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
|
||||
C IERR=1, INPUT ERROR - NO COMPUTATION
|
||||
C IERR=2, OVERFLOW - NO COMPUTATION, FNU IS
|
||||
C TOO LARGE OR CABS(Z) IS TOO SMALL OR BOTH
|
||||
C IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
|
||||
C BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
|
||||
C REDUCTION PRODUCE LESS THAN HALF OF MACHINE
|
||||
C ACCURACY
|
||||
C IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
|
||||
C TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
|
||||
C CANCE BY ARGUMENT REDUCTION
|
||||
C IERR=5, ERROR - NO COMPUTATION,
|
||||
C ALGORITHM TERMINATION CONDITION NOT MET
|
||||
C
|
||||
C***LONG DESCRIPTION
|
||||
C
|
||||
C EQUATIONS OF THE REFERENCE ARE IMPLEMENTED FOR SMALL ORDERS
|
||||
C DNU AND DNU+1.0 IN THE RIGHT HALF PLANE X.GE.0.0. FORWARD
|
||||
C RECURRENCE GENERATES HIGHER ORDERS. K IS CONTINUED TO THE LEFT
|
||||
C HALF PLANE BY THE RELATION
|
||||
C
|
||||
C K(FNU,Z*EXP(MP)) = EXP(-MP*FNU)*K(FNU,Z)-MP*I(FNU,Z)
|
||||
C MP=MR*PI*I, MR=+1 OR -1, RE(Z).GT.0, I**2=-1
|
||||
C
|
||||
C WHERE I(FNU,Z) IS THE I BESSEL FUNCTION.
|
||||
C
|
||||
C FOR LARGE ORDERS, FNU.GT.FNUL, THE K FUNCTION IS COMPUTED
|
||||
C BY MEANS OF ITS UNIFORM ASYMPTOTIC EXPANSIONS.
|
||||
C
|
||||
C FOR NEGATIVE ORDERS, THE FORMULA
|
||||
C
|
||||
C K(-FNU,Z) = K(FNU,Z)
|
||||
C
|
||||
C CAN BE USED.
|
||||
C
|
||||
C CBESK ASSUMES THAT A SIGNIFICANT DIGIT SINH(X) FUNCTION IS
|
||||
C AVAILABLE.
|
||||
C
|
||||
C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
|
||||
C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
|
||||
C LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
|
||||
C CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
|
||||
C LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
|
||||
C IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
|
||||
C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
|
||||
C IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
|
||||
C LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
|
||||
C MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
|
||||
C INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
|
||||
C RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
|
||||
C ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
|
||||
C ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
|
||||
C ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
|
||||
C THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
|
||||
C TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
|
||||
C IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
|
||||
C SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
|
||||
C
|
||||
C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
|
||||
C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
|
||||
C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
|
||||
C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
|
||||
C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
|
||||
C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
|
||||
C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
|
||||
C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
|
||||
C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
|
||||
C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
|
||||
C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
|
||||
C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
|
||||
C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
|
||||
C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
|
||||
C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
|
||||
C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
|
||||
C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
|
||||
C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
|
||||
C OR -PI/2+P.
|
||||
C
|
||||
C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
|
||||
C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
|
||||
C COMMERCE, 1955.
|
||||
C
|
||||
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
|
||||
C BY D. E. AMOS, SAND83-0083, MAY, 1983.
|
||||
C
|
||||
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
|
||||
C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983.
|
||||
C
|
||||
C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
|
||||
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
|
||||
C 1018, MAY, 1985
|
||||
C
|
||||
C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
|
||||
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
|
||||
C MATH. SOFTWARE, 1986
|
||||
C
|
||||
C***ROUTINES CALLED ZACON,ZBKNU,ZBUNK,ZUOIK,AZABS,I1MACH,D1MACH
|
||||
C***END PROLOGUE ZBESK
|
||||
C
|
||||
C COMPLEX CY,Z
|
||||
DOUBLE PRECISION AA, ALIM, ALN, ARG, AZ, CYI, CYR, DIG, ELIM, FN,
|
||||
* FNU, FNUL, RL, R1M5, TOL, UFL, ZI, ZR, D1MACH, AZABS, BB
|
||||
INTEGER IERR, K, KODE, K1, K2, MR, N, NN, NUF, NW, NZ, I1MACH
|
||||
DIMENSION CYR(N), CYI(N)
|
||||
C***FIRST EXECUTABLE STATEMENT ZBESK
|
||||
IERR = 0
|
||||
NZ=0
|
||||
IF (ZI.EQ.0.0E0 .AND. ZR.EQ.0.0E0) IERR=1
|
||||
IF (FNU.LT.0.0D0) IERR=1
|
||||
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
|
||||
IF (N.LT.1) IERR=1
|
||||
IF (IERR.NE.0) RETURN
|
||||
NN = N
|
||||
C-----------------------------------------------------------------------
|
||||
C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
|
||||
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
|
||||
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
|
||||
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
|
||||
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
|
||||
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
|
||||
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
|
||||
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
|
||||
C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU
|
||||
C-----------------------------------------------------------------------
|
||||
TOL = DMAX1(D1MACH(4),1.0D-18)
|
||||
K1 = I1MACH(15)
|
||||
K2 = I1MACH(16)
|
||||
R1M5 = D1MACH(5)
|
||||
K = MIN0(IABS(K1),IABS(K2))
|
||||
ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
|
||||
K1 = I1MACH(14) - 1
|
||||
AA = R1M5*DBLE(FLOAT(K1))
|
||||
DIG = DMIN1(AA,18.0D0)
|
||||
AA = AA*2.303D0
|
||||
ALIM = ELIM + DMAX1(-AA,-41.45D0)
|
||||
FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
|
||||
RL = 1.2D0*DIG + 3.0D0
|
||||
C-----------------------------------------------------------------------------
|
||||
C TEST FOR PROPER RANGE
|
||||
C-----------------------------------------------------------------------
|
||||
AZ = AZABS(ZR,ZI)
|
||||
FN = FNU + DBLE(FLOAT(NN-1))
|
||||
AA = 0.5D0/TOL
|
||||
BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
|
||||
AA = DMIN1(AA,BB)
|
||||
IF (AZ.GT.AA) GO TO 260
|
||||
IF (FN.GT.AA) GO TO 260
|
||||
AA = DSQRT(AA)
|
||||
IF (AZ.GT.AA) IERR=3
|
||||
IF (FN.GT.AA) IERR=3
|
||||
C-----------------------------------------------------------------------
|
||||
C OVERFLOW TEST ON THE LAST MEMBER OF THE SEQUENCE
|
||||
C-----------------------------------------------------------------------
|
||||
C UFL = DEXP(-ELIM)
|
||||
UFL = D1MACH(1)*1.0D+3
|
||||
IF (AZ.LT.UFL) GO TO 180
|
||||
IF (FNU.GT.FNUL) GO TO 80
|
||||
IF (FN.LE.1.0D0) GO TO 60
|
||||
IF (FN.GT.2.0D0) GO TO 50
|
||||
IF (AZ.GT.TOL) GO TO 60
|
||||
ARG = 0.5D0*AZ
|
||||
ALN = -FN*DLOG(ARG)
|
||||
IF (ALN.GT.ELIM) GO TO 180
|
||||
GO TO 60
|
||||
50 CONTINUE
|
||||
CALL ZUOIK(ZR, ZI, FNU, KODE, 2, NN, CYR, CYI, NUF, TOL, ELIM,
|
||||
* ALIM)
|
||||
IF (NUF.LT.0) GO TO 180
|
||||
NZ = NZ + NUF
|
||||
NN = NN - NUF
|
||||
C-----------------------------------------------------------------------
|
||||
C HERE NN=N OR NN=0 SINCE NUF=0,NN, OR -1 ON RETURN FROM CUOIK
|
||||
C IF NUF=NN, THEN CY(I)=CZERO FOR ALL I
|
||||
C-----------------------------------------------------------------------
|
||||
IF (NN.EQ.0) GO TO 100
|
||||
60 CONTINUE
|
||||
IF (ZR.LT.0.0D0) GO TO 70
|
||||
C-----------------------------------------------------------------------
|
||||
C RIGHT HALF PLANE COMPUTATION, REAL(Z).GE.0.
|
||||
C-----------------------------------------------------------------------
|
||||
CALL ZBKNU(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, TOL, ELIM, ALIM)
|
||||
IF (NW.LT.0) GO TO 200
|
||||
NZ=NW
|
||||
RETURN
|
||||
C-----------------------------------------------------------------------
|
||||
C LEFT HALF PLANE COMPUTATION
|
||||
C PI/2.LT.ARG(Z).LE.PI AND -PI.LT.ARG(Z).LT.-PI/2.
|
||||
C-----------------------------------------------------------------------
|
||||
70 CONTINUE
|
||||
IF (NZ.NE.0) GO TO 180
|
||||
MR = 1
|
||||
IF (ZI.LT.0.0D0) MR = -1
|
||||
CALL ZACON(ZR, ZI, FNU, KODE, MR, NN, CYR, CYI, NW, RL, FNUL,
|
||||
* TOL, ELIM, ALIM)
|
||||
IF (NW.LT.0) GO TO 200
|
||||
NZ=NW
|
||||
RETURN
|
||||
C-----------------------------------------------------------------------
|
||||
C UNIFORM ASYMPTOTIC EXPANSIONS FOR FNU.GT.FNUL
|
||||
C-----------------------------------------------------------------------
|
||||
80 CONTINUE
|
||||
MR = 0
|
||||
IF (ZR.GE.0.0D0) GO TO 90
|
||||
MR = 1
|
||||
IF (ZI.LT.0.0D0) MR = -1
|
||||
90 CONTINUE
|
||||
CALL ZBUNK(ZR, ZI, FNU, KODE, MR, NN, CYR, CYI, NW, TOL, ELIM,
|
||||
* ALIM)
|
||||
IF (NW.LT.0) GO TO 200
|
||||
NZ = NZ + NW
|
||||
RETURN
|
||||
100 CONTINUE
|
||||
IF (ZR.LT.0.0D0) GO TO 180
|
||||
RETURN
|
||||
180 CONTINUE
|
||||
NZ = 0
|
||||
IERR=2
|
||||
RETURN
|
||||
200 CONTINUE
|
||||
IF(NW.EQ.(-1)) GO TO 180
|
||||
NZ=0
|
||||
IERR=5
|
||||
RETURN
|
||||
260 CONTINUE
|
||||
NZ=0
|
||||
IERR=4
|
||||
RETURN
|
||||
END
|
244
amos/zbesy.f
244
amos/zbesy.f
|
@ -1,244 +0,0 @@
|
|||
SUBROUTINE ZBESY(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, CWRKR, CWRKI,
|
||||
* IERR)
|
||||
C***BEGIN PROLOGUE ZBESY
|
||||
C***DATE WRITTEN 830501 (YYMMDD)
|
||||
C***REVISION DATE 890801 (YYMMDD)
|
||||
C***CATEGORY NO. B5K
|
||||
C***KEYWORDS Y-BESSEL FUNCTION,BESSEL FUNCTION OF COMPLEX ARGUMENT,
|
||||
C BESSEL FUNCTION OF SECOND KIND
|
||||
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
|
||||
C***PURPOSE TO COMPUTE THE Y-BESSEL FUNCTION OF A COMPLEX ARGUMENT
|
||||
C***DESCRIPTION
|
||||
C
|
||||
C ***A DOUBLE PRECISION ROUTINE***
|
||||
C
|
||||
C ON KODE=1, CBESY COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
|
||||
C BESSEL FUNCTIONS CY(I)=Y(FNU+I-1,Z) FOR REAL, NONNEGATIVE
|
||||
C ORDERS FNU+I-1, I=1,...,N AND COMPLEX Z IN THE CUT PLANE
|
||||
C -PI.LT.ARG(Z).LE.PI. ON KODE=2, CBESY RETURNS THE SCALED
|
||||
C FUNCTIONS
|
||||
C
|
||||
C CY(I)=EXP(-ABS(Y))*Y(FNU+I-1,Z) I = 1,...,N , Y=AIMAG(Z)
|
||||
C
|
||||
C WHICH REMOVE THE EXPONENTIAL GROWTH IN BOTH THE UPPER AND
|
||||
C LOWER HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND NOTATION
|
||||
C ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL FUNCTIONS
|
||||
C (REF. 1).
|
||||
C
|
||||
C INPUT ZR,ZI,FNU ARE DOUBLE PRECISION
|
||||
C ZR,ZI - Z=CMPLX(ZR,ZI), Z.NE.CMPLX(0.0D0,0.0D0),
|
||||
C -PI.LT.ARG(Z).LE.PI
|
||||
C FNU - ORDER OF INITIAL Y FUNCTION, FNU.GE.0.0D0
|
||||
C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
|
||||
C KODE= 1 RETURNS
|
||||
C CY(I)=Y(FNU+I-1,Z), I=1,...,N
|
||||
C = 2 RETURNS
|
||||
C CY(I)=Y(FNU+I-1,Z)*EXP(-ABS(Y)), I=1,...,N
|
||||
C WHERE Y=AIMAG(Z)
|
||||
C N - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
|
||||
C CWRKR, - DOUBLE PRECISION WORK VECTORS OF DIMENSION AT
|
||||
C CWRKI AT LEAST N
|
||||
C
|
||||
C OUTPUT CYR,CYI ARE DOUBLE PRECISION
|
||||
C CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
|
||||
C CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
|
||||
C CY(I)=Y(FNU+I-1,Z) OR
|
||||
C CY(I)=Y(FNU+I-1,Z)*EXP(-ABS(Y)) I=1,...,N
|
||||
C DEPENDING ON KODE.
|
||||
C NZ - NZ=0 , A NORMAL RETURN
|
||||
C NZ.GT.0 , NZ COMPONENTS OF CY SET TO ZERO DUE TO
|
||||
C UNDERFLOW (GENERALLY ON KODE=2)
|
||||
C IERR - ERROR FLAG
|
||||
C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
|
||||
C IERR=1, INPUT ERROR - NO COMPUTATION
|
||||
C IERR=2, OVERFLOW - NO COMPUTATION, FNU IS
|
||||
C TOO LARGE OR CABS(Z) IS TOO SMALL OR BOTH
|
||||
C IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
|
||||
C BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
|
||||
C REDUCTION PRODUCE LESS THAN HALF OF MACHINE
|
||||
C ACCURACY
|
||||
C IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
|
||||
C TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
|
||||
C CANCE BY ARGUMENT REDUCTION
|
||||
C IERR=5, ERROR - NO COMPUTATION,
|
||||
C ALGORITHM TERMINATION CONDITION NOT MET
|
||||
C
|
||||
C***LONG DESCRIPTION
|
||||
C
|
||||
C THE COMPUTATION IS CARRIED OUT BY THE FORMULA
|
||||
C
|
||||
C Y(FNU,Z)=0.5*(H(1,FNU,Z)-H(2,FNU,Z))/I
|
||||
C
|
||||
C WHERE I**2 = -1 AND THE HANKEL BESSEL FUNCTIONS H(1,FNU,Z)
|
||||
C AND H(2,FNU,Z) ARE CALCULATED IN CBESH.
|
||||
C
|
||||
C FOR NEGATIVE ORDERS,THE FORMULA
|
||||
C
|
||||
C Y(-FNU,Z) = Y(FNU,Z)*COS(PI*FNU) + J(FNU,Z)*SIN(PI*FNU)
|
||||
C
|
||||
C CAN BE USED. HOWEVER,FOR LARGE ORDERS CLOSE TO HALF ODD
|
||||
C INTEGERS THE FUNCTION CHANGES RADICALLY. WHEN FNU IS A LARGE
|
||||
C POSITIVE HALF ODD INTEGER,THE MAGNITUDE OF Y(-FNU,Z)=J(FNU,Z)*
|
||||
C SIN(PI*FNU) IS A LARGE NEGATIVE POWER OF TEN. BUT WHEN FNU IS
|
||||
C NOT A HALF ODD INTEGER, Y(FNU,Z) DOMINATES IN MAGNITUDE WITH A
|
||||
C LARGE POSITIVE POWER OF TEN AND THE MOST THAT THE SECOND TERM
|
||||
C CAN BE REDUCED IS BY UNIT ROUNDOFF FROM THE COEFFICIENT. THUS,
|
||||
C WIDE CHANGES CAN OCCUR WITHIN UNIT ROUNDOFF OF A LARGE HALF
|
||||
C ODD INTEGER. HERE, LARGE MEANS FNU.GT.CABS(Z).
|
||||
C
|
||||
C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
|
||||
C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
|
||||
C LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
|
||||
C CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
|
||||
C LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
|
||||
C IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
|
||||
C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
|
||||
C IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
|
||||
C LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
|
||||
C MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
|
||||
C INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
|
||||
C RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
|
||||
C ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
|
||||
C ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
|
||||
C ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
|
||||
C THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
|
||||
C TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
|
||||
C IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
|
||||
C SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
|
||||
C
|
||||
C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
|
||||
C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
|
||||
C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
|
||||
C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
|
||||
C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
|
||||
C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
|
||||
C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
|
||||
C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
|
||||
C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
|
||||
C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
|
||||
C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
|
||||
C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
|
||||
C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
|
||||
C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
|
||||
C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
|
||||
C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
|
||||
C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
|
||||
C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
|
||||
C OR -PI/2+P.
|
||||
C
|
||||
C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
|
||||
C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
|
||||
C COMMERCE, 1955.
|
||||
C
|
||||
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
|
||||
C BY D. E. AMOS, SAND83-0083, MAY, 1983.
|
||||
C
|
||||
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
|
||||
C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
|
||||
C
|
||||
C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
|
||||
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
|
||||
C 1018, MAY, 1985
|
||||
C
|
||||
C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
|
||||
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
|
||||
C MATH. SOFTWARE, 1986
|
||||
C
|
||||
C***ROUTINES CALLED ZBESH,I1MACH,D1MACH
|
||||
C***END PROLOGUE ZBESY
|
||||
C
|
||||
C COMPLEX CWRK,CY,C1,C2,EX,HCI,Z,ZU,ZV
|
||||
DOUBLE PRECISION CWRKI, CWRKR, CYI, CYR, C1I, C1R, C2I, C2R,
|
||||
* ELIM, EXI, EXR, EY, FNU, HCII, STI, STR, TAY, ZI, ZR, DEXP,
|
||||
* D1MACH, ASCLE, RTOL, ATOL, AA, BB, TOL
|
||||
INTEGER I, IERR, K, KODE, K1, K2, N, NZ, NZ1, NZ2, I1MACH
|
||||
DIMENSION CYR(N), CYI(N), CWRKR(N), CWRKI(N)
|
||||
C***FIRST EXECUTABLE STATEMENT ZBESY
|
||||
IERR = 0
|
||||
NZ=0
|
||||
IF (ZR.EQ.0.0D0 .AND. ZI.EQ.0.0D0) IERR=1
|
||||
IF (FNU.LT.0.0D0) IERR=1
|
||||
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
|
||||
IF (N.LT.1) IERR=1
|
||||
IF (IERR.NE.0) RETURN
|
||||
HCII = 0.5D0
|
||||
CALL ZBESH(ZR, ZI, FNU, KODE, 1, N, CYR, CYI, NZ1, IERR)
|
||||
IF (IERR.NE.0.AND.IERR.NE.3) GO TO 170
|
||||
CALL ZBESH(ZR, ZI, FNU, KODE, 2, N, CWRKR, CWRKI, NZ2, IERR)
|
||||
IF (IERR.NE.0.AND.IERR.NE.3) GO TO 170
|
||||
NZ = MIN0(NZ1,NZ2)
|
||||
IF (KODE.EQ.2) GO TO 60
|
||||
DO 50 I=1,N
|
||||
STR = CWRKR(I) - CYR(I)
|
||||
STI = CWRKI(I) - CYI(I)
|
||||
CYR(I) = -STI*HCII
|
||||
CYI(I) = STR*HCII
|
||||
50 CONTINUE
|
||||
RETURN
|
||||
60 CONTINUE
|
||||
TOL = DMAX1(D1MACH(4),1.0D-18)
|
||||
K1 = I1MACH(15)
|
||||
K2 = I1MACH(16)
|
||||
K = MIN0(IABS(K1),IABS(K2))
|
||||
R1M5 = D1MACH(5)
|
||||
C-----------------------------------------------------------------------
|
||||
C ELIM IS THE APPROXIMATE EXPONENTIAL UNDER- AND OVERFLOW LIMIT
|
||||
C-----------------------------------------------------------------------
|
||||
ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
|
||||
EXR = DCOS(ZR)
|
||||
EXI = DSIN(ZR)
|
||||
EY = 0.0D0
|
||||
TAY = DABS(ZI+ZI)
|
||||
IF (TAY.LT.ELIM) EY = DEXP(-TAY)
|
||||
IF (ZI.LT.0.0D0) GO TO 90
|
||||
C1R = EXR*EY
|
||||
C1I = EXI*EY
|
||||
C2R = EXR
|
||||
C2I = -EXI
|
||||
70 CONTINUE
|
||||
NZ = 0
|
||||
RTOL = 1.0D0/TOL
|
||||
ASCLE = D1MACH(1)*RTOL*1.0D+3
|
||||
DO 80 I=1,N
|
||||
C STR = C1R*CYR(I) - C1I*CYI(I)
|
||||
C STI = C1R*CYI(I) + C1I*CYR(I)
|
||||
C STR = -STR + C2R*CWRKR(I) - C2I*CWRKI(I)
|
||||
C STI = -STI + C2R*CWRKI(I) + C2I*CWRKR(I)
|
||||
C CYR(I) = -STI*HCII
|
||||
C CYI(I) = STR*HCII
|
||||
AA = CWRKR(I)
|
||||
BB = CWRKI(I)
|
||||
ATOL = 1.0D0
|
||||
IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 75
|
||||
AA = AA*RTOL
|
||||
BB = BB*RTOL
|
||||
ATOL = TOL
|
||||
75 CONTINUE
|
||||
STR = (AA*C2R - BB*C2I)*ATOL
|
||||
STI = (AA*C2I + BB*C2R)*ATOL
|
||||
AA = CYR(I)
|
||||
BB = CYI(I)
|
||||
ATOL = 1.0D0
|
||||
IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 85
|
||||
AA = AA*RTOL
|
||||
BB = BB*RTOL
|
||||
ATOL = TOL
|
||||
85 CONTINUE
|
||||
STR = STR - (AA*C1R - BB*C1I)*ATOL
|
||||
STI = STI - (AA*C1I + BB*C1R)*ATOL
|
||||
CYR(I) = -STI*HCII
|
||||
CYI(I) = STR*HCII
|
||||
IF (STR.EQ.0.0D0 .AND. STI.EQ.0.0D0 .AND. EY.EQ.0.0D0) NZ = NZ
|
||||
* + 1
|
||||
80 CONTINUE
|
||||
RETURN
|
||||
90 CONTINUE
|
||||
C1R = EXR
|
||||
C1I = EXI
|
||||
C2R = EXR*EY
|
||||
C2I = -EXI*EY
|
||||
GO TO 70
|
||||
170 CONTINUE
|
||||
NZ = 0
|
||||
RETURN
|
||||
END
|
110
amos/zbinu.f
110
amos/zbinu.f
|
@ -1,110 +0,0 @@
|
|||
SUBROUTINE ZBINU(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, RL, FNUL,
|
||||
* TOL, ELIM, ALIM)
|
||||
C***BEGIN PROLOGUE ZBINU
|
||||
C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZAIRY,ZBIRY
|
||||
C
|
||||
C ZBINU COMPUTES THE I FUNCTION IN THE RIGHT HALF Z PLANE
|
||||
C
|
||||
C***ROUTINES CALLED AZABS,ZASYI,ZBUNI,ZMLRI,ZSERI,ZUOIK,ZWRSK
|
||||
C***END PROLOGUE ZBINU
|
||||
DOUBLE PRECISION ALIM, AZ, CWI, CWR, CYI, CYR, DFNU, ELIM, FNU,
|
||||
* FNUL, RL, TOL, ZEROI, ZEROR, ZI, ZR, AZABS
|
||||
INTEGER I, INW, KODE, N, NLAST, NN, NUI, NW, NZ
|
||||
DIMENSION CYR(N), CYI(N), CWR(2), CWI(2)
|
||||
DATA ZEROR,ZEROI / 0.0D0, 0.0D0 /
|
||||
C
|
||||
NZ = 0
|
||||
AZ = AZABS(ZR,ZI)
|
||||
NN = N
|
||||
DFNU = FNU + DBLE(FLOAT(N-1))
|
||||
IF (AZ.LE.2.0D0) GO TO 10
|
||||
IF (AZ*AZ*0.25D0.GT.DFNU+1.0D0) GO TO 20
|
||||
10 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C POWER SERIES
|
||||
C-----------------------------------------------------------------------
|
||||
CALL ZSERI(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, TOL, ELIM, ALIM)
|
||||
INW = IABS(NW)
|
||||
NZ = NZ + INW
|
||||
NN = NN - INW
|
||||
IF (NN.EQ.0) RETURN
|
||||
IF (NW.GE.0) GO TO 120
|
||||
DFNU = FNU + DBLE(FLOAT(NN-1))
|
||||
20 CONTINUE
|
||||
IF (AZ.LT.RL) GO TO 40
|
||||
IF (DFNU.LE.1.0D0) GO TO 30
|
||||
IF (AZ+AZ.LT.DFNU*DFNU) GO TO 50
|
||||
C-----------------------------------------------------------------------
|
||||
C ASYMPTOTIC EXPANSION FOR LARGE Z
|
||||
C-----------------------------------------------------------------------
|
||||
30 CONTINUE
|
||||
CALL ZASYI(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, RL, TOL, ELIM,
|
||||
* ALIM)
|
||||
IF (NW.LT.0) GO TO 130
|
||||
GO TO 120
|
||||
40 CONTINUE
|
||||
IF (DFNU.LE.1.0D0) GO TO 70
|
||||
50 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C OVERFLOW AND UNDERFLOW TEST ON I SEQUENCE FOR MILLER ALGORITHM
|
||||
C-----------------------------------------------------------------------
|
||||
CALL ZUOIK(ZR, ZI, FNU, KODE, 1, NN, CYR, CYI, NW, TOL, ELIM,
|
||||
* ALIM)
|
||||
IF (NW.LT.0) GO TO 130
|
||||
NZ = NZ + NW
|
||||
NN = NN - NW
|
||||
IF (NN.EQ.0) RETURN
|
||||
DFNU = FNU+DBLE(FLOAT(NN-1))
|
||||
IF (DFNU.GT.FNUL) GO TO 110
|
||||
IF (AZ.GT.FNUL) GO TO 110
|
||||
60 CONTINUE
|
||||
IF (AZ.GT.RL) GO TO 80
|
||||
70 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C MILLER ALGORITHM NORMALIZED BY THE SERIES
|
||||
C-----------------------------------------------------------------------
|
||||
CALL ZMLRI(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, TOL)
|
||||
IF(NW.LT.0) GO TO 130
|
||||
GO TO 120
|
||||
80 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C MILLER ALGORITHM NORMALIZED BY THE WRONSKIAN
|
||||
C-----------------------------------------------------------------------
|
||||
C-----------------------------------------------------------------------
|
||||
C OVERFLOW TEST ON K FUNCTIONS USED IN WRONSKIAN
|
||||
C-----------------------------------------------------------------------
|
||||
CALL ZUOIK(ZR, ZI, FNU, KODE, 2, 2, CWR, CWI, NW, TOL, ELIM,
|
||||
* ALIM)
|
||||
IF (NW.GE.0) GO TO 100
|
||||
NZ = NN
|
||||
DO 90 I=1,NN
|
||||
CYR(I) = ZEROR
|
||||
CYI(I) = ZEROI
|
||||
90 CONTINUE
|
||||
RETURN
|
||||
100 CONTINUE
|
||||
IF (NW.GT.0) GO TO 130
|
||||
CALL ZWRSK(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, CWR, CWI, TOL,
|
||||
* ELIM, ALIM)
|
||||
IF (NW.LT.0) GO TO 130
|
||||
GO TO 120
|
||||
110 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C INCREMENT FNU+NN-1 UP TO FNUL, COMPUTE AND RECUR BACKWARD
|
||||
C-----------------------------------------------------------------------
|
||||
NUI = INT(SNGL(FNUL-DFNU)) + 1
|
||||
NUI = MAX0(NUI,0)
|
||||
CALL ZBUNI(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, NUI, NLAST, FNUL,
|
||||
* TOL, ELIM, ALIM)
|
||||
IF (NW.LT.0) GO TO 130
|
||||
NZ = NZ + NW
|
||||
IF (NLAST.EQ.0) GO TO 120
|
||||
NN = NLAST
|
||||
GO TO 60
|
||||
120 CONTINUE
|
||||
RETURN
|
||||
130 CONTINUE
|
||||
NZ = -1
|
||||
IF(NW.EQ.(-2)) NZ=-2
|
||||
RETURN
|
||||
END
|
364
amos/zbiry.f
364
amos/zbiry.f
|
@ -1,364 +0,0 @@
|
|||
SUBROUTINE ZBIRY(ZR, ZI, ID, KODE, BIR, BII, IERR)
|
||||
C***BEGIN PROLOGUE ZBIRY
|
||||
C***DATE WRITTEN 830501 (YYMMDD)
|
||||
C***REVISION DATE 890801 (YYMMDD)
|
||||
C***CATEGORY NO. B5K
|
||||
C***KEYWORDS AIRY FUNCTION,BESSEL FUNCTIONS OF ORDER ONE THIRD
|
||||
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
|
||||
C***PURPOSE TO COMPUTE AIRY FUNCTIONS BI(Z) AND DBI(Z) FOR COMPLEX Z
|
||||
C***DESCRIPTION
|
||||
C
|
||||
C ***A DOUBLE PRECISION ROUTINE***
|
||||
C ON KODE=1, CBIRY COMPUTES THE COMPLEX AIRY FUNCTION BI(Z) OR
|
||||
C ITS DERIVATIVE DBI(Z)/DZ ON ID=0 OR ID=1 RESPECTIVELY. ON
|
||||
C KODE=2, A SCALING OPTION CEXP(-AXZTA)*BI(Z) OR CEXP(-AXZTA)*
|
||||
C DBI(Z)/DZ IS PROVIDED TO REMOVE THE EXPONENTIAL BEHAVIOR IN
|
||||
C BOTH THE LEFT AND RIGHT HALF PLANES WHERE
|
||||
C ZTA=(2/3)*Z*CSQRT(Z)=CMPLX(XZTA,YZTA) AND AXZTA=ABS(XZTA).
|
||||
C DEFINITIONS AND NOTATION ARE FOUND IN THE NBS HANDBOOK OF
|
||||
C MATHEMATICAL FUNCTIONS (REF. 1).
|
||||
C
|
||||
C INPUT ZR,ZI ARE DOUBLE PRECISION
|
||||
C ZR,ZI - Z=CMPLX(ZR,ZI)
|
||||
C ID - ORDER OF DERIVATIVE, ID=0 OR ID=1
|
||||
C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
|
||||
C KODE= 1 RETURNS
|
||||
C BI=BI(Z) ON ID=0 OR
|
||||
C BI=DBI(Z)/DZ ON ID=1
|
||||
C = 2 RETURNS
|
||||
C BI=CEXP(-AXZTA)*BI(Z) ON ID=0 OR
|
||||
C BI=CEXP(-AXZTA)*DBI(Z)/DZ ON ID=1 WHERE
|
||||
C ZTA=(2/3)*Z*CSQRT(Z)=CMPLX(XZTA,YZTA)
|
||||
C AND AXZTA=ABS(XZTA)
|
||||
C
|
||||
C OUTPUT BIR,BII ARE DOUBLE PRECISION
|
||||
C BIR,BII- COMPLEX ANSWER DEPENDING ON THE CHOICES FOR ID AND
|
||||
C KODE
|
||||
C IERR - ERROR FLAG
|
||||
C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
|
||||
C IERR=1, INPUT ERROR - NO COMPUTATION
|
||||
C IERR=2, OVERFLOW - NO COMPUTATION, REAL(Z)
|
||||
C TOO LARGE ON KODE=1
|
||||
C IERR=3, CABS(Z) LARGE - COMPUTATION COMPLETED
|
||||
C LOSSES OF SIGNIFCANCE BY ARGUMENT REDUCTION
|
||||
C PRODUCE LESS THAN HALF OF MACHINE ACCURACY
|
||||
C IERR=4, CABS(Z) TOO LARGE - NO COMPUTATION
|
||||
C COMPLETE LOSS OF ACCURACY BY ARGUMENT
|
||||
C REDUCTION
|
||||
C IERR=5, ERROR - NO COMPUTATION,
|
||||
C ALGORITHM TERMINATION CONDITION NOT MET
|
||||
C
|
||||
C***LONG DESCRIPTION
|
||||
C
|
||||
C BI AND DBI ARE COMPUTED FOR CABS(Z).GT.1.0 FROM THE I BESSEL
|
||||
C FUNCTIONS BY
|
||||
C
|
||||
C BI(Z)=C*SQRT(Z)*( I(-1/3,ZTA) + I(1/3,ZTA) )
|
||||
C DBI(Z)=C * Z * ( I(-2/3,ZTA) + I(2/3,ZTA) )
|
||||
C C=1.0/SQRT(3.0)
|
||||
C ZTA=(2/3)*Z**(3/2)
|
||||
C
|
||||
C WITH THE POWER SERIES FOR CABS(Z).LE.1.0.
|
||||
C
|
||||
C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
|
||||
C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z IS LARGE, LOSSES
|
||||
C OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. CONSEQUENTLY, IF
|
||||
C THE MAGNITUDE OF ZETA=(2/3)*Z**1.5 EXCEEDS U1=SQRT(0.5/UR),
|
||||
C THEN LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR
|
||||
C FLAG IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
|
||||
C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
|
||||
C ALSO, IF THE MAGNITUDE OF ZETA IS LARGER THAN U2=0.5/UR, THEN
|
||||
C ALL SIGNIFICANCE IS LOST AND IERR=4. IN ORDER TO USE THE INT
|
||||
C FUNCTION, ZETA MUST BE FURTHER RESTRICTED NOT TO EXCEED THE
|
||||
C LARGEST INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF ZETA
|
||||
C MUST BE RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2,
|
||||
C AND U3 ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE
|
||||
C PRECISION ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE
|
||||
C PRECISION ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMIT-
|
||||
C ING IN THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT THE MAG-
|
||||
C NITUDE OF Z CANNOT EXCEED 3.1E+4 IN SINGLE AND 2.1E+6 IN
|
||||
C DOUBLE PRECISION ARITHMETIC. THIS ALSO MEANS THAT ONE CAN
|
||||
C EXPECT TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES,
|
||||
C NO DIGITS IN SINGLE PRECISION AND ONLY 7 DIGITS IN DOUBLE
|
||||
C PRECISION ARITHMETIC. SIMILAR CONSIDERATIONS HOLD FOR OTHER
|
||||
C MACHINES.
|
||||
C
|
||||
C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
|
||||
C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
|
||||
C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
|
||||
C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
|
||||
C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
|
||||
C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
|
||||
C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
|
||||
C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
|
||||
C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
|
||||
C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
|
||||
C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
|
||||
C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
|
||||
C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
|
||||
C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
|
||||
C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
|
||||
C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
|
||||
C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
|
||||
C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
|
||||
C OR -PI/2+P.
|
||||
C
|
||||
C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
|
||||
C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
|
||||
C COMMERCE, 1955.
|
||||
C
|
||||
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
|
||||
C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
|
||||
C
|
||||
C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
|
||||
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
|
||||
C 1018, MAY, 1985
|
||||
C
|
||||
C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
|
||||
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
|
||||
C MATH. SOFTWARE, 1986
|
||||
C
|
||||
C***ROUTINES CALLED ZBINU,AZABS,ZDIV,AZSQRT,D1MACH,I1MACH
|
||||
C***END PROLOGUE ZBIRY
|
||||
C COMPLEX BI,CONE,CSQ,CY,S1,S2,TRM1,TRM2,Z,ZTA,Z3
|
||||
DOUBLE PRECISION AA, AD, AK, ALIM, ATRM, AZ, AZ3, BB, BII, BIR,
|
||||
* BK, CC, CK, COEF, CONEI, CONER, CSQI, CSQR, CYI, CYR, C1, C2,
|
||||
* DIG, DK, D1, D2, EAA, ELIM, FID, FMR, FNU, FNUL, PI, RL, R1M5,
|
||||
* SFAC, STI, STR, S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I,
|
||||
* TRM2R, TTH, ZI, ZR, ZTAI, ZTAR, Z3I, Z3R, D1MACH, AZABS
|
||||
INTEGER ID, IERR, K, KODE, K1, K2, NZ, I1MACH
|
||||
DIMENSION CYR(2), CYI(2)
|
||||
DATA TTH, C1, C2, COEF, PI /6.66666666666666667D-01,
|
||||
* 6.14926627446000736D-01,4.48288357353826359D-01,
|
||||
* 5.77350269189625765D-01,3.14159265358979324D+00/
|
||||
DATA CONER, CONEI /1.0D0,0.0D0/
|
||||
C***FIRST EXECUTABLE STATEMENT ZBIRY
|
||||
IERR = 0
|
||||
NZ=0
|
||||
IF (ID.LT.0 .OR. ID.GT.1) IERR=1
|
||||
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
|
||||
IF (IERR.NE.0) RETURN
|
||||
AZ = AZABS(ZR,ZI)
|
||||
TOL = DMAX1(D1MACH(4),1.0D-18)
|
||||
FID = DBLE(FLOAT(ID))
|
||||
IF (AZ.GT.1.0E0) GO TO 70
|
||||
C-----------------------------------------------------------------------
|
||||
C POWER SERIES FOR CABS(Z).LE.1.
|
||||
C-----------------------------------------------------------------------
|
||||
S1R = CONER
|
||||
S1I = CONEI
|
||||
S2R = CONER
|
||||
S2I = CONEI
|
||||
IF (AZ.LT.TOL) GO TO 130
|
||||
AA = AZ*AZ
|
||||
IF (AA.LT.TOL/AZ) GO TO 40
|
||||
TRM1R = CONER
|
||||
TRM1I = CONEI
|
||||
TRM2R = CONER
|
||||
TRM2I = CONEI
|
||||
ATRM = 1.0D0
|
||||
STR = ZR*ZR - ZI*ZI
|
||||
STI = ZR*ZI + ZI*ZR
|
||||
Z3R = STR*ZR - STI*ZI
|
||||
Z3I = STR*ZI + STI*ZR
|
||||
AZ3 = AZ*AA
|
||||
AK = 2.0D0 + FID
|
||||
BK = 3.0D0 - FID - FID
|
||||
CK = 4.0D0 - FID
|
||||
DK = 3.0D0 + FID + FID
|
||||
D1 = AK*DK
|
||||
D2 = BK*CK
|
||||
AD = DMIN1(D1,D2)
|
||||
AK = 24.0D0 + 9.0D0*FID
|
||||
BK = 30.0D0 - 9.0D0*FID
|
||||
DO 30 K=1,25
|
||||
STR = (TRM1R*Z3R-TRM1I*Z3I)/D1
|
||||
TRM1I = (TRM1R*Z3I+TRM1I*Z3R)/D1
|
||||
TRM1R = STR
|
||||
S1R = S1R + TRM1R
|
||||
S1I = S1I + TRM1I
|
||||
STR = (TRM2R*Z3R-TRM2I*Z3I)/D2
|
||||
TRM2I = (TRM2R*Z3I+TRM2I*Z3R)/D2
|
||||
TRM2R = STR
|
||||
S2R = S2R + TRM2R
|
||||
S2I = S2I + TRM2I
|
||||
ATRM = ATRM*AZ3/AD
|
||||
D1 = D1 + AK
|
||||
D2 = D2 + BK
|
||||
AD = DMIN1(D1,D2)
|
||||
IF (ATRM.LT.TOL*AD) GO TO 40
|
||||
AK = AK + 18.0D0
|
||||
BK = BK + 18.0D0
|
||||
30 CONTINUE
|
||||
40 CONTINUE
|
||||
IF (ID.EQ.1) GO TO 50
|
||||
BIR = C1*S1R + C2*(ZR*S2R-ZI*S2I)
|
||||
BII = C1*S1I + C2*(ZR*S2I+ZI*S2R)
|
||||
IF (KODE.EQ.1) RETURN
|
||||
CALL AZSQRT(ZR, ZI, STR, STI)
|
||||
ZTAR = TTH*(ZR*STR-ZI*STI)
|
||||
ZTAI = TTH*(ZR*STI+ZI*STR)
|
||||
AA = ZTAR
|
||||
AA = -DABS(AA)
|
||||
EAA = DEXP(AA)
|
||||
BIR = BIR*EAA
|
||||
BII = BII*EAA
|
||||
RETURN
|
||||
50 CONTINUE
|
||||
BIR = S2R*C2
|
||||
BII = S2I*C2
|
||||
IF (AZ.LE.TOL) GO TO 60
|
||||
CC = C1/(1.0D0+FID)
|
||||
STR = S1R*ZR - S1I*ZI
|
||||
STI = S1R*ZI + S1I*ZR
|
||||
BIR = BIR + CC*(STR*ZR-STI*ZI)
|
||||
BII = BII + CC*(STR*ZI+STI*ZR)
|
||||
60 CONTINUE
|
||||
IF (KODE.EQ.1) RETURN
|
||||
CALL AZSQRT(ZR, ZI, STR, STI)
|
||||
ZTAR = TTH*(ZR*STR-ZI*STI)
|
||||
ZTAI = TTH*(ZR*STI+ZI*STR)
|
||||
AA = ZTAR
|
||||
AA = -DABS(AA)
|
||||
EAA = DEXP(AA)
|
||||
BIR = BIR*EAA
|
||||
BII = BII*EAA
|
||||
RETURN
|
||||
C-----------------------------------------------------------------------
|
||||
C CASE FOR CABS(Z).GT.1.0
|
||||
C-----------------------------------------------------------------------
|
||||
70 CONTINUE
|
||||
FNU = (1.0D0+FID)/3.0D0
|
||||
C-----------------------------------------------------------------------
|
||||
C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
|
||||
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
|
||||
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
|
||||
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
|
||||
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
|
||||
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
|
||||
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
|
||||
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
|
||||
C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
|
||||
C-----------------------------------------------------------------------
|
||||
K1 = I1MACH(15)
|
||||
K2 = I1MACH(16)
|
||||
R1M5 = D1MACH(5)
|
||||
K = MIN0(IABS(K1),IABS(K2))
|
||||
ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
|
||||
K1 = I1MACH(14) - 1
|
||||
AA = R1M5*DBLE(FLOAT(K1))
|
||||
DIG = DMIN1(AA,18.0D0)
|
||||
AA = AA*2.303D0
|
||||
ALIM = ELIM + DMAX1(-AA,-41.45D0)
|
||||
RL = 1.2D0*DIG + 3.0D0
|
||||
FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
|
||||
C-----------------------------------------------------------------------
|
||||
C TEST FOR RANGE
|
||||
C-----------------------------------------------------------------------
|
||||
AA=0.5D0/TOL
|
||||
BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
|
||||
AA=DMIN1(AA,BB)
|
||||
AA=AA**TTH
|
||||
IF (AZ.GT.AA) GO TO 260
|
||||
AA=DSQRT(AA)
|
||||
IF (AZ.GT.AA) IERR=3
|
||||
CALL AZSQRT(ZR, ZI, CSQR, CSQI)
|
||||
ZTAR = TTH*(ZR*CSQR-ZI*CSQI)
|
||||
ZTAI = TTH*(ZR*CSQI+ZI*CSQR)
|
||||
C-----------------------------------------------------------------------
|
||||
C RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL
|
||||
C-----------------------------------------------------------------------
|
||||
SFAC = 1.0D0
|
||||
AK = ZTAI
|
||||
IF (ZR.GE.0.0D0) GO TO 80
|
||||
BK = ZTAR
|
||||
CK = -DABS(BK)
|
||||
ZTAR = CK
|
||||
ZTAI = AK
|
||||
80 CONTINUE
|
||||
IF (ZI.NE.0.0D0 .OR. ZR.GT.0.0D0) GO TO 90
|
||||
ZTAR = 0.0D0
|
||||
ZTAI = AK
|
||||
90 CONTINUE
|
||||
AA = ZTAR
|
||||
IF (KODE.EQ.2) GO TO 100
|
||||
C-----------------------------------------------------------------------
|
||||
C OVERFLOW TEST
|
||||
C-----------------------------------------------------------------------
|
||||
BB = DABS(AA)
|
||||
IF (BB.LT.ALIM) GO TO 100
|
||||
BB = BB + 0.25D0*DLOG(AZ)
|
||||
SFAC = TOL
|
||||
IF (BB.GT.ELIM) GO TO 190
|
||||
100 CONTINUE
|
||||
FMR = 0.0D0
|
||||
IF (AA.GE.0.0D0 .AND. ZR.GT.0.0D0) GO TO 110
|
||||
FMR = PI
|
||||
IF (ZI.LT.0.0D0) FMR = -PI
|
||||
ZTAR = -ZTAR
|
||||
ZTAI = -ZTAI
|
||||
110 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C AA=FACTOR FOR ANALYTIC CONTINUATION OF I(FNU,ZTA)
|
||||
C KODE=2 RETURNS EXP(-ABS(XZTA))*I(FNU,ZTA) FROM CBESI
|
||||
C-----------------------------------------------------------------------
|
||||
CALL ZBINU(ZTAR, ZTAI, FNU, KODE, 1, CYR, CYI, NZ, RL, FNUL, TOL,
|
||||
* ELIM, ALIM)
|
||||
IF (NZ.LT.0) GO TO 200
|
||||
AA = FMR*FNU
|
||||
Z3R = SFAC
|
||||
STR = DCOS(AA)
|
||||
STI = DSIN(AA)
|
||||
S1R = (STR*CYR(1)-STI*CYI(1))*Z3R
|
||||
S1I = (STR*CYI(1)+STI*CYR(1))*Z3R
|
||||
FNU = (2.0D0-FID)/3.0D0
|
||||
CALL ZBINU(ZTAR, ZTAI, FNU, KODE, 2, CYR, CYI, NZ, RL, FNUL, TOL,
|
||||
* ELIM, ALIM)
|
||||
CYR(1) = CYR(1)*Z3R
|
||||
CYI(1) = CYI(1)*Z3R
|
||||
CYR(2) = CYR(2)*Z3R
|
||||
CYI(2) = CYI(2)*Z3R
|
||||
C-----------------------------------------------------------------------
|
||||
C BACKWARD RECUR ONE STEP FOR ORDERS -1/3 OR -2/3
|
||||
C-----------------------------------------------------------------------
|
||||
CALL ZDIV(CYR(1), CYI(1), ZTAR, ZTAI, STR, STI)
|
||||
S2R = (FNU+FNU)*STR + CYR(2)
|
||||
S2I = (FNU+FNU)*STI + CYI(2)
|
||||
AA = FMR*(FNU-1.0D0)
|
||||
STR = DCOS(AA)
|
||||
STI = DSIN(AA)
|
||||
S1R = COEF*(S1R+S2R*STR-S2I*STI)
|
||||
S1I = COEF*(S1I+S2R*STI+S2I*STR)
|
||||
IF (ID.EQ.1) GO TO 120
|
||||
STR = CSQR*S1R - CSQI*S1I
|
||||
S1I = CSQR*S1I + CSQI*S1R
|
||||
S1R = STR
|
||||
BIR = S1R/SFAC
|
||||
BII = S1I/SFAC
|
||||
RETURN
|
||||
120 CONTINUE
|
||||
STR = ZR*S1R - ZI*S1I
|
||||
S1I = ZR*S1I + ZI*S1R
|
||||
S1R = STR
|
||||
BIR = S1R/SFAC
|
||||
BII = S1I/SFAC
|
||||
RETURN
|
||||
130 CONTINUE
|
||||
AA = C1*(1.0D0-FID) + FID*C2
|
||||
BIR = AA
|
||||
BII = 0.0D0
|
||||
RETURN
|
||||
190 CONTINUE
|
||||
IERR=2
|
||||
NZ=0
|
||||
RETURN
|
||||
200 CONTINUE
|
||||
IF(NZ.EQ.(-1)) GO TO 190
|
||||
NZ=0
|
||||
IERR=5
|
||||
RETURN
|
||||
260 CONTINUE
|
||||
IERR=4
|
||||
NZ=0
|
||||
RETURN
|
||||
END
|
568
amos/zbknu.f
568
amos/zbknu.f
|
@ -1,568 +0,0 @@
|
|||
SUBROUTINE ZBKNU(ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM,
|
||||
* ALIM)
|
||||
C***BEGIN PROLOGUE ZBKNU
|
||||
C***REFER TO ZBESI,ZBESK,ZAIRY,ZBESH
|
||||
C
|
||||
C ZBKNU COMPUTES THE K BESSEL FUNCTION IN THE RIGHT HALF Z PLANE.
|
||||
C
|
||||
C***ROUTINES CALLED DGAMLN,I1MACH,D1MACH,ZKSCL,ZSHCH,ZUCHK,AZABS,ZDIV,
|
||||
C AZEXP,AZLOG,ZMLT,AZSQRT
|
||||
C***END PROLOGUE ZBKNU
|
||||
C
|
||||
DOUBLE PRECISION AA, AK, ALIM, ASCLE, A1, A2, BB, BK, BRY, CAZ,
|
||||
* CBI, CBR, CC, CCHI, CCHR, CKI, CKR, COEFI, COEFR, CONEI, CONER,
|
||||
* CRSCR, CSCLR, CSHI, CSHR, CSI, CSR, CSRR, CSSR, CTWOR,
|
||||
* CZEROI, CZEROR, CZI, CZR, DNU, DNU2, DPI, ELIM, ETEST, FC, FHS,
|
||||
* FI, FK, FKS, FMUI, FMUR, FNU, FPI, FR, G1, G2, HPI, PI, PR, PTI,
|
||||
* PTR, P1I, P1R, P2I, P2M, P2R, QI, QR, RAK, RCAZ, RTHPI, RZI,
|
||||
* RZR, R1, S, SMUI, SMUR, SPI, STI, STR, S1I, S1R, S2I, S2R, TM,
|
||||
* TOL, TTH, T1, T2, YI, YR, ZI, ZR, DGAMLN, D1MACH, AZABS, ELM,
|
||||
* CELMR, ZDR, ZDI, AS, ALAS, HELIM, CYR, CYI
|
||||
INTEGER I, IFLAG, INU, K, KFLAG, KK, KMAX, KODE, KODED, N, NZ,
|
||||
* IDUM, I1MACH, J, IC, INUB, NW
|
||||
DIMENSION YR(N), YI(N), CC(8), CSSR(3), CSRR(3), BRY(3), CYR(2),
|
||||
* CYI(2)
|
||||
C COMPLEX Z,Y,A,B,RZ,SMU,FU,FMU,F,FLRZ,CZ,S1,S2,CSH,CCH
|
||||
C COMPLEX CK,P,Q,COEF,P1,P2,CBK,PT,CZERO,CONE,CTWO,ST,EZ,CS,DK
|
||||
C
|
||||
DATA KMAX / 30 /
|
||||
DATA CZEROR,CZEROI,CONER,CONEI,CTWOR,R1/
|
||||
1 0.0D0 , 0.0D0 , 1.0D0 , 0.0D0 , 2.0D0 , 2.0D0 /
|
||||
DATA DPI, RTHPI, SPI ,HPI, FPI, TTH /
|
||||
1 3.14159265358979324D0, 1.25331413731550025D0,
|
||||
2 1.90985931710274403D0, 1.57079632679489662D0,
|
||||
3 1.89769999331517738D0, 6.66666666666666666D-01/
|
||||
DATA CC(1), CC(2), CC(3), CC(4), CC(5), CC(6), CC(7), CC(8)/
|
||||
1 5.77215664901532861D-01, -4.20026350340952355D-02,
|
||||
2 -4.21977345555443367D-02, 7.21894324666309954D-03,
|
||||
3 -2.15241674114950973D-04, -2.01348547807882387D-05,
|
||||
4 1.13302723198169588D-06, 6.11609510448141582D-09/
|
||||
C
|
||||
CAZ = AZABS(ZR,ZI)
|
||||
CSCLR = 1.0D0/TOL
|
||||
CRSCR = TOL
|
||||
CSSR(1) = CSCLR
|
||||
CSSR(2) = 1.0D0
|
||||
CSSR(3) = CRSCR
|
||||
CSRR(1) = CRSCR
|
||||
CSRR(2) = 1.0D0
|
||||
CSRR(3) = CSCLR
|
||||
BRY(1) = 1.0D+3*D1MACH(1)/TOL
|
||||
BRY(2) = 1.0D0/BRY(1)
|
||||
BRY(3) = D1MACH(2)
|
||||
NZ = 0
|
||||
IFLAG = 0
|
||||
KODED = KODE
|
||||
RCAZ = 1.0D0/CAZ
|
||||
STR = ZR*RCAZ
|
||||
STI = -ZI*RCAZ
|
||||
RZR = (STR+STR)*RCAZ
|
||||
RZI = (STI+STI)*RCAZ
|
||||
INU = INT(SNGL(FNU+0.5D0))
|
||||
DNU = FNU - DBLE(FLOAT(INU))
|
||||
IF (DABS(DNU).EQ.0.5D0) GO TO 110
|
||||
DNU2 = 0.0D0
|
||||
IF (DABS(DNU).GT.TOL) DNU2 = DNU*DNU
|
||||
IF (CAZ.GT.R1) GO TO 110
|
||||
C-----------------------------------------------------------------------
|
||||
C SERIES FOR CABS(Z).LE.R1
|
||||
C-----------------------------------------------------------------------
|
||||
FC = 1.0D0
|
||||
CALL AZLOG(RZR, RZI, SMUR, SMUI, IDUM)
|
||||
FMUR = SMUR*DNU
|
||||
FMUI = SMUI*DNU
|
||||
CALL ZSHCH(FMUR, FMUI, CSHR, CSHI, CCHR, CCHI)
|
||||
IF (DNU.EQ.0.0D0) GO TO 10
|
||||
FC = DNU*DPI
|
||||
FC = FC/DSIN(FC)
|
||||
SMUR = CSHR/DNU
|
||||
SMUI = CSHI/DNU
|
||||
10 CONTINUE
|
||||
A2 = 1.0D0 + DNU
|
||||
C-----------------------------------------------------------------------
|
||||
C GAM(1-Z)*GAM(1+Z)=PI*Z/SIN(PI*Z), T1=1/GAM(1-DNU), T2=1/GAM(1+DNU)
|
||||
C-----------------------------------------------------------------------
|
||||
T2 = DEXP(-DGAMLN(A2,IDUM))
|
||||
T1 = 1.0D0/(T2*FC)
|
||||
IF (DABS(DNU).GT.0.1D0) GO TO 40
|
||||
C-----------------------------------------------------------------------
|
||||
C SERIES FOR F0 TO RESOLVE INDETERMINACY FOR SMALL ABS(DNU)
|
||||
C-----------------------------------------------------------------------
|
||||
AK = 1.0D0
|
||||
S = CC(1)
|
||||
DO 20 K=2,8
|
||||
AK = AK*DNU2
|
||||
TM = CC(K)*AK
|
||||
S = S + TM
|
||||
IF (DABS(TM).LT.TOL) GO TO 30
|
||||
20 CONTINUE
|
||||
30 G1 = -S
|
||||
GO TO 50
|
||||
40 CONTINUE
|
||||
G1 = (T1-T2)/(DNU+DNU)
|
||||
50 CONTINUE
|
||||
G2 = (T1+T2)*0.5D0
|
||||
FR = FC*(CCHR*G1+SMUR*G2)
|
||||
FI = FC*(CCHI*G1+SMUI*G2)
|
||||
CALL AZEXP(FMUR, FMUI, STR, STI)
|
||||
PR = 0.5D0*STR/T2
|
||||
PI = 0.5D0*STI/T2
|
||||
CALL ZDIV(0.5D0, 0.0D0, STR, STI, PTR, PTI)
|
||||
QR = PTR/T1
|
||||
QI = PTI/T1
|
||||
S1R = FR
|
||||
S1I = FI
|
||||
S2R = PR
|
||||
S2I = PI
|
||||
AK = 1.0D0
|
||||
A1 = 1.0D0
|
||||
CKR = CONER
|
||||
CKI = CONEI
|
||||
BK = 1.0D0 - DNU2
|
||||
IF (INU.GT.0 .OR. N.GT.1) GO TO 80
|
||||
C-----------------------------------------------------------------------
|
||||
C GENERATE K(FNU,Z), 0.0D0 .LE. FNU .LT. 0.5D0 AND N=1
|
||||
C-----------------------------------------------------------------------
|
||||
IF (CAZ.LT.TOL) GO TO 70
|
||||
CALL ZMLT(ZR, ZI, ZR, ZI, CZR, CZI)
|
||||
CZR = 0.25D0*CZR
|
||||
CZI = 0.25D0*CZI
|
||||
T1 = 0.25D0*CAZ*CAZ
|
||||
60 CONTINUE
|
||||
FR = (FR*AK+PR+QR)/BK
|
||||
FI = (FI*AK+PI+QI)/BK
|
||||
STR = 1.0D0/(AK-DNU)
|
||||
PR = PR*STR
|
||||
PI = PI*STR
|
||||
STR = 1.0D0/(AK+DNU)
|
||||
QR = QR*STR
|
||||
QI = QI*STR
|
||||
STR = CKR*CZR - CKI*CZI
|
||||
RAK = 1.0D0/AK
|
||||
CKI = (CKR*CZI+CKI*CZR)*RAK
|
||||
CKR = STR*RAK
|
||||
S1R = CKR*FR - CKI*FI + S1R
|
||||
S1I = CKR*FI + CKI*FR + S1I
|
||||
A1 = A1*T1*RAK
|
||||
BK = BK + AK + AK + 1.0D0
|
||||
AK = AK + 1.0D0
|
||||
IF (A1.GT.TOL) GO TO 60
|
||||
70 CONTINUE
|
||||
YR(1) = S1R
|
||||
YI(1) = S1I
|
||||
IF (KODED.EQ.1) RETURN
|
||||
CALL AZEXP(ZR, ZI, STR, STI)
|
||||
CALL ZMLT(S1R, S1I, STR, STI, YR(1), YI(1))
|
||||
RETURN
|
||||
C-----------------------------------------------------------------------
|
||||
C GENERATE K(DNU,Z) AND K(DNU+1,Z) FOR FORWARD RECURRENCE
|
||||
C-----------------------------------------------------------------------
|
||||
80 CONTINUE
|
||||
IF (CAZ.LT.TOL) GO TO 100
|
||||
CALL ZMLT(ZR, ZI, ZR, ZI, CZR, CZI)
|
||||
CZR = 0.25D0*CZR
|
||||
CZI = 0.25D0*CZI
|
||||
T1 = 0.25D0*CAZ*CAZ
|
||||
90 CONTINUE
|
||||
FR = (FR*AK+PR+QR)/BK
|
||||
FI = (FI*AK+PI+QI)/BK
|
||||
STR = 1.0D0/(AK-DNU)
|
||||
PR = PR*STR
|
||||
PI = PI*STR
|
||||
STR = 1.0D0/(AK+DNU)
|
||||
QR = QR*STR
|
||||
QI = QI*STR
|
||||
STR = CKR*CZR - CKI*CZI
|
||||
RAK = 1.0D0/AK
|
||||
CKI = (CKR*CZI+CKI*CZR)*RAK
|
||||
CKR = STR*RAK
|
||||
S1R = CKR*FR - CKI*FI + S1R
|
||||
S1I = CKR*FI + CKI*FR + S1I
|
||||
STR = PR - FR*AK
|
||||
STI = PI - FI*AK
|
||||
S2R = CKR*STR - CKI*STI + S2R
|
||||
S2I = CKR*STI + CKI*STR + S2I
|
||||
A1 = A1*T1*RAK
|
||||
BK = BK + AK + AK + 1.0D0
|
||||
AK = AK + 1.0D0
|
||||
IF (A1.GT.TOL) GO TO 90
|
||||
100 CONTINUE
|
||||
KFLAG = 2
|
||||
A1 = FNU + 1.0D0
|
||||
AK = A1*DABS(SMUR)
|
||||
IF (AK.GT.ALIM) KFLAG = 3
|
||||
STR = CSSR(KFLAG)
|
||||
P2R = S2R*STR
|
||||
P2I = S2I*STR
|
||||
CALL ZMLT(P2R, P2I, RZR, RZI, S2R, S2I)
|
||||
S1R = S1R*STR
|
||||
S1I = S1I*STR
|
||||
IF (KODED.EQ.1) GO TO 210
|
||||
CALL AZEXP(ZR, ZI, FR, FI)
|
||||
CALL ZMLT(S1R, S1I, FR, FI, S1R, S1I)
|
||||
CALL ZMLT(S2R, S2I, FR, FI, S2R, S2I)
|
||||
GO TO 210
|
||||
C-----------------------------------------------------------------------
|
||||
C IFLAG=0 MEANS NO UNDERFLOW OCCURRED
|
||||
C IFLAG=1 MEANS AN UNDERFLOW OCCURRED- COMPUTATION PROCEEDS WITH
|
||||
C KODED=2 AND A TEST FOR ON SCALE VALUES IS MADE DURING FORWARD
|
||||
C RECURSION
|
||||
C-----------------------------------------------------------------------
|
||||
110 CONTINUE
|
||||
CALL AZSQRT(ZR, ZI, STR, STI)
|
||||
CALL ZDIV(RTHPI, CZEROI, STR, STI, COEFR, COEFI)
|
||||
KFLAG = 2
|
||||
IF (KODED.EQ.2) GO TO 120
|
||||
IF (ZR.GT.ALIM) GO TO 290
|
||||
C BLANK LINE
|
||||
STR = DEXP(-ZR)*CSSR(KFLAG)
|
||||
STI = -STR*DSIN(ZI)
|
||||
STR = STR*DCOS(ZI)
|
||||
CALL ZMLT(COEFR, COEFI, STR, STI, COEFR, COEFI)
|
||||
120 CONTINUE
|
||||
IF (DABS(DNU).EQ.0.5D0) GO TO 300
|
||||
C-----------------------------------------------------------------------
|
||||
C MILLER ALGORITHM FOR CABS(Z).GT.R1
|
||||
C-----------------------------------------------------------------------
|
||||
AK = DCOS(DPI*DNU)
|
||||
AK = DABS(AK)
|
||||
IF (AK.EQ.CZEROR) GO TO 300
|
||||
FHS = DABS(0.25D0-DNU2)
|
||||
IF (FHS.EQ.CZEROR) GO TO 300
|
||||
C-----------------------------------------------------------------------
|
||||
C COMPUTE R2=F(E). IF CABS(Z).GE.R2, USE FORWARD RECURRENCE TO
|
||||
C DETERMINE THE BACKWARD INDEX K. R2=F(E) IS A STRAIGHT LINE ON
|
||||
C 12.LE.E.LE.60. E IS COMPUTED FROM 2**(-E)=B**(1-I1MACH(14))=
|
||||
C TOL WHERE B IS THE BASE OF THE ARITHMETIC.
|
||||
C-----------------------------------------------------------------------
|
||||
T1 = DBLE(FLOAT(I1MACH(14)-1))
|
||||
T1 = T1*D1MACH(5)*3.321928094D0
|
||||
T1 = DMAX1(T1,12.0D0)
|
||||
T1 = DMIN1(T1,60.0D0)
|
||||
T2 = TTH*T1 - 6.0D0
|
||||
IF (ZR.NE.0.0D0) GO TO 130
|
||||
T1 = HPI
|
||||
GO TO 140
|
||||
130 CONTINUE
|
||||
T1 = DATAN(ZI/ZR)
|
||||
T1 = DABS(T1)
|
||||
140 CONTINUE
|
||||
IF (T2.GT.CAZ) GO TO 170
|
||||
C-----------------------------------------------------------------------
|
||||
C FORWARD RECURRENCE LOOP WHEN CABS(Z).GE.R2
|
||||
C-----------------------------------------------------------------------
|
||||
ETEST = AK/(DPI*CAZ*TOL)
|
||||
FK = CONER
|
||||
IF (ETEST.LT.CONER) GO TO 180
|
||||
FKS = CTWOR
|
||||
CKR = CAZ + CAZ + CTWOR
|
||||
P1R = CZEROR
|
||||
P2R = CONER
|
||||
DO 150 I=1,KMAX
|
||||
AK = FHS/FKS
|
||||
CBR = CKR/(FK+CONER)
|
||||
PTR = P2R
|
||||
P2R = CBR*P2R - P1R*AK
|
||||
P1R = PTR
|
||||
CKR = CKR + CTWOR
|
||||
FKS = FKS + FK + FK + CTWOR
|
||||
FHS = FHS + FK + FK
|
||||
FK = FK + CONER
|
||||
STR = DABS(P2R)*FK
|
||||
IF (ETEST.LT.STR) GO TO 160
|
||||
150 CONTINUE
|
||||
GO TO 310
|
||||
160 CONTINUE
|
||||
FK = FK + SPI*T1*DSQRT(T2/CAZ)
|
||||
FHS = DABS(0.25D0-DNU2)
|
||||
GO TO 180
|
||||
170 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C COMPUTE BACKWARD INDEX K FOR CABS(Z).LT.R2
|
||||
C-----------------------------------------------------------------------
|
||||
A2 = DSQRT(CAZ)
|
||||
AK = FPI*AK/(TOL*DSQRT(A2))
|
||||
AA = 3.0D0*T1/(1.0D0+CAZ)
|
||||
BB = 14.7D0*T1/(28.0D0+CAZ)
|
||||
AK = (DLOG(AK)+CAZ*DCOS(AA)/(1.0D0+0.008D0*CAZ))/DCOS(BB)
|
||||
FK = 0.12125D0*AK*AK/CAZ + 1.5D0
|
||||
180 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C BACKWARD RECURRENCE LOOP FOR MILLER ALGORITHM
|
||||
C-----------------------------------------------------------------------
|
||||
K = INT(SNGL(FK))
|
||||
FK = DBLE(FLOAT(K))
|
||||
FKS = FK*FK
|
||||
P1R = CZEROR
|
||||
P1I = CZEROI
|
||||
P2R = TOL
|
||||
P2I = CZEROI
|
||||
CSR = P2R
|
||||
CSI = P2I
|
||||
DO 190 I=1,K
|
||||
A1 = FKS - FK
|
||||
AK = (FKS+FK)/(A1+FHS)
|
||||
RAK = 2.0D0/(FK+CONER)
|
||||
CBR = (FK+ZR)*RAK
|
||||
CBI = ZI*RAK
|
||||
PTR = P2R
|
||||
PTI = P2I
|
||||
P2R = (PTR*CBR-PTI*CBI-P1R)*AK
|
||||
P2I = (PTI*CBR+PTR*CBI-P1I)*AK
|
||||
P1R = PTR
|
||||
P1I = PTI
|
||||
CSR = CSR + P2R
|
||||
CSI = CSI + P2I
|
||||
FKS = A1 - FK + CONER
|
||||
FK = FK - CONER
|
||||
190 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C COMPUTE (P2/CS)=(P2/CABS(CS))*(CONJG(CS)/CABS(CS)) FOR BETTER
|
||||
C SCALING
|
||||
C-----------------------------------------------------------------------
|
||||
TM = AZABS(CSR,CSI)
|
||||
PTR = 1.0D0/TM
|
||||
S1R = P2R*PTR
|
||||
S1I = P2I*PTR
|
||||
CSR = CSR*PTR
|
||||
CSI = -CSI*PTR
|
||||
CALL ZMLT(COEFR, COEFI, S1R, S1I, STR, STI)
|
||||
CALL ZMLT(STR, STI, CSR, CSI, S1R, S1I)
|
||||
IF (INU.GT.0 .OR. N.GT.1) GO TO 200
|
||||
ZDR = ZR
|
||||
ZDI = ZI
|
||||
IF(IFLAG.EQ.1) GO TO 270
|
||||
GO TO 240
|
||||
200 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C COMPUTE P1/P2=(P1/CABS(P2)*CONJG(P2)/CABS(P2) FOR SCALING
|
||||
C-----------------------------------------------------------------------
|
||||
TM = AZABS(P2R,P2I)
|
||||
PTR = 1.0D0/TM
|
||||
P1R = P1R*PTR
|
||||
P1I = P1I*PTR
|
||||
P2R = P2R*PTR
|
||||
P2I = -P2I*PTR
|
||||
CALL ZMLT(P1R, P1I, P2R, P2I, PTR, PTI)
|
||||
STR = DNU + 0.5D0 - PTR
|
||||
STI = -PTI
|
||||
CALL ZDIV(STR, STI, ZR, ZI, STR, STI)
|
||||
STR = STR + 1.0D0
|
||||
CALL ZMLT(STR, STI, S1R, S1I, S2R, S2I)
|
||||
C-----------------------------------------------------------------------
|
||||
C FORWARD RECURSION ON THE THREE TERM RECURSION WITH RELATION WITH
|
||||
C SCALING NEAR EXPONENT EXTREMES ON KFLAG=1 OR KFLAG=3
|
||||
C-----------------------------------------------------------------------
|
||||
210 CONTINUE
|
||||
STR = DNU + 1.0D0
|
||||
CKR = STR*RZR
|
||||
CKI = STR*RZI
|
||||
IF (N.EQ.1) INU = INU - 1
|
||||
IF (INU.GT.0) GO TO 220
|
||||
IF (N.GT.1) GO TO 215
|
||||
S1R = S2R
|
||||
S1I = S2I
|
||||
215 CONTINUE
|
||||
ZDR = ZR
|
||||
ZDI = ZI
|
||||
IF(IFLAG.EQ.1) GO TO 270
|
||||
GO TO 240
|
||||
220 CONTINUE
|
||||
INUB = 1
|
||||
IF(IFLAG.EQ.1) GO TO 261
|
||||
225 CONTINUE
|
||||
P1R = CSRR(KFLAG)
|
||||
ASCLE = BRY(KFLAG)
|
||||
DO 230 I=INUB,INU
|
||||
STR = S2R
|
||||
STI = S2I
|
||||
S2R = CKR*STR - CKI*STI + S1R
|
||||
S2I = CKR*STI + CKI*STR + S1I
|
||||
S1R = STR
|
||||
S1I = STI
|
||||
CKR = CKR + RZR
|
||||
CKI = CKI + RZI
|
||||
IF (KFLAG.GE.3) GO TO 230
|
||||
P2R = S2R*P1R
|
||||
P2I = S2I*P1R
|
||||
STR = DABS(P2R)
|
||||
STI = DABS(P2I)
|
||||
P2M = DMAX1(STR,STI)
|
||||
IF (P2M.LE.ASCLE) GO TO 230
|
||||
KFLAG = KFLAG + 1
|
||||
ASCLE = BRY(KFLAG)
|
||||
S1R = S1R*P1R
|
||||
S1I = S1I*P1R
|
||||
S2R = P2R
|
||||
S2I = P2I
|
||||
STR = CSSR(KFLAG)
|
||||
S1R = S1R*STR
|
||||
S1I = S1I*STR
|
||||
S2R = S2R*STR
|
||||
S2I = S2I*STR
|
||||
P1R = CSRR(KFLAG)
|
||||
230 CONTINUE
|
||||
IF (N.NE.1) GO TO 240
|
||||
S1R = S2R
|
||||
S1I = S2I
|
||||
240 CONTINUE
|
||||
STR = CSRR(KFLAG)
|
||||
YR(1) = S1R*STR
|
||||
YI(1) = S1I*STR
|
||||
IF (N.EQ.1) RETURN
|
||||
YR(2) = S2R*STR
|
||||
YI(2) = S2I*STR
|
||||
IF (N.EQ.2) RETURN
|
||||
KK = 2
|
||||
250 CONTINUE
|
||||
KK = KK + 1
|
||||
IF (KK.GT.N) RETURN
|
||||
P1R = CSRR(KFLAG)
|
||||
ASCLE = BRY(KFLAG)
|
||||
DO 260 I=KK,N
|
||||
P2R = S2R
|
||||
P2I = S2I
|
||||
S2R = CKR*P2R - CKI*P2I + S1R
|
||||
S2I = CKI*P2R + CKR*P2I + S1I
|
||||
S1R = P2R
|
||||
S1I = P2I
|
||||
CKR = CKR + RZR
|
||||
CKI = CKI + RZI
|
||||
P2R = S2R*P1R
|
||||
P2I = S2I*P1R
|
||||
YR(I) = P2R
|
||||
YI(I) = P2I
|
||||
IF (KFLAG.GE.3) GO TO 260
|
||||
STR = DABS(P2R)
|
||||
STI = DABS(P2I)
|
||||
P2M = DMAX1(STR,STI)
|
||||
IF (P2M.LE.ASCLE) GO TO 260
|
||||
KFLAG = KFLAG + 1
|
||||
ASCLE = BRY(KFLAG)
|
||||
S1R = S1R*P1R
|
||||
S1I = S1I*P1R
|
||||
S2R = P2R
|
||||
S2I = P2I
|
||||
STR = CSSR(KFLAG)
|
||||
S1R = S1R*STR
|
||||
S1I = S1I*STR
|
||||
S2R = S2R*STR
|
||||
S2I = S2I*STR
|
||||
P1R = CSRR(KFLAG)
|
||||
260 CONTINUE
|
||||
RETURN
|
||||
C-----------------------------------------------------------------------
|
||||
C IFLAG=1 CASES, FORWARD RECURRENCE ON SCALED VALUES ON UNDERFLOW
|
||||
C-----------------------------------------------------------------------
|
||||
261 CONTINUE
|
||||
HELIM = 0.5D0*ELIM
|
||||
ELM = DEXP(-ELIM)
|
||||
CELMR = ELM
|
||||
ASCLE = BRY(1)
|
||||
ZDR = ZR
|
||||
ZDI = ZI
|
||||
IC = -1
|
||||
J = 2
|
||||
DO 262 I=1,INU
|
||||
STR = S2R
|
||||
STI = S2I
|
||||
S2R = STR*CKR-STI*CKI+S1R
|
||||
S2I = STI*CKR+STR*CKI+S1I
|
||||
S1R = STR
|
||||
S1I = STI
|
||||
CKR = CKR+RZR
|
||||
CKI = CKI+RZI
|
||||
AS = AZABS(S2R,S2I)
|
||||
ALAS = DLOG(AS)
|
||||
P2R = -ZDR+ALAS
|
||||
IF(P2R.LT.(-ELIM)) GO TO 263
|
||||
CALL AZLOG(S2R,S2I,STR,STI,IDUM)
|
||||
P2R = -ZDR+STR
|
||||
P2I = -ZDI+STI
|
||||
P2M = DEXP(P2R)/TOL
|
||||
P1R = P2M*DCOS(P2I)
|
||||
P1I = P2M*DSIN(P2I)
|
||||
CALL ZUCHK(P1R,P1I,NW,ASCLE,TOL)
|
||||
IF(NW.NE.0) GO TO 263
|
||||
J = 3 - J
|
||||
CYR(J) = P1R
|
||||
CYI(J) = P1I
|
||||
IF(IC.EQ.(I-1)) GO TO 264
|
||||
IC = I
|
||||
GO TO 262
|
||||
263 CONTINUE
|
||||
IF(ALAS.LT.HELIM) GO TO 262
|
||||
ZDR = ZDR-ELIM
|
||||
S1R = S1R*CELMR
|
||||
S1I = S1I*CELMR
|
||||
S2R = S2R*CELMR
|
||||
S2I = S2I*CELMR
|
||||
262 CONTINUE
|
||||
IF(N.NE.1) GO TO 270
|
||||
S1R = S2R
|
||||
S1I = S2I
|
||||
GO TO 270
|
||||
264 CONTINUE
|
||||
KFLAG = 1
|
||||
INUB = I+1
|
||||
S2R = CYR(J)
|
||||
S2I = CYI(J)
|
||||
J = 3 - J
|
||||
S1R = CYR(J)
|
||||
S1I = CYI(J)
|
||||
IF(INUB.LE.INU) GO TO 225
|
||||
IF(N.NE.1) GO TO 240
|
||||
S1R = S2R
|
||||
S1I = S2I
|
||||
GO TO 240
|
||||
270 CONTINUE
|
||||
YR(1) = S1R
|
||||
YI(1) = S1I
|
||||
IF(N.EQ.1) GO TO 280
|
||||
YR(2) = S2R
|
||||
YI(2) = S2I
|
||||
280 CONTINUE
|
||||
ASCLE = BRY(1)
|
||||
CALL ZKSCL(ZDR,ZDI,FNU,N,YR,YI,NZ,RZR,RZI,ASCLE,TOL,ELIM)
|
||||
INU = N - NZ
|
||||
IF (INU.LE.0) RETURN
|
||||
KK = NZ + 1
|
||||
S1R = YR(KK)
|
||||
S1I = YI(KK)
|
||||
YR(KK) = S1R*CSRR(1)
|
||||
YI(KK) = S1I*CSRR(1)
|
||||
IF (INU.EQ.1) RETURN
|
||||
KK = NZ + 2
|
||||
S2R = YR(KK)
|
||||
S2I = YI(KK)
|
||||
YR(KK) = S2R*CSRR(1)
|
||||
YI(KK) = S2I*CSRR(1)
|
||||
IF (INU.EQ.2) RETURN
|
||||
T2 = FNU + DBLE(FLOAT(KK-1))
|
||||
CKR = T2*RZR
|
||||
CKI = T2*RZI
|
||||
KFLAG = 1
|
||||
GO TO 250
|
||||
290 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C SCALE BY DEXP(Z), IFLAG = 1 CASES
|
||||
C-----------------------------------------------------------------------
|
||||
KODED = 2
|
||||
IFLAG = 1
|
||||
KFLAG = 2
|
||||
GO TO 120
|
||||
C-----------------------------------------------------------------------
|
||||
C FNU=HALF ODD INTEGER CASE, DNU=-0.5
|
||||
C-----------------------------------------------------------------------
|
||||
300 CONTINUE
|
||||
S1R = COEFR
|
||||
S1I = COEFI
|
||||
S2R = COEFR
|
||||
S2I = COEFI
|
||||
GO TO 210
|
||||
C
|
||||
C
|
||||
310 CONTINUE
|
||||
NZ=-2
|
||||
RETURN
|
||||
END
|
174
amos/zbuni.f
174
amos/zbuni.f
|
@ -1,174 +0,0 @@
|
|||
SUBROUTINE ZBUNI(ZR, ZI, FNU, KODE, N, YR, YI, NZ, NUI, NLAST,
|
||||
* FNUL, TOL, ELIM, ALIM)
|
||||
C***BEGIN PROLOGUE ZBUNI
|
||||
C***REFER TO ZBESI,ZBESK
|
||||
C
|
||||
C ZBUNI COMPUTES THE I BESSEL FUNCTION FOR LARGE CABS(Z).GT.
|
||||
C FNUL AND FNU+N-1.LT.FNUL. THE ORDER IS INCREASED FROM
|
||||
C FNU+N-1 GREATER THAN FNUL BY ADDING NUI AND COMPUTING
|
||||
C ACCORDING TO THE UNIFORM ASYMPTOTIC EXPANSION FOR I(FNU,Z)
|
||||
C ON IFORM=1 AND THE EXPANSION FOR J(FNU,Z) ON IFORM=2
|
||||
C
|
||||
C***ROUTINES CALLED ZUNI1,ZUNI2,AZABS,D1MACH
|
||||
C***END PROLOGUE ZBUNI
|
||||
C COMPLEX CSCL,CSCR,CY,RZ,ST,S1,S2,Y,Z
|
||||
DOUBLE PRECISION ALIM, AX, AY, CSCLR, CSCRR, CYI, CYR, DFNU,
|
||||
* ELIM, FNU, FNUI, FNUL, GNU, RAZ, RZI, RZR, STI, STR, S1I, S1R,
|
||||
* S2I, S2R, TOL, YI, YR, ZI, ZR, AZABS, ASCLE, BRY, C1R, C1I, C1M,
|
||||
* D1MACH
|
||||
INTEGER I, IFLAG, IFORM, K, KODE, N, NL, NLAST, NUI, NW, NZ
|
||||
DIMENSION YR(N), YI(N), CYR(2), CYI(2), BRY(3)
|
||||
NZ = 0
|
||||
AX = DABS(ZR)*1.7321D0
|
||||
AY = DABS(ZI)
|
||||
IFORM = 1
|
||||
IF (AY.GT.AX) IFORM = 2
|
||||
IF (NUI.EQ.0) GO TO 60
|
||||
FNUI = DBLE(FLOAT(NUI))
|
||||
DFNU = FNU + DBLE(FLOAT(N-1))
|
||||
GNU = DFNU + FNUI
|
||||
IF (IFORM.EQ.2) GO TO 10
|
||||
C-----------------------------------------------------------------------
|
||||
C ASYMPTOTIC EXPANSION FOR I(FNU,Z) FOR LARGE FNU APPLIED IN
|
||||
C -PI/3.LE.ARG(Z).LE.PI/3
|
||||
C-----------------------------------------------------------------------
|
||||
CALL ZUNI1(ZR, ZI, GNU, KODE, 2, CYR, CYI, NW, NLAST, FNUL, TOL,
|
||||
* ELIM, ALIM)
|
||||
GO TO 20
|
||||
10 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C ASYMPTOTIC EXPANSION FOR J(FNU,Z*EXP(M*HPI)) FOR LARGE FNU
|
||||
C APPLIED IN PI/3.LT.ABS(ARG(Z)).LE.PI/2 WHERE M=+I OR -I
|
||||
C AND HPI=PI/2
|
||||
C-----------------------------------------------------------------------
|
||||
CALL ZUNI2(ZR, ZI, GNU, KODE, 2, CYR, CYI, NW, NLAST, FNUL, TOL,
|
||||
* ELIM, ALIM)
|
||||
20 CONTINUE
|
||||
IF (NW.LT.0) GO TO 50
|
||||
IF (NW.NE.0) GO TO 90
|
||||
STR = AZABS(CYR(1),CYI(1))
|
||||
C----------------------------------------------------------------------
|
||||
C SCALE BACKWARD RECURRENCE, BRY(3) IS DEFINED BUT NEVER USED
|
||||
C----------------------------------------------------------------------
|
||||
BRY(1)=1.0D+3*D1MACH(1)/TOL
|
||||
BRY(2) = 1.0D0/BRY(1)
|
||||
BRY(3) = BRY(2)
|
||||
IFLAG = 2
|
||||
ASCLE = BRY(2)
|
||||
CSCLR = 1.0D0
|
||||
IF (STR.GT.BRY(1)) GO TO 21
|
||||
IFLAG = 1
|
||||
ASCLE = BRY(1)
|
||||
CSCLR = 1.0D0/TOL
|
||||
GO TO 25
|
||||
21 CONTINUE
|
||||
IF (STR.LT.BRY(2)) GO TO 25
|
||||
IFLAG = 3
|
||||
ASCLE=BRY(3)
|
||||
CSCLR = TOL
|
||||
25 CONTINUE
|
||||
CSCRR = 1.0D0/CSCLR
|
||||
S1R = CYR(2)*CSCLR
|
||||
S1I = CYI(2)*CSCLR
|
||||
S2R = CYR(1)*CSCLR
|
||||
S2I = CYI(1)*CSCLR
|
||||
RAZ = 1.0D0/AZABS(ZR,ZI)
|
||||
STR = ZR*RAZ
|
||||
STI = -ZI*RAZ
|
||||
RZR = (STR+STR)*RAZ
|
||||
RZI = (STI+STI)*RAZ
|
||||
DO 30 I=1,NUI
|
||||
STR = S2R
|
||||
STI = S2I
|
||||
S2R = (DFNU+FNUI)*(RZR*STR-RZI*STI) + S1R
|
||||
S2I = (DFNU+FNUI)*(RZR*STI+RZI*STR) + S1I
|
||||
S1R = STR
|
||||
S1I = STI
|
||||
FNUI = FNUI - 1.0D0
|
||||
IF (IFLAG.GE.3) GO TO 30
|
||||
STR = S2R*CSCRR
|
||||
STI = S2I*CSCRR
|
||||
C1R = DABS(STR)
|
||||
C1I = DABS(STI)
|
||||
C1M = DMAX1(C1R,C1I)
|
||||
IF (C1M.LE.ASCLE) GO TO 30
|
||||
IFLAG = IFLAG+1
|
||||
ASCLE = BRY(IFLAG)
|
||||
S1R = S1R*CSCRR
|
||||
S1I = S1I*CSCRR
|
||||
S2R = STR
|
||||
S2I = STI
|
||||
CSCLR = CSCLR*TOL
|
||||
CSCRR = 1.0D0/CSCLR
|
||||
S1R = S1R*CSCLR
|
||||
S1I = S1I*CSCLR
|
||||
S2R = S2R*CSCLR
|
||||
S2I = S2I*CSCLR
|
||||
30 CONTINUE
|
||||
YR(N) = S2R*CSCRR
|
||||
YI(N) = S2I*CSCRR
|
||||
IF (N.EQ.1) RETURN
|
||||
NL = N - 1
|
||||
FNUI = DBLE(FLOAT(NL))
|
||||
K = NL
|
||||
DO 40 I=1,NL
|
||||
STR = S2R
|
||||
STI = S2I
|
||||
S2R = (FNU+FNUI)*(RZR*STR-RZI*STI) + S1R
|
||||
S2I = (FNU+FNUI)*(RZR*STI+RZI*STR) + S1I
|
||||
S1R = STR
|
||||
S1I = STI
|
||||
STR = S2R*CSCRR
|
||||
STI = S2I*CSCRR
|
||||
YR(K) = STR
|
||||
YI(K) = STI
|
||||
FNUI = FNUI - 1.0D0
|
||||
K = K - 1
|
||||
IF (IFLAG.GE.3) GO TO 40
|
||||
C1R = DABS(STR)
|
||||
C1I = DABS(STI)
|
||||
C1M = DMAX1(C1R,C1I)
|
||||
IF (C1M.LE.ASCLE) GO TO 40
|
||||
IFLAG = IFLAG+1
|
||||
ASCLE = BRY(IFLAG)
|
||||
S1R = S1R*CSCRR
|
||||
S1I = S1I*CSCRR
|
||||
S2R = STR
|
||||
S2I = STI
|
||||
CSCLR = CSCLR*TOL
|
||||
CSCRR = 1.0D0/CSCLR
|
||||
S1R = S1R*CSCLR
|
||||
S1I = S1I*CSCLR
|
||||
S2R = S2R*CSCLR
|
||||
S2I = S2I*CSCLR
|
||||
40 CONTINUE
|
||||
RETURN
|
||||
50 CONTINUE
|
||||
NZ = -1
|
||||
IF(NW.EQ.(-2)) NZ=-2
|
||||
RETURN
|
||||
60 CONTINUE
|
||||
IF (IFORM.EQ.2) GO TO 70
|
||||
C-----------------------------------------------------------------------
|
||||
C ASYMPTOTIC EXPANSION FOR I(FNU,Z) FOR LARGE FNU APPLIED IN
|
||||
C -PI/3.LE.ARG(Z).LE.PI/3
|
||||
C-----------------------------------------------------------------------
|
||||
CALL ZUNI1(ZR, ZI, FNU, KODE, N, YR, YI, NW, NLAST, FNUL, TOL,
|
||||
* ELIM, ALIM)
|
||||
GO TO 80
|
||||
70 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C ASYMPTOTIC EXPANSION FOR J(FNU,Z*EXP(M*HPI)) FOR LARGE FNU
|
||||
C APPLIED IN PI/3.LT.ABS(ARG(Z)).LE.PI/2 WHERE M=+I OR -I
|
||||
C AND HPI=PI/2
|
||||
C-----------------------------------------------------------------------
|
||||
CALL ZUNI2(ZR, ZI, FNU, KODE, N, YR, YI, NW, NLAST, FNUL, TOL,
|
||||
* ELIM, ALIM)
|
||||
80 CONTINUE
|
||||
IF (NW.LT.0) GO TO 50
|
||||
NZ = NW
|
||||
RETURN
|
||||
90 CONTINUE
|
||||
NLAST = N
|
||||
RETURN
|
||||
END
|
35
amos/zbunk.f
35
amos/zbunk.f
|
@ -1,35 +0,0 @@
|
|||
SUBROUTINE ZBUNK(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, TOL, ELIM,
|
||||
* ALIM)
|
||||
C***BEGIN PROLOGUE ZBUNK
|
||||
C***REFER TO ZBESK,ZBESH
|
||||
C
|
||||
C ZBUNK COMPUTES THE K BESSEL FUNCTION FOR FNU.GT.FNUL.
|
||||
C ACCORDING TO THE UNIFORM ASYMPTOTIC EXPANSION FOR K(FNU,Z)
|
||||
C IN ZUNK1 AND THE EXPANSION FOR H(2,FNU,Z) IN ZUNK2
|
||||
C
|
||||
C***ROUTINES CALLED ZUNK1,ZUNK2
|
||||
C***END PROLOGUE ZBUNK
|
||||
C COMPLEX Y,Z
|
||||
DOUBLE PRECISION ALIM, AX, AY, ELIM, FNU, TOL, YI, YR, ZI, ZR
|
||||
INTEGER KODE, MR, N, NZ
|
||||
DIMENSION YR(N), YI(N)
|
||||
NZ = 0
|
||||
AX = DABS(ZR)*1.7321D0
|
||||
AY = DABS(ZI)
|
||||
IF (AY.GT.AX) GO TO 10
|
||||
C-----------------------------------------------------------------------
|
||||
C ASYMPTOTIC EXPANSION FOR K(FNU,Z) FOR LARGE FNU APPLIED IN
|
||||
C -PI/3.LE.ARG(Z).LE.PI/3
|
||||
C-----------------------------------------------------------------------
|
||||
CALL ZUNK1(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, TOL, ELIM, ALIM)
|
||||
GO TO 20
|
||||
10 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C ASYMPTOTIC EXPANSION FOR H(2,FNU,Z*EXP(M*HPI)) FOR LARGE FNU
|
||||
C APPLIED IN PI/3.LT.ABS(ARG(Z)).LE.PI/2 WHERE M=+I OR -I
|
||||
C AND HPI=PI/2
|
||||
C-----------------------------------------------------------------------
|
||||
CALL ZUNK2(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, TOL, ELIM, ALIM)
|
||||
20 CONTINUE
|
||||
RETURN
|
||||
END
|
19
amos/zdiv.f
19
amos/zdiv.f
|
@ -1,19 +0,0 @@
|
|||
SUBROUTINE ZDIV(AR, AI, BR, BI, CR, CI)
|
||||
C***BEGIN PROLOGUE ZDIV
|
||||
C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY
|
||||
C
|
||||
C DOUBLE PRECISION COMPLEX DIVIDE C=A/B.
|
||||
C
|
||||
C***ROUTINES CALLED AZABS
|
||||
C***END PROLOGUE ZDIV
|
||||
DOUBLE PRECISION AR, AI, BR, BI, CR, CI, BM, CA, CB, CC, CD
|
||||
DOUBLE PRECISION AZABS
|
||||
BM = 1.0D0/AZABS(BR,BI)
|
||||
CC = BR*BM
|
||||
CD = BI*BM
|
||||
CA = (AR*CC+AI*CD)*BM
|
||||
CB = (AI*CC-AR*CD)*BM
|
||||
CR = CA
|
||||
CI = CB
|
||||
RETURN
|
||||
END
|
16
amos/zexp.f
16
amos/zexp.f
|
@ -1,16 +0,0 @@
|
|||
SUBROUTINE AZEXP(AR, AI, BR, BI)
|
||||
C***BEGIN PROLOGUE AZEXP
|
||||
C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY
|
||||
C
|
||||
C DOUBLE PRECISION COMPLEX EXPONENTIAL FUNCTION B=EXP(A)
|
||||
C
|
||||
C***ROUTINES CALLED (NONE)
|
||||
C***END PROLOGUE AZEXP
|
||||
DOUBLE PRECISION AR, AI, BR, BI, ZM, CA, CB
|
||||
ZM = DEXP(AR)
|
||||
CA = ZM*DCOS(AI)
|
||||
CB = ZM*DSIN(AI)
|
||||
BR = CA
|
||||
BI = CB
|
||||
RETURN
|
||||
END
|
121
amos/zkscl.f
121
amos/zkscl.f
|
@ -1,121 +0,0 @@
|
|||
SUBROUTINE ZKSCL(ZRR,ZRI,FNU,N,YR,YI,NZ,RZR,RZI,ASCLE,TOL,ELIM)
|
||||
C***BEGIN PROLOGUE ZKSCL
|
||||
C***REFER TO ZBESK
|
||||
C
|
||||
C SET K FUNCTIONS TO ZERO ON UNDERFLOW, CONTINUE RECURRENCE
|
||||
C ON SCALED FUNCTIONS UNTIL TWO MEMBERS COME ON SCALE, THEN
|
||||
C RETURN WITH MIN(NZ+2,N) VALUES SCALED BY 1/TOL.
|
||||
C
|
||||
C***ROUTINES CALLED ZUCHK,AZABS,AZLOG
|
||||
C***END PROLOGUE ZKSCL
|
||||
C COMPLEX CK,CS,CY,CZERO,RZ,S1,S2,Y,ZR,ZD,CELM
|
||||
DOUBLE PRECISION ACS, AS, ASCLE, CKI, CKR, CSI, CSR, CYI,
|
||||
* CYR, ELIM, FN, FNU, RZI, RZR, STR, S1I, S1R, S2I,
|
||||
* S2R, TOL, YI, YR, ZEROI, ZEROR, ZRI, ZRR, AZABS,
|
||||
* ZDR, ZDI, CELMR, ELM, HELIM, ALAS
|
||||
INTEGER I, IC, IDUM, KK, N, NN, NW, NZ
|
||||
DIMENSION YR(N), YI(N), CYR(2), CYI(2)
|
||||
DATA ZEROR,ZEROI / 0.0D0 , 0.0D0 /
|
||||
C
|
||||
NZ = 0
|
||||
IC = 0
|
||||
NN = MIN0(2,N)
|
||||
DO 10 I=1,NN
|
||||
S1R = YR(I)
|
||||
S1I = YI(I)
|
||||
CYR(I) = S1R
|
||||
CYI(I) = S1I
|
||||
AS = AZABS(S1R,S1I)
|
||||
ACS = -ZRR + DLOG(AS)
|
||||
NZ = NZ + 1
|
||||
YR(I) = ZEROR
|
||||
YI(I) = ZEROI
|
||||
IF (ACS.LT.(-ELIM)) GO TO 10
|
||||
CALL AZLOG(S1R, S1I, CSR, CSI, IDUM)
|
||||
CSR = CSR - ZRR
|
||||
CSI = CSI - ZRI
|
||||
STR = DEXP(CSR)/TOL
|
||||
CSR = STR*DCOS(CSI)
|
||||
CSI = STR*DSIN(CSI)
|
||||
CALL ZUCHK(CSR, CSI, NW, ASCLE, TOL)
|
||||
IF (NW.NE.0) GO TO 10
|
||||
YR(I) = CSR
|
||||
YI(I) = CSI
|
||||
IC = I
|
||||
NZ = NZ - 1
|
||||
10 CONTINUE
|
||||
IF (N.EQ.1) RETURN
|
||||
IF (IC.GT.1) GO TO 20
|
||||
YR(1) = ZEROR
|
||||
YI(1) = ZEROI
|
||||
NZ = 2
|
||||
20 CONTINUE
|
||||
IF (N.EQ.2) RETURN
|
||||
IF (NZ.EQ.0) RETURN
|
||||
FN = FNU + 1.0D0
|
||||
CKR = FN*RZR
|
||||
CKI = FN*RZI
|
||||
S1R = CYR(1)
|
||||
S1I = CYI(1)
|
||||
S2R = CYR(2)
|
||||
S2I = CYI(2)
|
||||
HELIM = 0.5D0*ELIM
|
||||
ELM = DEXP(-ELIM)
|
||||
CELMR = ELM
|
||||
ZDR = ZRR
|
||||
ZDI = ZRI
|
||||
C
|
||||
C FIND TWO CONSECUTIVE Y VALUES ON SCALE. SCALE RECURRENCE IF
|
||||
C S2 GETS LARGER THAN EXP(ELIM/2)
|
||||
C
|
||||
DO 30 I=3,N
|
||||
KK = I
|
||||
CSR = S2R
|
||||
CSI = S2I
|
||||
S2R = CKR*CSR - CKI*CSI + S1R
|
||||
S2I = CKI*CSR + CKR*CSI + S1I
|
||||
S1R = CSR
|
||||
S1I = CSI
|
||||
CKR = CKR + RZR
|
||||
CKI = CKI + RZI
|
||||
AS = AZABS(S2R,S2I)
|
||||
ALAS = DLOG(AS)
|
||||
ACS = -ZDR + ALAS
|
||||
NZ = NZ + 1
|
||||
YR(I) = ZEROR
|
||||
YI(I) = ZEROI
|
||||
IF (ACS.LT.(-ELIM)) GO TO 25
|
||||
CALL AZLOG(S2R, S2I, CSR, CSI, IDUM)
|
||||
CSR = CSR - ZDR
|
||||
CSI = CSI - ZDI
|
||||
STR = DEXP(CSR)/TOL
|
||||
CSR = STR*DCOS(CSI)
|
||||
CSI = STR*DSIN(CSI)
|
||||
CALL ZUCHK(CSR, CSI, NW, ASCLE, TOL)
|
||||
IF (NW.NE.0) GO TO 25
|
||||
YR(I) = CSR
|
||||
YI(I) = CSI
|
||||
NZ = NZ - 1
|
||||
IF (IC.EQ.KK-1) GO TO 40
|
||||
IC = KK
|
||||
GO TO 30
|
||||
25 CONTINUE
|
||||
IF(ALAS.LT.HELIM) GO TO 30
|
||||
ZDR = ZDR - ELIM
|
||||
S1R = S1R*CELMR
|
||||
S1I = S1I*CELMR
|
||||
S2R = S2R*CELMR
|
||||
S2I = S2I*CELMR
|
||||
30 CONTINUE
|
||||
NZ = N
|
||||
IF(IC.EQ.N) NZ=N-1
|
||||
GO TO 45
|
||||
40 CONTINUE
|
||||
NZ = KK - 2
|
||||
45 CONTINUE
|
||||
DO 50 I=1,NZ
|
||||
YR(I) = ZEROR
|
||||
YI(I) = ZEROI
|
||||
50 CONTINUE
|
||||
RETURN
|
||||
END
|
41
amos/zlog.f
41
amos/zlog.f
|
@ -1,41 +0,0 @@
|
|||
SUBROUTINE AZLOG(AR, AI, BR, BI, IERR)
|
||||
C***BEGIN PROLOGUE AZLOG
|
||||
C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY
|
||||
C
|
||||
C DOUBLE PRECISION COMPLEX LOGARITHM B=CLOG(A)
|
||||
C IERR=0,NORMAL RETURN IERR=1, Z=CMPLX(0.0,0.0)
|
||||
C***ROUTINES CALLED AZABS
|
||||
C***END PROLOGUE AZLOG
|
||||
DOUBLE PRECISION AR, AI, BR, BI, ZM, DTHETA, DPI, DHPI
|
||||
DOUBLE PRECISION AZABS
|
||||
DATA DPI , DHPI / 3.141592653589793238462643383D+0,
|
||||
1 1.570796326794896619231321696D+0/
|
||||
C
|
||||
IERR=0
|
||||
IF (AR.EQ.0.0D+0) GO TO 10
|
||||
IF (AI.EQ.0.0D+0) GO TO 20
|
||||
DTHETA = DATAN(AI/AR)
|
||||
IF (DTHETA.LE.0.0D+0) GO TO 40
|
||||
IF (AR.LT.0.0D+0) DTHETA = DTHETA - DPI
|
||||
GO TO 50
|
||||
10 IF (AI.EQ.0.0D+0) GO TO 60
|
||||
BI = DHPI
|
||||
BR = DLOG(DABS(AI))
|
||||
IF (AI.LT.0.0D+0) BI = -BI
|
||||
RETURN
|
||||
20 IF (AR.GT.0.0D+0) GO TO 30
|
||||
BR = DLOG(DABS(AR))
|
||||
BI = DPI
|
||||
RETURN
|
||||
30 BR = DLOG(AR)
|
||||
BI = 0.0D+0
|
||||
RETURN
|
||||
40 IF (AR.LT.0.0D+0) DTHETA = DTHETA + DPI
|
||||
50 ZM = AZABS(AR,AI)
|
||||
BR = DLOG(ZM)
|
||||
BI = DTHETA
|
||||
RETURN
|
||||
60 CONTINUE
|
||||
IERR=1
|
||||
RETURN
|
||||
END
|
204
amos/zmlri.f
204
amos/zmlri.f
|
@ -1,204 +0,0 @@
|
|||
SUBROUTINE ZMLRI(ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL)
|
||||
C***BEGIN PROLOGUE ZMLRI
|
||||
C***REFER TO ZBESI,ZBESK
|
||||
C
|
||||
C ZMLRI COMPUTES THE I BESSEL FUNCTION FOR RE(Z).GE.0.0 BY THE
|
||||
C MILLER ALGORITHM NORMALIZED BY A NEUMANN SERIES.
|
||||
C
|
||||
C***ROUTINES CALLED DGAMLN,D1MACH,AZABS,AZEXP,AZLOG,ZMLT
|
||||
C***END PROLOGUE ZMLRI
|
||||
C COMPLEX CK,CNORM,CONE,CTWO,CZERO,PT,P1,P2,RZ,SUM,Y,Z
|
||||
DOUBLE PRECISION ACK, AK, AP, AT, AZ, BK, CKI, CKR, CNORMI,
|
||||
* CNORMR, CONEI, CONER, FKAP, FKK, FLAM, FNF, FNU, PTI, PTR, P1I,
|
||||
* P1R, P2I, P2R, RAZ, RHO, RHO2, RZI, RZR, SCLE, STI, STR, SUMI,
|
||||
* SUMR, TFNF, TOL, TST, YI, YR, ZEROI, ZEROR, ZI, ZR, DGAMLN,
|
||||
* D1MACH, AZABS
|
||||
INTEGER I, IAZ, IDUM, IFNU, INU, ITIME, K, KK, KM, KODE, M, N, NZ
|
||||
DIMENSION YR(N), YI(N)
|
||||
DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 /
|
||||
SCLE = D1MACH(1)/TOL
|
||||
NZ=0
|
||||
AZ = AZABS(ZR,ZI)
|
||||
IAZ = INT(SNGL(AZ))
|
||||
IFNU = INT(SNGL(FNU))
|
||||
INU = IFNU + N - 1
|
||||
AT = DBLE(FLOAT(IAZ)) + 1.0D0
|
||||
RAZ = 1.0D0/AZ
|
||||
STR = ZR*RAZ
|
||||
STI = -ZI*RAZ
|
||||
CKR = STR*AT*RAZ
|
||||
CKI = STI*AT*RAZ
|
||||
RZR = (STR+STR)*RAZ
|
||||
RZI = (STI+STI)*RAZ
|
||||
P1R = ZEROR
|
||||
P1I = ZEROI
|
||||
P2R = CONER
|
||||
P2I = CONEI
|
||||
ACK = (AT+1.0D0)*RAZ
|
||||
RHO = ACK + DSQRT(ACK*ACK-1.0D0)
|
||||
RHO2 = RHO*RHO
|
||||
TST = (RHO2+RHO2)/((RHO2-1.0D0)*(RHO-1.0D0))
|
||||
TST = TST/TOL
|
||||
C-----------------------------------------------------------------------
|
||||
C COMPUTE RELATIVE TRUNCATION ERROR INDEX FOR SERIES
|
||||
C-----------------------------------------------------------------------
|
||||
AK = AT
|
||||
DO 10 I=1,80
|
||||
PTR = P2R
|
||||
PTI = P2I
|
||||
P2R = P1R - (CKR*PTR-CKI*PTI)
|
||||
P2I = P1I - (CKI*PTR+CKR*PTI)
|
||||
P1R = PTR
|
||||
P1I = PTI
|
||||
CKR = CKR + RZR
|
||||
CKI = CKI + RZI
|
||||
AP = AZABS(P2R,P2I)
|
||||
IF (AP.GT.TST*AK*AK) GO TO 20
|
||||
AK = AK + 1.0D0
|
||||
10 CONTINUE
|
||||
GO TO 110
|
||||
20 CONTINUE
|
||||
I = I + 1
|
||||
K = 0
|
||||
IF (INU.LT.IAZ) GO TO 40
|
||||
C-----------------------------------------------------------------------
|
||||
C COMPUTE RELATIVE TRUNCATION ERROR FOR RATIOS
|
||||
C-----------------------------------------------------------------------
|
||||
P1R = ZEROR
|
||||
P1I = ZEROI
|
||||
P2R = CONER
|
||||
P2I = CONEI
|
||||
AT = DBLE(FLOAT(INU)) + 1.0D0
|
||||
STR = ZR*RAZ
|
||||
STI = -ZI*RAZ
|
||||
CKR = STR*AT*RAZ
|
||||
CKI = STI*AT*RAZ
|
||||
ACK = AT*RAZ
|
||||
TST = DSQRT(ACK/TOL)
|
||||
ITIME = 1
|
||||
DO 30 K=1,80
|
||||
PTR = P2R
|
||||
PTI = P2I
|
||||
P2R = P1R - (CKR*PTR-CKI*PTI)
|
||||
P2I = P1I - (CKR*PTI+CKI*PTR)
|
||||
P1R = PTR
|
||||
P1I = PTI
|
||||
CKR = CKR + RZR
|
||||
CKI = CKI + RZI
|
||||
AP = AZABS(P2R,P2I)
|
||||
IF (AP.LT.TST) GO TO 30
|
||||
IF (ITIME.EQ.2) GO TO 40
|
||||
ACK = AZABS(CKR,CKI)
|
||||
FLAM = ACK + DSQRT(ACK*ACK-1.0D0)
|
||||
FKAP = AP/AZABS(P1R,P1I)
|
||||
RHO = DMIN1(FLAM,FKAP)
|
||||
TST = TST*DSQRT(RHO/(RHO*RHO-1.0D0))
|
||||
ITIME = 2
|
||||
30 CONTINUE
|
||||
GO TO 110
|
||||
40 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C BACKWARD RECURRENCE AND SUM NORMALIZING RELATION
|
||||
C-----------------------------------------------------------------------
|
||||
K = K + 1
|
||||
KK = MAX0(I+IAZ,K+INU)
|
||||
FKK = DBLE(FLOAT(KK))
|
||||
P1R = ZEROR
|
||||
P1I = ZEROI
|
||||
C-----------------------------------------------------------------------
|
||||
C SCALE P2 AND SUM BY SCLE
|
||||
C-----------------------------------------------------------------------
|
||||
P2R = SCLE
|
||||
P2I = ZEROI
|
||||
FNF = FNU - DBLE(FLOAT(IFNU))
|
||||
TFNF = FNF + FNF
|
||||
BK = DGAMLN(FKK+TFNF+1.0D0,IDUM) - DGAMLN(FKK+1.0D0,IDUM) -
|
||||
* DGAMLN(TFNF+1.0D0,IDUM)
|
||||
BK = DEXP(BK)
|
||||
SUMR = ZEROR
|
||||
SUMI = ZEROI
|
||||
KM = KK - INU
|
||||
DO 50 I=1,KM
|
||||
PTR = P2R
|
||||
PTI = P2I
|
||||
P2R = P1R + (FKK+FNF)*(RZR*PTR-RZI*PTI)
|
||||
P2I = P1I + (FKK+FNF)*(RZI*PTR+RZR*PTI)
|
||||
P1R = PTR
|
||||
P1I = PTI
|
||||
AK = 1.0D0 - TFNF/(FKK+TFNF)
|
||||
ACK = BK*AK
|
||||
SUMR = SUMR + (ACK+BK)*P1R
|
||||
SUMI = SUMI + (ACK+BK)*P1I
|
||||
BK = ACK
|
||||
FKK = FKK - 1.0D0
|
||||
50 CONTINUE
|
||||
YR(N) = P2R
|
||||
YI(N) = P2I
|
||||
IF (N.EQ.1) GO TO 70
|
||||
DO 60 I=2,N
|
||||
PTR = P2R
|
||||
PTI = P2I
|
||||
P2R = P1R + (FKK+FNF)*(RZR*PTR-RZI*PTI)
|
||||
P2I = P1I + (FKK+FNF)*(RZI*PTR+RZR*PTI)
|
||||
P1R = PTR
|
||||
P1I = PTI
|
||||
AK = 1.0D0 - TFNF/(FKK+TFNF)
|
||||
ACK = BK*AK
|
||||
SUMR = SUMR + (ACK+BK)*P1R
|
||||
SUMI = SUMI + (ACK+BK)*P1I
|
||||
BK = ACK
|
||||
FKK = FKK - 1.0D0
|
||||
M = N - I + 1
|
||||
YR(M) = P2R
|
||||
YI(M) = P2I
|
||||
60 CONTINUE
|
||||
70 CONTINUE
|
||||
IF (IFNU.LE.0) GO TO 90
|
||||
DO 80 I=1,IFNU
|
||||
PTR = P2R
|
||||
PTI = P2I
|
||||
P2R = P1R + (FKK+FNF)*(RZR*PTR-RZI*PTI)
|
||||
P2I = P1I + (FKK+FNF)*(RZR*PTI+RZI*PTR)
|
||||
P1R = PTR
|
||||
P1I = PTI
|
||||
AK = 1.0D0 - TFNF/(FKK+TFNF)
|
||||
ACK = BK*AK
|
||||
SUMR = SUMR + (ACK+BK)*P1R
|
||||
SUMI = SUMI + (ACK+BK)*P1I
|
||||
BK = ACK
|
||||
FKK = FKK - 1.0D0
|
||||
80 CONTINUE
|
||||
90 CONTINUE
|
||||
PTR = ZR
|
||||
PTI = ZI
|
||||
IF (KODE.EQ.2) PTR = ZEROR
|
||||
CALL AZLOG(RZR, RZI, STR, STI, IDUM)
|
||||
P1R = -FNF*STR + PTR
|
||||
P1I = -FNF*STI + PTI
|
||||
AP = DGAMLN(1.0D0+FNF,IDUM)
|
||||
PTR = P1R - AP
|
||||
PTI = P1I
|
||||
C-----------------------------------------------------------------------
|
||||
C THE DIVISION CEXP(PT)/(SUM+P2) IS ALTERED TO AVOID OVERFLOW
|
||||
C IN THE DENOMINATOR BY SQUARING LARGE QUANTITIES
|
||||
C-----------------------------------------------------------------------
|
||||
P2R = P2R + SUMR
|
||||
P2I = P2I + SUMI
|
||||
AP = AZABS(P2R,P2I)
|
||||
P1R = 1.0D0/AP
|
||||
CALL AZEXP(PTR, PTI, STR, STI)
|
||||
CKR = STR*P1R
|
||||
CKI = STI*P1R
|
||||
PTR = P2R*P1R
|
||||
PTI = -P2I*P1R
|
||||
CALL ZMLT(CKR, CKI, PTR, PTI, CNORMR, CNORMI)
|
||||
DO 100 I=1,N
|
||||
STR = YR(I)*CNORMR - YI(I)*CNORMI
|
||||
YI(I) = YR(I)*CNORMI + YI(I)*CNORMR
|
||||
YR(I) = STR
|
||||
100 CONTINUE
|
||||
RETURN
|
||||
110 CONTINUE
|
||||
NZ=-2
|
||||
RETURN
|
||||
END
|
15
amos/zmlt.f
15
amos/zmlt.f
|
@ -1,15 +0,0 @@
|
|||
SUBROUTINE ZMLT(AR, AI, BR, BI, CR, CI)
|
||||
C***BEGIN PROLOGUE ZMLT
|
||||
C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY
|
||||
C
|
||||
C DOUBLE PRECISION COMPLEX MULTIPLY, C=A*B.
|
||||
C
|
||||
C***ROUTINES CALLED (NONE)
|
||||
C***END PROLOGUE ZMLT
|
||||
DOUBLE PRECISION AR, AI, BR, BI, CR, CI, CA, CB
|
||||
CA = AR*BR - AI*BI
|
||||
CB = AR*BI + AI*BR
|
||||
CR = CA
|
||||
CI = CB
|
||||
RETURN
|
||||
END
|
132
amos/zrati.f
132
amos/zrati.f
|
@ -1,132 +0,0 @@
|
|||
SUBROUTINE ZRATI(ZR, ZI, FNU, N, CYR, CYI, TOL)
|
||||
C***BEGIN PROLOGUE ZRATI
|
||||
C***REFER TO ZBESI,ZBESK,ZBESH
|
||||
C
|
||||
C ZRATI COMPUTES RATIOS OF I BESSEL FUNCTIONS BY BACKWARD
|
||||
C RECURRENCE. THE STARTING INDEX IS DETERMINED BY FORWARD
|
||||
C RECURRENCE AS DESCRIBED IN J. RES. OF NAT. BUR. OF STANDARDS-B,
|
||||
C MATHEMATICAL SCIENCES, VOL 77B, P111-114, SEPTEMBER, 1973,
|
||||
C BESSEL FUNCTIONS I AND J OF COMPLEX ARGUMENT AND INTEGER ORDER,
|
||||
C BY D. J. SOOKNE.
|
||||
C
|
||||
C***ROUTINES CALLED AZABS,ZDIV
|
||||
C***END PROLOGUE ZRATI
|
||||
C COMPLEX Z,CY(1),CONE,CZERO,P1,P2,T1,RZ,PT,CDFNU
|
||||
DOUBLE PRECISION AK, AMAGZ, AP1, AP2, ARG, AZ, CDFNUI, CDFNUR,
|
||||
* CONEI, CONER, CYI, CYR, CZEROI, CZEROR, DFNU, FDNU, FLAM, FNU,
|
||||
* FNUP, PTI, PTR, P1I, P1R, P2I, P2R, RAK, RAP1, RHO, RT2, RZI,
|
||||
* RZR, TEST, TEST1, TOL, TTI, TTR, T1I, T1R, ZI, ZR, AZABS
|
||||
INTEGER I, ID, IDNU, INU, ITIME, K, KK, MAGZ, N
|
||||
DIMENSION CYR(N), CYI(N)
|
||||
DATA CZEROR,CZEROI,CONER,CONEI,RT2/
|
||||
1 0.0D0, 0.0D0, 1.0D0, 0.0D0, 1.41421356237309505D0 /
|
||||
AZ = AZABS(ZR,ZI)
|
||||
INU = INT(SNGL(FNU))
|
||||
IDNU = INU + N - 1
|
||||
MAGZ = INT(SNGL(AZ))
|
||||
AMAGZ = DBLE(FLOAT(MAGZ+1))
|
||||
FDNU = DBLE(FLOAT(IDNU))
|
||||
FNUP = DMAX1(AMAGZ,FDNU)
|
||||
ID = IDNU - MAGZ - 1
|
||||
ITIME = 1
|
||||
K = 1
|
||||
PTR = 1.0D0/AZ
|
||||
RZR = PTR*(ZR+ZR)*PTR
|
||||
RZI = -PTR*(ZI+ZI)*PTR
|
||||
T1R = RZR*FNUP
|
||||
T1I = RZI*FNUP
|
||||
P2R = -T1R
|
||||
P2I = -T1I
|
||||
P1R = CONER
|
||||
P1I = CONEI
|
||||
T1R = T1R + RZR
|
||||
T1I = T1I + RZI
|
||||
IF (ID.GT.0) ID = 0
|
||||
AP2 = AZABS(P2R,P2I)
|
||||
AP1 = AZABS(P1R,P1I)
|
||||
C-----------------------------------------------------------------------
|
||||
C THE OVERFLOW TEST ON K(FNU+I-1,Z) BEFORE THE CALL TO CBKNU
|
||||
C GUARANTEES THAT P2 IS ON SCALE. SCALE TEST1 AND ALL SUBSEQUENT
|
||||
C P2 VALUES BY AP1 TO ENSURE THAT AN OVERFLOW DOES NOT OCCUR
|
||||
C PREMATURELY.
|
||||
C-----------------------------------------------------------------------
|
||||
ARG = (AP2+AP2)/(AP1*TOL)
|
||||
TEST1 = DSQRT(ARG)
|
||||
TEST = TEST1
|
||||
RAP1 = 1.0D0/AP1
|
||||
P1R = P1R*RAP1
|
||||
P1I = P1I*RAP1
|
||||
P2R = P2R*RAP1
|
||||
P2I = P2I*RAP1
|
||||
AP2 = AP2*RAP1
|
||||
10 CONTINUE
|
||||
K = K + 1
|
||||
AP1 = AP2
|
||||
PTR = P2R
|
||||
PTI = P2I
|
||||
P2R = P1R - (T1R*PTR-T1I*PTI)
|
||||
P2I = P1I - (T1R*PTI+T1I*PTR)
|
||||
P1R = PTR
|
||||
P1I = PTI
|
||||
T1R = T1R + RZR
|
||||
T1I = T1I + RZI
|
||||
AP2 = AZABS(P2R,P2I)
|
||||
IF (AP1.LE.TEST) GO TO 10
|
||||
IF (ITIME.EQ.2) GO TO 20
|
||||
AK = AZABS(T1R,T1I)*0.5D0
|
||||
FLAM = AK + DSQRT(AK*AK-1.0D0)
|
||||
RHO = DMIN1(AP2/AP1,FLAM)
|
||||
TEST = TEST1*DSQRT(RHO/(RHO*RHO-1.0D0))
|
||||
ITIME = 2
|
||||
GO TO 10
|
||||
20 CONTINUE
|
||||
KK = K + 1 - ID
|
||||
AK = DBLE(FLOAT(KK))
|
||||
T1R = AK
|
||||
T1I = CZEROI
|
||||
DFNU = FNU + DBLE(FLOAT(N-1))
|
||||
P1R = 1.0D0/AP2
|
||||
P1I = CZEROI
|
||||
P2R = CZEROR
|
||||
P2I = CZEROI
|
||||
DO 30 I=1,KK
|
||||
PTR = P1R
|
||||
PTI = P1I
|
||||
RAP1 = DFNU + T1R
|
||||
TTR = RZR*RAP1
|
||||
TTI = RZI*RAP1
|
||||
P1R = (PTR*TTR-PTI*TTI) + P2R
|
||||
P1I = (PTR*TTI+PTI*TTR) + P2I
|
||||
P2R = PTR
|
||||
P2I = PTI
|
||||
T1R = T1R - CONER
|
||||
30 CONTINUE
|
||||
IF (P1R.NE.CZEROR .OR. P1I.NE.CZEROI) GO TO 40
|
||||
P1R = TOL
|
||||
P1I = TOL
|
||||
40 CONTINUE
|
||||
CALL ZDIV(P2R, P2I, P1R, P1I, CYR(N), CYI(N))
|
||||
IF (N.EQ.1) RETURN
|
||||
K = N - 1
|
||||
AK = DBLE(FLOAT(K))
|
||||
T1R = AK
|
||||
T1I = CZEROI
|
||||
CDFNUR = FNU*RZR
|
||||
CDFNUI = FNU*RZI
|
||||
DO 60 I=2,N
|
||||
PTR = CDFNUR + (T1R*RZR-T1I*RZI) + CYR(K+1)
|
||||
PTI = CDFNUI + (T1R*RZI+T1I*RZR) + CYI(K+1)
|
||||
AK = AZABS(PTR,PTI)
|
||||
IF (AK.NE.CZEROR) GO TO 50
|
||||
PTR = TOL
|
||||
PTI = TOL
|
||||
AK = TOL*RT2
|
||||
50 CONTINUE
|
||||
RAK = CONER/AK
|
||||
CYR(K) = RAK*PTR*RAK
|
||||
CYI(K) = -RAK*PTI*RAK
|
||||
T1R = T1R - CONER
|
||||
K = K - 1
|
||||
60 CONTINUE
|
||||
RETURN
|
||||
END
|
49
amos/zs1s2.f
49
amos/zs1s2.f
|
@ -1,49 +0,0 @@
|
|||
SUBROUTINE ZS1S2(ZRR, ZRI, S1R, S1I, S2R, S2I, NZ, ASCLE, ALIM,
|
||||
* IUF)
|
||||
C***BEGIN PROLOGUE ZS1S2
|
||||
C***REFER TO ZBESK,ZAIRY
|
||||
C
|
||||
C ZS1S2 TESTS FOR A POSSIBLE UNDERFLOW RESULTING FROM THE
|
||||
C ADDITION OF THE I AND K FUNCTIONS IN THE ANALYTIC CON-
|
||||
C TINUATION FORMULA WHERE S1=K FUNCTION AND S2=I FUNCTION.
|
||||
C ON KODE=1 THE I AND K FUNCTIONS ARE DIFFERENT ORDERS OF
|
||||
C MAGNITUDE, BUT FOR KODE=2 THEY CAN BE OF THE SAME ORDER
|
||||
C OF MAGNITUDE AND THE MAXIMUM MUST BE AT LEAST ONE
|
||||
C PRECISION ABOVE THE UNDERFLOW LIMIT.
|
||||
C
|
||||
C***ROUTINES CALLED AZABS,AZEXP,AZLOG
|
||||
C***END PROLOGUE ZS1S2
|
||||
C COMPLEX CZERO,C1,S1,S1D,S2,ZR
|
||||
DOUBLE PRECISION AA, ALIM, ALN, ASCLE, AS1, AS2, C1I, C1R, S1DI,
|
||||
* S1DR, S1I, S1R, S2I, S2R, ZEROI, ZEROR, ZRI, ZRR, AZABS
|
||||
INTEGER IUF, IDUM, NZ
|
||||
DATA ZEROR,ZEROI / 0.0D0 , 0.0D0 /
|
||||
NZ = 0
|
||||
AS1 = AZABS(S1R,S1I)
|
||||
AS2 = AZABS(S2R,S2I)
|
||||
IF (S1R.EQ.0.0D0 .AND. S1I.EQ.0.0D0) GO TO 10
|
||||
IF (AS1.EQ.0.0D0) GO TO 10
|
||||
ALN = -ZRR - ZRR + DLOG(AS1)
|
||||
S1DR = S1R
|
||||
S1DI = S1I
|
||||
S1R = ZEROR
|
||||
S1I = ZEROI
|
||||
AS1 = ZEROR
|
||||
IF (ALN.LT.(-ALIM)) GO TO 10
|
||||
CALL AZLOG(S1DR, S1DI, C1R, C1I, IDUM)
|
||||
C1R = C1R - ZRR - ZRR
|
||||
C1I = C1I - ZRI - ZRI
|
||||
CALL AZEXP(C1R, C1I, S1R, S1I)
|
||||
AS1 = AZABS(S1R,S1I)
|
||||
IUF = IUF + 1
|
||||
10 CONTINUE
|
||||
AA = DMAX1(AS1,AS2)
|
||||
IF (AA.GT.ASCLE) RETURN
|
||||
S1R = ZEROR
|
||||
S1I = ZEROI
|
||||
S2R = ZEROR
|
||||
S2I = ZEROI
|
||||
NZ = 1
|
||||
IUF = 0
|
||||
RETURN
|
||||
END
|
190
amos/zseri.f
190
amos/zseri.f
|
@ -1,190 +0,0 @@
|
|||
SUBROUTINE ZSERI(ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM,
|
||||
* ALIM)
|
||||
C***BEGIN PROLOGUE ZSERI
|
||||
C***REFER TO ZBESI,ZBESK
|
||||
C
|
||||
C ZSERI COMPUTES THE I BESSEL FUNCTION FOR REAL(Z).GE.0.0 BY
|
||||
C MEANS OF THE POWER SERIES FOR LARGE CABS(Z) IN THE
|
||||
C REGION CABS(Z).LE.2*SQRT(FNU+1). NZ=0 IS A NORMAL RETURN.
|
||||
C NZ.GT.0 MEANS THAT THE LAST NZ COMPONENTS WERE SET TO ZERO
|
||||
C DUE TO UNDERFLOW. NZ.LT.0 MEANS UNDERFLOW OCCURRED, BUT THE
|
||||
C CONDITION CABS(Z).LE.2*SQRT(FNU+1) WAS VIOLATED AND THE
|
||||
C COMPUTATION MUST BE COMPLETED IN ANOTHER ROUTINE WITH N=N-ABS(NZ).
|
||||
C
|
||||
C***ROUTINES CALLED DGAMLN,D1MACH,ZUCHK,AZABS,ZDIV,AZLOG,ZMLT
|
||||
C***END PROLOGUE ZSERI
|
||||
C COMPLEX AK1,CK,COEF,CONE,CRSC,CSCL,CZ,CZERO,HZ,RZ,S1,S2,Y,Z
|
||||
DOUBLE PRECISION AA, ACZ, AK, AK1I, AK1R, ALIM, ARM, ASCLE, ATOL,
|
||||
* AZ, CKI, CKR, COEFI, COEFR, CONEI, CONER, CRSCR, CZI, CZR, DFNU,
|
||||
* ELIM, FNU, FNUP, HZI, HZR, RAZ, RS, RTR1, RZI, RZR, S, SS, STI,
|
||||
* STR, S1I, S1R, S2I, S2R, TOL, YI, YR, WI, WR, ZEROI, ZEROR, ZI,
|
||||
* ZR, DGAMLN, D1MACH, AZABS
|
||||
INTEGER I, IB, IDUM, IFLAG, IL, K, KODE, L, M, N, NN, NZ, NW
|
||||
DIMENSION YR(N), YI(N), WR(2), WI(2)
|
||||
DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 /
|
||||
C
|
||||
NZ = 0
|
||||
AZ = AZABS(ZR,ZI)
|
||||
IF (AZ.EQ.0.0D0) GO TO 160
|
||||
ARM = 1.0D+3*D1MACH(1)
|
||||
RTR1 = DSQRT(ARM)
|
||||
CRSCR = 1.0D0
|
||||
IFLAG = 0
|
||||
IF (AZ.LT.ARM) GO TO 150
|
||||
HZR = 0.5D0*ZR
|
||||
HZI = 0.5D0*ZI
|
||||
CZR = ZEROR
|
||||
CZI = ZEROI
|
||||
IF (AZ.LE.RTR1) GO TO 10
|
||||
CALL ZMLT(HZR, HZI, HZR, HZI, CZR, CZI)
|
||||
10 CONTINUE
|
||||
ACZ = AZABS(CZR,CZI)
|
||||
NN = N
|
||||
CALL AZLOG(HZR, HZI, CKR, CKI, IDUM)
|
||||
20 CONTINUE
|
||||
DFNU = FNU + DBLE(FLOAT(NN-1))
|
||||
FNUP = DFNU + 1.0D0
|
||||
C-----------------------------------------------------------------------
|
||||
C UNDERFLOW TEST
|
||||
C-----------------------------------------------------------------------
|
||||
AK1R = CKR*DFNU
|
||||
AK1I = CKI*DFNU
|
||||
AK = DGAMLN(FNUP,IDUM)
|
||||
AK1R = AK1R - AK
|
||||
IF (KODE.EQ.2) AK1R = AK1R - ZR
|
||||
IF (AK1R.GT.(-ELIM)) GO TO 40
|
||||
30 CONTINUE
|
||||
NZ = NZ + 1
|
||||
YR(NN) = ZEROR
|
||||
YI(NN) = ZEROI
|
||||
IF (ACZ.GT.DFNU) GO TO 190
|
||||
NN = NN - 1
|
||||
IF (NN.EQ.0) RETURN
|
||||
GO TO 20
|
||||
40 CONTINUE
|
||||
IF (AK1R.GT.(-ALIM)) GO TO 50
|
||||
IFLAG = 1
|
||||
SS = 1.0D0/TOL
|
||||
CRSCR = TOL
|
||||
ASCLE = ARM*SS
|
||||
50 CONTINUE
|
||||
AA = DEXP(AK1R)
|
||||
IF (IFLAG.EQ.1) AA = AA*SS
|
||||
COEFR = AA*DCOS(AK1I)
|
||||
COEFI = AA*DSIN(AK1I)
|
||||
ATOL = TOL*ACZ/FNUP
|
||||
IL = MIN0(2,NN)
|
||||
DO 90 I=1,IL
|
||||
DFNU = FNU + DBLE(FLOAT(NN-I))
|
||||
FNUP = DFNU + 1.0D0
|
||||
S1R = CONER
|
||||
S1I = CONEI
|
||||
IF (ACZ.LT.TOL*FNUP) GO TO 70
|
||||
AK1R = CONER
|
||||
AK1I = CONEI
|
||||
AK = FNUP + 2.0D0
|
||||
S = FNUP
|
||||
AA = 2.0D0
|
||||
60 CONTINUE
|
||||
RS = 1.0D0/S
|
||||
STR = AK1R*CZR - AK1I*CZI
|
||||
STI = AK1R*CZI + AK1I*CZR
|
||||
AK1R = STR*RS
|
||||
AK1I = STI*RS
|
||||
S1R = S1R + AK1R
|
||||
S1I = S1I + AK1I
|
||||
S = S + AK
|
||||
AK = AK + 2.0D0
|
||||
AA = AA*ACZ*RS
|
||||
IF (AA.GT.ATOL) GO TO 60
|
||||
70 CONTINUE
|
||||
S2R = S1R*COEFR - S1I*COEFI
|
||||
S2I = S1R*COEFI + S1I*COEFR
|
||||
WR(I) = S2R
|
||||
WI(I) = S2I
|
||||
IF (IFLAG.EQ.0) GO TO 80
|
||||
CALL ZUCHK(S2R, S2I, NW, ASCLE, TOL)
|
||||
IF (NW.NE.0) GO TO 30
|
||||
80 CONTINUE
|
||||
M = NN - I + 1
|
||||
YR(M) = S2R*CRSCR
|
||||
YI(M) = S2I*CRSCR
|
||||
IF (I.EQ.IL) GO TO 90
|
||||
CALL ZDIV(COEFR, COEFI, HZR, HZI, STR, STI)
|
||||
COEFR = STR*DFNU
|
||||
COEFI = STI*DFNU
|
||||
90 CONTINUE
|
||||
IF (NN.LE.2) RETURN
|
||||
K = NN - 2
|
||||
AK = DBLE(FLOAT(K))
|
||||
RAZ = 1.0D0/AZ
|
||||
STR = ZR*RAZ
|
||||
STI = -ZI*RAZ
|
||||
RZR = (STR+STR)*RAZ
|
||||
RZI = (STI+STI)*RAZ
|
||||
IF (IFLAG.EQ.1) GO TO 120
|
||||
IB = 3
|
||||
100 CONTINUE
|
||||
DO 110 I=IB,NN
|
||||
YR(K) = (AK+FNU)*(RZR*YR(K+1)-RZI*YI(K+1)) + YR(K+2)
|
||||
YI(K) = (AK+FNU)*(RZR*YI(K+1)+RZI*YR(K+1)) + YI(K+2)
|
||||
AK = AK - 1.0D0
|
||||
K = K - 1
|
||||
110 CONTINUE
|
||||
RETURN
|
||||
C-----------------------------------------------------------------------
|
||||
C RECUR BACKWARD WITH SCALED VALUES
|
||||
C-----------------------------------------------------------------------
|
||||
120 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C EXP(-ALIM)=EXP(-ELIM)/TOL=APPROX. ONE PRECISION ABOVE THE
|
||||
C UNDERFLOW LIMIT = ASCLE = D1MACH(1)*SS*1.0D+3
|
||||
C-----------------------------------------------------------------------
|
||||
S1R = WR(1)
|
||||
S1I = WI(1)
|
||||
S2R = WR(2)
|
||||
S2I = WI(2)
|
||||
DO 130 L=3,NN
|
||||
CKR = S2R
|
||||
CKI = S2I
|
||||
S2R = S1R + (AK+FNU)*(RZR*CKR-RZI*CKI)
|
||||
S2I = S1I + (AK+FNU)*(RZR*CKI+RZI*CKR)
|
||||
S1R = CKR
|
||||
S1I = CKI
|
||||
CKR = S2R*CRSCR
|
||||
CKI = S2I*CRSCR
|
||||
YR(K) = CKR
|
||||
YI(K) = CKI
|
||||
AK = AK - 1.0D0
|
||||
K = K - 1
|
||||
IF (AZABS(CKR,CKI).GT.ASCLE) GO TO 140
|
||||
130 CONTINUE
|
||||
RETURN
|
||||
140 CONTINUE
|
||||
IB = L + 1
|
||||
IF (IB.GT.NN) RETURN
|
||||
GO TO 100
|
||||
150 CONTINUE
|
||||
NZ = N
|
||||
IF (FNU.EQ.0.0D0) NZ = NZ - 1
|
||||
160 CONTINUE
|
||||
YR(1) = ZEROR
|
||||
YI(1) = ZEROI
|
||||
IF (FNU.NE.0.0D0) GO TO 170
|
||||
YR(1) = CONER
|
||||
YI(1) = CONEI
|
||||
170 CONTINUE
|
||||
IF (N.EQ.1) RETURN
|
||||
DO 180 I=2,N
|
||||
YR(I) = ZEROR
|
||||
YI(I) = ZEROI
|
||||
180 CONTINUE
|
||||
RETURN
|
||||
C-----------------------------------------------------------------------
|
||||
C RETURN WITH NZ.LT.0 IF CABS(Z*Z/4).GT.FNU+N-NZ-1 COMPLETE
|
||||
C THE CALCULATION IN CBINU WITH N=N-IABS(NZ)
|
||||
C-----------------------------------------------------------------------
|
||||
190 CONTINUE
|
||||
NZ = -NZ
|
||||
RETURN
|
||||
END
|
22
amos/zshch.f
22
amos/zshch.f
|
@ -1,22 +0,0 @@
|
|||
SUBROUTINE ZSHCH(ZR, ZI, CSHR, CSHI, CCHR, CCHI)
|
||||
C***BEGIN PROLOGUE ZSHCH
|
||||
C***REFER TO ZBESK,ZBESH
|
||||
C
|
||||
C ZSHCH COMPUTES THE COMPLEX HYPERBOLIC FUNCTIONS CSH=SINH(X+I*Y)
|
||||
C AND CCH=COSH(X+I*Y), WHERE I**2=-1.
|
||||
C
|
||||
C***ROUTINES CALLED (NONE)
|
||||
C***END PROLOGUE ZSHCH
|
||||
C
|
||||
DOUBLE PRECISION CCHI, CCHR, CH, CN, CSHI, CSHR, SH, SN, ZI, ZR,
|
||||
* DCOSH, DSINH
|
||||
SH = DSINH(ZR)
|
||||
CH = DCOSH(ZR)
|
||||
SN = DSIN(ZI)
|
||||
CN = DCOS(ZI)
|
||||
CSHR = SH*CN
|
||||
CSHI = CH*SN
|
||||
CCHR = CH*CN
|
||||
CCHI = SH*SN
|
||||
RETURN
|
||||
END
|
44
amos/zsqrt.f
44
amos/zsqrt.f
|
@ -1,44 +0,0 @@
|
|||
SUBROUTINE AZSQRT(AR, AI, BR, BI)
|
||||
C***BEGIN PROLOGUE AZSQRT
|
||||
C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY
|
||||
C
|
||||
C DOUBLE PRECISION COMPLEX SQUARE ROOT, B=CSQRT(A)
|
||||
C
|
||||
C***ROUTINES CALLED AZABS
|
||||
C***END PROLOGUE AZSQRT
|
||||
DOUBLE PRECISION AR, AI, BR, BI, ZM, DTHETA, DPI, DRT
|
||||
DOUBLE PRECISION AZABS
|
||||
DATA DRT , DPI / 7.071067811865475244008443621D-1,
|
||||
1 3.141592653589793238462643383D+0/
|
||||
ZM = AZABS(AR,AI)
|
||||
ZM = DSQRT(ZM)
|
||||
IF (AR.EQ.0.0D+0) GO TO 10
|
||||
IF (AI.EQ.0.0D+0) GO TO 20
|
||||
DTHETA = DATAN(AI/AR)
|
||||
IF (DTHETA.LE.0.0D+0) GO TO 40
|
||||
IF (AR.LT.0.0D+0) DTHETA = DTHETA - DPI
|
||||
GO TO 50
|
||||
10 IF (AI.GT.0.0D+0) GO TO 60
|
||||
IF (AI.LT.0.0D+0) GO TO 70
|
||||
BR = 0.0D+0
|
||||
BI = 0.0D+0
|
||||
RETURN
|
||||
20 IF (AR.GT.0.0D+0) GO TO 30
|
||||
BR = 0.0D+0
|
||||
BI = DSQRT(DABS(AR))
|
||||
RETURN
|
||||
30 BR = DSQRT(AR)
|
||||
BI = 0.0D+0
|
||||
RETURN
|
||||
40 IF (AR.LT.0.0D+0) DTHETA = DTHETA + DPI
|
||||
50 DTHETA = DTHETA*0.5D+0
|
||||
BR = ZM*DCOS(DTHETA)
|
||||
BI = ZM*DSIN(DTHETA)
|
||||
RETURN
|
||||
60 BR = ZM*DRT
|
||||
BI = ZM*DRT
|
||||
RETURN
|
||||
70 BR = ZM*DRT
|
||||
BI = -ZM*DRT
|
||||
RETURN
|
||||
END
|
28
amos/zuchk.f
28
amos/zuchk.f
|
@ -1,28 +0,0 @@
|
|||
SUBROUTINE ZUCHK(YR, YI, NZ, ASCLE, TOL)
|
||||
C***BEGIN PROLOGUE ZUCHK
|
||||
C***REFER TO ZSERI,ZUOIK,ZUNK1,ZUNK2,ZUNI1,ZUNI2,ZKSCL
|
||||
C
|
||||
C Y ENTERS AS A SCALED QUANTITY WHOSE MAGNITUDE IS GREATER THAN
|
||||
C EXP(-ALIM)=ASCLE=1.0E+3*D1MACH(1)/TOL. THE TEST IS MADE TO SEE
|
||||
C IF THE MAGNITUDE OF THE REAL OR IMAGINARY PART WOULD UNDERFLOW
|
||||
C WHEN Y IS SCALED (BY TOL) TO ITS PROPER VALUE. Y IS ACCEPTED
|
||||
C IF THE UNDERFLOW IS AT LEAST ONE PRECISION BELOW THE MAGNITUDE
|
||||
C OF THE LARGEST COMPONENT; OTHERWISE THE PHASE ANGLE DOES NOT HAVE
|
||||
C ABSOLUTE ACCURACY AND AN UNDERFLOW IS ASSUMED.
|
||||
C
|
||||
C***ROUTINES CALLED (NONE)
|
||||
C***END PROLOGUE ZUCHK
|
||||
C
|
||||
C COMPLEX Y
|
||||
DOUBLE PRECISION ASCLE, SS, ST, TOL, WR, WI, YR, YI
|
||||
INTEGER NZ
|
||||
NZ = 0
|
||||
WR = DABS(YR)
|
||||
WI = DABS(YI)
|
||||
ST = DMIN1(WR,WI)
|
||||
IF (ST.GT.ASCLE) RETURN
|
||||
SS = DMAX1(WR,WI)
|
||||
ST = ST/TOL
|
||||
IF (SS.LT.ST) NZ = 1
|
||||
RETURN
|
||||
END
|
714
amos/zunhj.f
714
amos/zunhj.f
|
@ -1,714 +0,0 @@
|
|||
SUBROUTINE ZUNHJ(ZR, ZI, FNU, IPMTR, TOL, PHIR, PHII, ARGR, ARGI,
|
||||
* ZETA1R, ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI)
|
||||
C***BEGIN PROLOGUE ZUNHJ
|
||||
C***REFER TO ZBESI,ZBESK
|
||||
C
|
||||
C REFERENCES
|
||||
C HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ AND I.A.
|
||||
C STEGUN, AMS55, NATIONAL BUREAU OF STANDARDS, 1965, CHAPTER 9.
|
||||
C
|
||||
C ASYMPTOTICS AND SPECIAL FUNCTIONS BY F.W.J. OLVER, ACADEMIC
|
||||
C PRESS, N.Y., 1974, PAGE 420
|
||||
C
|
||||
C ABSTRACT
|
||||
C ZUNHJ COMPUTES PARAMETERS FOR BESSEL FUNCTIONS C(FNU,Z) =
|
||||
C J(FNU,Z), Y(FNU,Z) OR H(I,FNU,Z) I=1,2 FOR LARGE ORDERS FNU
|
||||
C BY MEANS OF THE UNIFORM ASYMPTOTIC EXPANSION
|
||||
C
|
||||
C C(FNU,Z)=C1*PHI*( ASUM*AIRY(ARG) + C2*BSUM*DAIRY(ARG) )
|
||||
C
|
||||
C FOR PROPER CHOICES OF C1, C2, AIRY AND DAIRY WHERE AIRY IS
|
||||
C AN AIRY FUNCTION AND DAIRY IS ITS DERIVATIVE.
|
||||
C
|
||||
C (2/3)*FNU*ZETA**1.5 = ZETA1-ZETA2,
|
||||
C
|
||||
C ZETA1=0.5*FNU*CLOG((1+W)/(1-W)), ZETA2=FNU*W FOR SCALING
|
||||
C PURPOSES IN AIRY FUNCTIONS FROM CAIRY OR CBIRY.
|
||||
C
|
||||
C MCONJ=SIGN OF AIMAG(Z), BUT IS AMBIGUOUS WHEN Z IS REAL AND
|
||||
C MUST BE SPECIFIED. IPMTR=0 RETURNS ALL PARAMETERS. IPMTR=
|
||||
C 1 COMPUTES ALL EXCEPT ASUM AND BSUM.
|
||||
C
|
||||
C***ROUTINES CALLED AZABS,ZDIV,AZLOG,AZSQRT,D1MACH
|
||||
C***END PROLOGUE ZUNHJ
|
||||
C COMPLEX ARG,ASUM,BSUM,CFNU,CONE,CR,CZERO,DR,P,PHI,PRZTH,PTFN,
|
||||
C *RFN13,RTZTA,RZTH,SUMA,SUMB,TFN,T2,UP,W,W2,Z,ZA,ZB,ZC,ZETA,ZETA1,
|
||||
C *ZETA2,ZTH
|
||||
DOUBLE PRECISION ALFA, ANG, AP, AR, ARGI, ARGR, ASUMI, ASUMR,
|
||||
* ATOL, AW2, AZTH, BETA, BR, BSUMI, BSUMR, BTOL, C, CONEI, CONER,
|
||||
* CRI, CRR, DRI, DRR, EX1, EX2, FNU, FN13, FN23, GAMA, GPI, HPI,
|
||||
* PHII, PHIR, PI, PP, PR, PRZTHI, PRZTHR, PTFNI, PTFNR, RAW, RAW2,
|
||||
* RAZTH, RFNU, RFNU2, RFN13, RTZTI, RTZTR, RZTHI, RZTHR, STI, STR,
|
||||
* SUMAI, SUMAR, SUMBI, SUMBR, TEST, TFNI, TFNR, THPI, TOL, TZAI,
|
||||
* TZAR, T2I, T2R, UPI, UPR, WI, WR, W2I, W2R, ZAI, ZAR, ZBI, ZBR,
|
||||
* ZCI, ZCR, ZEROI, ZEROR, ZETAI, ZETAR, ZETA1I, ZETA1R, ZETA2I,
|
||||
* ZETA2R, ZI, ZR, ZTHI, ZTHR, AZABS, AC, D1MACH
|
||||
INTEGER IAS, IBS, IPMTR, IS, J, JR, JU, K, KMAX, KP1, KS, L, LR,
|
||||
* LRP1, L1, L2, M, IDUM
|
||||
DIMENSION AR(14), BR(14), C(105), ALFA(180), BETA(210), GAMA(30),
|
||||
* AP(30), PR(30), PI(30), UPR(14), UPI(14), CRR(14), CRI(14),
|
||||
* DRR(14), DRI(14)
|
||||
DATA AR(1), AR(2), AR(3), AR(4), AR(5), AR(6), AR(7), AR(8),
|
||||
1 AR(9), AR(10), AR(11), AR(12), AR(13), AR(14)/
|
||||
2 1.00000000000000000D+00, 1.04166666666666667D-01,
|
||||
3 8.35503472222222222D-02, 1.28226574556327160D-01,
|
||||
4 2.91849026464140464D-01, 8.81627267443757652D-01,
|
||||
5 3.32140828186276754D+00, 1.49957629868625547D+01,
|
||||
6 7.89230130115865181D+01, 4.74451538868264323D+02,
|
||||
7 3.20749009089066193D+03, 2.40865496408740049D+04,
|
||||
8 1.98923119169509794D+05, 1.79190200777534383D+06/
|
||||
DATA BR(1), BR(2), BR(3), BR(4), BR(5), BR(6), BR(7), BR(8),
|
||||
1 BR(9), BR(10), BR(11), BR(12), BR(13), BR(14)/
|
||||
2 1.00000000000000000D+00, -1.45833333333333333D-01,
|
||||
3 -9.87413194444444444D-02, -1.43312053915895062D-01,
|
||||
4 -3.17227202678413548D-01, -9.42429147957120249D-01,
|
||||
5 -3.51120304082635426D+00, -1.57272636203680451D+01,
|
||||
6 -8.22814390971859444D+01, -4.92355370523670524D+02,
|
||||
7 -3.31621856854797251D+03, -2.48276742452085896D+04,
|
||||
8 -2.04526587315129788D+05, -1.83844491706820990D+06/
|
||||
DATA C(1), C(2), C(3), C(4), C(5), C(6), C(7), C(8), C(9), C(10),
|
||||
1 C(11), C(12), C(13), C(14), C(15), C(16), C(17), C(18),
|
||||
2 C(19), C(20), C(21), C(22), C(23), C(24)/
|
||||
3 1.00000000000000000D+00, -2.08333333333333333D-01,
|
||||
4 1.25000000000000000D-01, 3.34201388888888889D-01,
|
||||
5 -4.01041666666666667D-01, 7.03125000000000000D-02,
|
||||
6 -1.02581259645061728D+00, 1.84646267361111111D+00,
|
||||
7 -8.91210937500000000D-01, 7.32421875000000000D-02,
|
||||
8 4.66958442342624743D+00, -1.12070026162229938D+01,
|
||||
9 8.78912353515625000D+00, -2.36408691406250000D+00,
|
||||
A 1.12152099609375000D-01, -2.82120725582002449D+01,
|
||||
B 8.46362176746007346D+01, -9.18182415432400174D+01,
|
||||
C 4.25349987453884549D+01, -7.36879435947963170D+00,
|
||||
D 2.27108001708984375D-01, 2.12570130039217123D+02,
|
||||
E -7.65252468141181642D+02, 1.05999045252799988D+03/
|
||||
DATA C(25), C(26), C(27), C(28), C(29), C(30), C(31), C(32),
|
||||
1 C(33), C(34), C(35), C(36), C(37), C(38), C(39), C(40),
|
||||
2 C(41), C(42), C(43), C(44), C(45), C(46), C(47), C(48)/
|
||||
3 -6.99579627376132541D+02, 2.18190511744211590D+02,
|
||||
4 -2.64914304869515555D+01, 5.72501420974731445D-01,
|
||||
5 -1.91945766231840700D+03, 8.06172218173730938D+03,
|
||||
6 -1.35865500064341374D+04, 1.16553933368645332D+04,
|
||||
7 -5.30564697861340311D+03, 1.20090291321635246D+03,
|
||||
8 -1.08090919788394656D+02, 1.72772750258445740D+00,
|
||||
9 2.02042913309661486D+04, -9.69805983886375135D+04,
|
||||
A 1.92547001232531532D+05, -2.03400177280415534D+05,
|
||||
B 1.22200464983017460D+05, -4.11926549688975513D+04,
|
||||
C 7.10951430248936372D+03, -4.93915304773088012D+02,
|
||||
D 6.07404200127348304D+00, -2.42919187900551333D+05,
|
||||
E 1.31176361466297720D+06, -2.99801591853810675D+06/
|
||||
DATA C(49), C(50), C(51), C(52), C(53), C(54), C(55), C(56),
|
||||
1 C(57), C(58), C(59), C(60), C(61), C(62), C(63), C(64),
|
||||
2 C(65), C(66), C(67), C(68), C(69), C(70), C(71), C(72)/
|
||||
3 3.76327129765640400D+06, -2.81356322658653411D+06,
|
||||
4 1.26836527332162478D+06, -3.31645172484563578D+05,
|
||||
5 4.52187689813627263D+04, -2.49983048181120962D+03,
|
||||
6 2.43805296995560639D+01, 3.28446985307203782D+06,
|
||||
7 -1.97068191184322269D+07, 5.09526024926646422D+07,
|
||||
8 -7.41051482115326577D+07, 6.63445122747290267D+07,
|
||||
9 -3.75671766607633513D+07, 1.32887671664218183D+07,
|
||||
A -2.78561812808645469D+06, 3.08186404612662398D+05,
|
||||
B -1.38860897537170405D+04, 1.10017140269246738D+02,
|
||||
C -4.93292536645099620D+07, 3.25573074185765749D+08,
|
||||
D -9.39462359681578403D+08, 1.55359689957058006D+09,
|
||||
E -1.62108055210833708D+09, 1.10684281682301447D+09/
|
||||
DATA C(73), C(74), C(75), C(76), C(77), C(78), C(79), C(80),
|
||||
1 C(81), C(82), C(83), C(84), C(85), C(86), C(87), C(88),
|
||||
2 C(89), C(90), C(91), C(92), C(93), C(94), C(95), C(96)/
|
||||
3 -4.95889784275030309D+08, 1.42062907797533095D+08,
|
||||
4 -2.44740627257387285D+07, 2.24376817792244943D+06,
|
||||
5 -8.40054336030240853D+04, 5.51335896122020586D+02,
|
||||
6 8.14789096118312115D+08, -5.86648149205184723D+09,
|
||||
7 1.86882075092958249D+10, -3.46320433881587779D+10,
|
||||
8 4.12801855797539740D+10, -3.30265997498007231D+10,
|
||||
9 1.79542137311556001D+10, -6.56329379261928433D+09,
|
||||
A 1.55927986487925751D+09, -2.25105661889415278D+08,
|
||||
B 1.73951075539781645D+07, -5.49842327572288687D+05,
|
||||
C 3.03809051092238427D+03, -1.46792612476956167D+10,
|
||||
D 1.14498237732025810D+11, -3.99096175224466498D+11,
|
||||
E 8.19218669548577329D+11, -1.09837515608122331D+12/
|
||||
DATA C(97), C(98), C(99), C(100), C(101), C(102), C(103), C(104),
|
||||
1 C(105)/
|
||||
2 1.00815810686538209D+12, -6.45364869245376503D+11,
|
||||
3 2.87900649906150589D+11, -8.78670721780232657D+10,
|
||||
4 1.76347306068349694D+10, -2.16716498322379509D+09,
|
||||
5 1.43157876718888981D+08, -3.87183344257261262D+06,
|
||||
6 1.82577554742931747D+04/
|
||||
DATA ALFA(1), ALFA(2), ALFA(3), ALFA(4), ALFA(5), ALFA(6),
|
||||
1 ALFA(7), ALFA(8), ALFA(9), ALFA(10), ALFA(11), ALFA(12),
|
||||
2 ALFA(13), ALFA(14), ALFA(15), ALFA(16), ALFA(17), ALFA(18),
|
||||
3 ALFA(19), ALFA(20), ALFA(21), ALFA(22)/
|
||||
4 -4.44444444444444444D-03, -9.22077922077922078D-04,
|
||||
5 -8.84892884892884893D-05, 1.65927687832449737D-04,
|
||||
6 2.46691372741792910D-04, 2.65995589346254780D-04,
|
||||
7 2.61824297061500945D-04, 2.48730437344655609D-04,
|
||||
8 2.32721040083232098D-04, 2.16362485712365082D-04,
|
||||
9 2.00738858762752355D-04, 1.86267636637545172D-04,
|
||||
A 1.73060775917876493D-04, 1.61091705929015752D-04,
|
||||
B 1.50274774160908134D-04, 1.40503497391269794D-04,
|
||||
C 1.31668816545922806D-04, 1.23667445598253261D-04,
|
||||
D 1.16405271474737902D-04, 1.09798298372713369D-04,
|
||||
E 1.03772410422992823D-04, 9.82626078369363448D-05/
|
||||
DATA ALFA(23), ALFA(24), ALFA(25), ALFA(26), ALFA(27), ALFA(28),
|
||||
1 ALFA(29), ALFA(30), ALFA(31), ALFA(32), ALFA(33), ALFA(34),
|
||||
2 ALFA(35), ALFA(36), ALFA(37), ALFA(38), ALFA(39), ALFA(40),
|
||||
3 ALFA(41), ALFA(42), ALFA(43), ALFA(44)/
|
||||
4 9.32120517249503256D-05, 8.85710852478711718D-05,
|
||||
5 8.42963105715700223D-05, 8.03497548407791151D-05,
|
||||
6 7.66981345359207388D-05, 7.33122157481777809D-05,
|
||||
7 7.01662625163141333D-05, 6.72375633790160292D-05,
|
||||
8 6.93735541354588974D-04, 2.32241745182921654D-04,
|
||||
9 -1.41986273556691197D-05, -1.16444931672048640D-04,
|
||||
A -1.50803558053048762D-04, -1.55121924918096223D-04,
|
||||
B -1.46809756646465549D-04, -1.33815503867491367D-04,
|
||||
C -1.19744975684254051D-04, -1.06184319207974020D-04,
|
||||
D -9.37699549891194492D-05, -8.26923045588193274D-05,
|
||||
E -7.29374348155221211D-05, -6.44042357721016283D-05/
|
||||
DATA ALFA(45), ALFA(46), ALFA(47), ALFA(48), ALFA(49), ALFA(50),
|
||||
1 ALFA(51), ALFA(52), ALFA(53), ALFA(54), ALFA(55), ALFA(56),
|
||||
2 ALFA(57), ALFA(58), ALFA(59), ALFA(60), ALFA(61), ALFA(62),
|
||||
3 ALFA(63), ALFA(64), ALFA(65), ALFA(66)/
|
||||
4 -5.69611566009369048D-05, -5.04731044303561628D-05,
|
||||
5 -4.48134868008882786D-05, -3.98688727717598864D-05,
|
||||
6 -3.55400532972042498D-05, -3.17414256609022480D-05,
|
||||
7 -2.83996793904174811D-05, -2.54522720634870566D-05,
|
||||
8 -2.28459297164724555D-05, -2.05352753106480604D-05,
|
||||
9 -1.84816217627666085D-05, -1.66519330021393806D-05,
|
||||
A -1.50179412980119482D-05, -1.35554031379040526D-05,
|
||||
B -1.22434746473858131D-05, -1.10641884811308169D-05,
|
||||
C -3.54211971457743841D-04, -1.56161263945159416D-04,
|
||||
D 3.04465503594936410D-05, 1.30198655773242693D-04,
|
||||
E 1.67471106699712269D-04, 1.70222587683592569D-04/
|
||||
DATA ALFA(67), ALFA(68), ALFA(69), ALFA(70), ALFA(71), ALFA(72),
|
||||
1 ALFA(73), ALFA(74), ALFA(75), ALFA(76), ALFA(77), ALFA(78),
|
||||
2 ALFA(79), ALFA(80), ALFA(81), ALFA(82), ALFA(83), ALFA(84),
|
||||
3 ALFA(85), ALFA(86), ALFA(87), ALFA(88)/
|
||||
4 1.56501427608594704D-04, 1.36339170977445120D-04,
|
||||
5 1.14886692029825128D-04, 9.45869093034688111D-05,
|
||||
6 7.64498419250898258D-05, 6.07570334965197354D-05,
|
||||
7 4.74394299290508799D-05, 3.62757512005344297D-05,
|
||||
8 2.69939714979224901D-05, 1.93210938247939253D-05,
|
||||
9 1.30056674793963203D-05, 7.82620866744496661D-06,
|
||||
A 3.59257485819351583D-06, 1.44040049814251817D-07,
|
||||
B -2.65396769697939116D-06, -4.91346867098485910D-06,
|
||||
C -6.72739296091248287D-06, -8.17269379678657923D-06,
|
||||
D -9.31304715093561232D-06, -1.02011418798016441D-05,
|
||||
E -1.08805962510592880D-05, -1.13875481509603555D-05/
|
||||
DATA ALFA(89), ALFA(90), ALFA(91), ALFA(92), ALFA(93), ALFA(94),
|
||||
1 ALFA(95), ALFA(96), ALFA(97), ALFA(98), ALFA(99), ALFA(100),
|
||||
2 ALFA(101), ALFA(102), ALFA(103), ALFA(104), ALFA(105),
|
||||
3 ALFA(106), ALFA(107), ALFA(108), ALFA(109), ALFA(110)/
|
||||
4 -1.17519675674556414D-05, -1.19987364870944141D-05,
|
||||
5 3.78194199201772914D-04, 2.02471952761816167D-04,
|
||||
6 -6.37938506318862408D-05, -2.38598230603005903D-04,
|
||||
7 -3.10916256027361568D-04, -3.13680115247576316D-04,
|
||||
8 -2.78950273791323387D-04, -2.28564082619141374D-04,
|
||||
9 -1.75245280340846749D-04, -1.25544063060690348D-04,
|
||||
A -8.22982872820208365D-05, -4.62860730588116458D-05,
|
||||
B -1.72334302366962267D-05, 5.60690482304602267D-06,
|
||||
C 2.31395443148286800D-05, 3.62642745856793957D-05,
|
||||
D 4.58006124490188752D-05, 5.24595294959114050D-05,
|
||||
E 5.68396208545815266D-05, 5.94349820393104052D-05/
|
||||
DATA ALFA(111), ALFA(112), ALFA(113), ALFA(114), ALFA(115),
|
||||
1 ALFA(116), ALFA(117), ALFA(118), ALFA(119), ALFA(120),
|
||||
2 ALFA(121), ALFA(122), ALFA(123), ALFA(124), ALFA(125),
|
||||
3 ALFA(126), ALFA(127), ALFA(128), ALFA(129), ALFA(130)/
|
||||
4 6.06478527578421742D-05, 6.08023907788436497D-05,
|
||||
5 6.01577894539460388D-05, 5.89199657344698500D-05,
|
||||
6 5.72515823777593053D-05, 5.52804375585852577D-05,
|
||||
7 5.31063773802880170D-05, 5.08069302012325706D-05,
|
||||
8 4.84418647620094842D-05, 4.60568581607475370D-05,
|
||||
9 -6.91141397288294174D-04, -4.29976633058871912D-04,
|
||||
A 1.83067735980039018D-04, 6.60088147542014144D-04,
|
||||
B 8.75964969951185931D-04, 8.77335235958235514D-04,
|
||||
C 7.49369585378990637D-04, 5.63832329756980918D-04,
|
||||
D 3.68059319971443156D-04, 1.88464535514455599D-04/
|
||||
DATA ALFA(131), ALFA(132), ALFA(133), ALFA(134), ALFA(135),
|
||||
1 ALFA(136), ALFA(137), ALFA(138), ALFA(139), ALFA(140),
|
||||
2 ALFA(141), ALFA(142), ALFA(143), ALFA(144), ALFA(145),
|
||||
3 ALFA(146), ALFA(147), ALFA(148), ALFA(149), ALFA(150)/
|
||||
4 3.70663057664904149D-05, -8.28520220232137023D-05,
|
||||
5 -1.72751952869172998D-04, -2.36314873605872983D-04,
|
||||
6 -2.77966150694906658D-04, -3.02079514155456919D-04,
|
||||
7 -3.12594712643820127D-04, -3.12872558758067163D-04,
|
||||
8 -3.05678038466324377D-04, -2.93226470614557331D-04,
|
||||
9 -2.77255655582934777D-04, -2.59103928467031709D-04,
|
||||
A -2.39784014396480342D-04, -2.20048260045422848D-04,
|
||||
B -2.00443911094971498D-04, -1.81358692210970687D-04,
|
||||
C -1.63057674478657464D-04, -1.45712672175205844D-04,
|
||||
D -1.29425421983924587D-04, -1.14245691942445952D-04/
|
||||
DATA ALFA(151), ALFA(152), ALFA(153), ALFA(154), ALFA(155),
|
||||
1 ALFA(156), ALFA(157), ALFA(158), ALFA(159), ALFA(160),
|
||||
2 ALFA(161), ALFA(162), ALFA(163), ALFA(164), ALFA(165),
|
||||
3 ALFA(166), ALFA(167), ALFA(168), ALFA(169), ALFA(170)/
|
||||
4 1.92821964248775885D-03, 1.35592576302022234D-03,
|
||||
5 -7.17858090421302995D-04, -2.58084802575270346D-03,
|
||||
6 -3.49271130826168475D-03, -3.46986299340960628D-03,
|
||||
7 -2.82285233351310182D-03, -1.88103076404891354D-03,
|
||||
8 -8.89531718383947600D-04, 3.87912102631035228D-06,
|
||||
9 7.28688540119691412D-04, 1.26566373053457758D-03,
|
||||
A 1.62518158372674427D-03, 1.83203153216373172D-03,
|
||||
B 1.91588388990527909D-03, 1.90588846755546138D-03,
|
||||
C 1.82798982421825727D-03, 1.70389506421121530D-03,
|
||||
D 1.55097127171097686D-03, 1.38261421852276159D-03/
|
||||
DATA ALFA(171), ALFA(172), ALFA(173), ALFA(174), ALFA(175),
|
||||
1 ALFA(176), ALFA(177), ALFA(178), ALFA(179), ALFA(180)/
|
||||
2 1.20881424230064774D-03, 1.03676532638344962D-03,
|
||||
3 8.71437918068619115D-04, 7.16080155297701002D-04,
|
||||
4 5.72637002558129372D-04, 4.42089819465802277D-04,
|
||||
5 3.24724948503090564D-04, 2.20342042730246599D-04,
|
||||
6 1.28412898401353882D-04, 4.82005924552095464D-05/
|
||||
DATA BETA(1), BETA(2), BETA(3), BETA(4), BETA(5), BETA(6),
|
||||
1 BETA(7), BETA(8), BETA(9), BETA(10), BETA(11), BETA(12),
|
||||
2 BETA(13), BETA(14), BETA(15), BETA(16), BETA(17), BETA(18),
|
||||
3 BETA(19), BETA(20), BETA(21), BETA(22)/
|
||||
4 1.79988721413553309D-02, 5.59964911064388073D-03,
|
||||
5 2.88501402231132779D-03, 1.80096606761053941D-03,
|
||||
6 1.24753110589199202D-03, 9.22878876572938311D-04,
|
||||
7 7.14430421727287357D-04, 5.71787281789704872D-04,
|
||||
8 4.69431007606481533D-04, 3.93232835462916638D-04,
|
||||
9 3.34818889318297664D-04, 2.88952148495751517D-04,
|
||||
A 2.52211615549573284D-04, 2.22280580798883327D-04,
|
||||
B 1.97541838033062524D-04, 1.76836855019718004D-04,
|
||||
C 1.59316899661821081D-04, 1.44347930197333986D-04,
|
||||
D 1.31448068119965379D-04, 1.20245444949302884D-04,
|
||||
E 1.10449144504599392D-04, 1.01828770740567258D-04/
|
||||
DATA BETA(23), BETA(24), BETA(25), BETA(26), BETA(27), BETA(28),
|
||||
1 BETA(29), BETA(30), BETA(31), BETA(32), BETA(33), BETA(34),
|
||||
2 BETA(35), BETA(36), BETA(37), BETA(38), BETA(39), BETA(40),
|
||||
3 BETA(41), BETA(42), BETA(43), BETA(44)/
|
||||
4 9.41998224204237509D-05, 8.74130545753834437D-05,
|
||||
5 8.13466262162801467D-05, 7.59002269646219339D-05,
|
||||
6 7.09906300634153481D-05, 6.65482874842468183D-05,
|
||||
7 6.25146958969275078D-05, 5.88403394426251749D-05,
|
||||
8 -1.49282953213429172D-03, -8.78204709546389328D-04,
|
||||
9 -5.02916549572034614D-04, -2.94822138512746025D-04,
|
||||
A -1.75463996970782828D-04, -1.04008550460816434D-04,
|
||||
B -5.96141953046457895D-05, -3.12038929076098340D-05,
|
||||
C -1.26089735980230047D-05, -2.42892608575730389D-07,
|
||||
D 8.05996165414273571D-06, 1.36507009262147391D-05,
|
||||
E 1.73964125472926261D-05, 1.98672978842133780D-05/
|
||||
DATA BETA(45), BETA(46), BETA(47), BETA(48), BETA(49), BETA(50),
|
||||
1 BETA(51), BETA(52), BETA(53), BETA(54), BETA(55), BETA(56),
|
||||
2 BETA(57), BETA(58), BETA(59), BETA(60), BETA(61), BETA(62),
|
||||
3 BETA(63), BETA(64), BETA(65), BETA(66)/
|
||||
4 2.14463263790822639D-05, 2.23954659232456514D-05,
|
||||
5 2.28967783814712629D-05, 2.30785389811177817D-05,
|
||||
6 2.30321976080909144D-05, 2.28236073720348722D-05,
|
||||
7 2.25005881105292418D-05, 2.20981015361991429D-05,
|
||||
8 2.16418427448103905D-05, 2.11507649256220843D-05,
|
||||
9 2.06388749782170737D-05, 2.01165241997081666D-05,
|
||||
A 1.95913450141179244D-05, 1.90689367910436740D-05,
|
||||
B 1.85533719641636667D-05, 1.80475722259674218D-05,
|
||||
C 5.52213076721292790D-04, 4.47932581552384646D-04,
|
||||
D 2.79520653992020589D-04, 1.52468156198446602D-04,
|
||||
E 6.93271105657043598D-05, 1.76258683069991397D-05/
|
||||
DATA BETA(67), BETA(68), BETA(69), BETA(70), BETA(71), BETA(72),
|
||||
1 BETA(73), BETA(74), BETA(75), BETA(76), BETA(77), BETA(78),
|
||||
2 BETA(79), BETA(80), BETA(81), BETA(82), BETA(83), BETA(84),
|
||||
3 BETA(85), BETA(86), BETA(87), BETA(88)/
|
||||
4 -1.35744996343269136D-05, -3.17972413350427135D-05,
|
||||
5 -4.18861861696693365D-05, -4.69004889379141029D-05,
|
||||
6 -4.87665447413787352D-05, -4.87010031186735069D-05,
|
||||
7 -4.74755620890086638D-05, -4.55813058138628452D-05,
|
||||
8 -4.33309644511266036D-05, -4.09230193157750364D-05,
|
||||
9 -3.84822638603221274D-05, -3.60857167535410501D-05,
|
||||
A -3.37793306123367417D-05, -3.15888560772109621D-05,
|
||||
B -2.95269561750807315D-05, -2.75978914828335759D-05,
|
||||
C -2.58006174666883713D-05, -2.41308356761280200D-05,
|
||||
D -2.25823509518346033D-05, -2.11479656768912971D-05,
|
||||
E -1.98200638885294927D-05, -1.85909870801065077D-05/
|
||||
DATA BETA(89), BETA(90), BETA(91), BETA(92), BETA(93), BETA(94),
|
||||
1 BETA(95), BETA(96), BETA(97), BETA(98), BETA(99), BETA(100),
|
||||
2 BETA(101), BETA(102), BETA(103), BETA(104), BETA(105),
|
||||
3 BETA(106), BETA(107), BETA(108), BETA(109), BETA(110)/
|
||||
4 -1.74532699844210224D-05, -1.63997823854497997D-05,
|
||||
5 -4.74617796559959808D-04, -4.77864567147321487D-04,
|
||||
6 -3.20390228067037603D-04, -1.61105016119962282D-04,
|
||||
7 -4.25778101285435204D-05, 3.44571294294967503D-05,
|
||||
8 7.97092684075674924D-05, 1.03138236708272200D-04,
|
||||
9 1.12466775262204158D-04, 1.13103642108481389D-04,
|
||||
A 1.08651634848774268D-04, 1.01437951597661973D-04,
|
||||
B 9.29298396593363896D-05, 8.40293133016089978D-05,
|
||||
C 7.52727991349134062D-05, 6.69632521975730872D-05,
|
||||
D 5.92564547323194704D-05, 5.22169308826975567D-05,
|
||||
E 4.58539485165360646D-05, 4.01445513891486808D-05/
|
||||
DATA BETA(111), BETA(112), BETA(113), BETA(114), BETA(115),
|
||||
1 BETA(116), BETA(117), BETA(118), BETA(119), BETA(120),
|
||||
2 BETA(121), BETA(122), BETA(123), BETA(124), BETA(125),
|
||||
3 BETA(126), BETA(127), BETA(128), BETA(129), BETA(130)/
|
||||
4 3.50481730031328081D-05, 3.05157995034346659D-05,
|
||||
5 2.64956119950516039D-05, 2.29363633690998152D-05,
|
||||
6 1.97893056664021636D-05, 1.70091984636412623D-05,
|
||||
7 1.45547428261524004D-05, 1.23886640995878413D-05,
|
||||
8 1.04775876076583236D-05, 8.79179954978479373D-06,
|
||||
9 7.36465810572578444D-04, 8.72790805146193976D-04,
|
||||
A 6.22614862573135066D-04, 2.85998154194304147D-04,
|
||||
B 3.84737672879366102D-06, -1.87906003636971558D-04,
|
||||
C -2.97603646594554535D-04, -3.45998126832656348D-04,
|
||||
D -3.53382470916037712D-04, -3.35715635775048757D-04/
|
||||
DATA BETA(131), BETA(132), BETA(133), BETA(134), BETA(135),
|
||||
1 BETA(136), BETA(137), BETA(138), BETA(139), BETA(140),
|
||||
2 BETA(141), BETA(142), BETA(143), BETA(144), BETA(145),
|
||||
3 BETA(146), BETA(147), BETA(148), BETA(149), BETA(150)/
|
||||
4 -3.04321124789039809D-04, -2.66722723047612821D-04,
|
||||
5 -2.27654214122819527D-04, -1.89922611854562356D-04,
|
||||
6 -1.55058918599093870D-04, -1.23778240761873630D-04,
|
||||
7 -9.62926147717644187D-05, -7.25178327714425337D-05,
|
||||
8 -5.22070028895633801D-05, -3.50347750511900522D-05,
|
||||
9 -2.06489761035551757D-05, -8.70106096849767054D-06,
|
||||
A 1.13698686675100290D-06, 9.16426474122778849D-06,
|
||||
B 1.56477785428872620D-05, 2.08223629482466847D-05,
|
||||
C 2.48923381004595156D-05, 2.80340509574146325D-05,
|
||||
D 3.03987774629861915D-05, 3.21156731406700616D-05/
|
||||
DATA BETA(151), BETA(152), BETA(153), BETA(154), BETA(155),
|
||||
1 BETA(156), BETA(157), BETA(158), BETA(159), BETA(160),
|
||||
2 BETA(161), BETA(162), BETA(163), BETA(164), BETA(165),
|
||||
3 BETA(166), BETA(167), BETA(168), BETA(169), BETA(170)/
|
||||
4 -1.80182191963885708D-03, -2.43402962938042533D-03,
|
||||
5 -1.83422663549856802D-03, -7.62204596354009765D-04,
|
||||
6 2.39079475256927218D-04, 9.49266117176881141D-04,
|
||||
7 1.34467449701540359D-03, 1.48457495259449178D-03,
|
||||
8 1.44732339830617591D-03, 1.30268261285657186D-03,
|
||||
9 1.10351597375642682D-03, 8.86047440419791759D-04,
|
||||
A 6.73073208165665473D-04, 4.77603872856582378D-04,
|
||||
B 3.05991926358789362D-04, 1.60315694594721630D-04,
|
||||
C 4.00749555270613286D-05, -5.66607461635251611D-05,
|
||||
D -1.32506186772982638D-04, -1.90296187989614057D-04/
|
||||
DATA BETA(171), BETA(172), BETA(173), BETA(174), BETA(175),
|
||||
1 BETA(176), BETA(177), BETA(178), BETA(179), BETA(180),
|
||||
2 BETA(181), BETA(182), BETA(183), BETA(184), BETA(185),
|
||||
3 BETA(186), BETA(187), BETA(188), BETA(189), BETA(190)/
|
||||
4 -2.32811450376937408D-04, -2.62628811464668841D-04,
|
||||
5 -2.82050469867598672D-04, -2.93081563192861167D-04,
|
||||
6 -2.97435962176316616D-04, -2.96557334239348078D-04,
|
||||
7 -2.91647363312090861D-04, -2.83696203837734166D-04,
|
||||
8 -2.73512317095673346D-04, -2.61750155806768580D-04,
|
||||
9 6.38585891212050914D-03, 9.62374215806377941D-03,
|
||||
A 7.61878061207001043D-03, 2.83219055545628054D-03,
|
||||
B -2.09841352012720090D-03, -5.73826764216626498D-03,
|
||||
C -7.70804244495414620D-03, -8.21011692264844401D-03,
|
||||
D -7.65824520346905413D-03, -6.47209729391045177D-03/
|
||||
DATA BETA(191), BETA(192), BETA(193), BETA(194), BETA(195),
|
||||
1 BETA(196), BETA(197), BETA(198), BETA(199), BETA(200),
|
||||
2 BETA(201), BETA(202), BETA(203), BETA(204), BETA(205),
|
||||
3 BETA(206), BETA(207), BETA(208), BETA(209), BETA(210)/
|
||||
4 -4.99132412004966473D-03, -3.45612289713133280D-03,
|
||||
5 -2.01785580014170775D-03, -7.59430686781961401D-04,
|
||||
6 2.84173631523859138D-04, 1.10891667586337403D-03,
|
||||
7 1.72901493872728771D-03, 2.16812590802684701D-03,
|
||||
8 2.45357710494539735D-03, 2.61281821058334862D-03,
|
||||
9 2.67141039656276912D-03, 2.65203073395980430D-03,
|
||||
A 2.57411652877287315D-03, 2.45389126236094427D-03,
|
||||
B 2.30460058071795494D-03, 2.13684837686712662D-03,
|
||||
C 1.95896528478870911D-03, 1.77737008679454412D-03,
|
||||
D 1.59690280765839059D-03, 1.42111975664438546D-03/
|
||||
DATA GAMA(1), GAMA(2), GAMA(3), GAMA(4), GAMA(5), GAMA(6),
|
||||
1 GAMA(7), GAMA(8), GAMA(9), GAMA(10), GAMA(11), GAMA(12),
|
||||
2 GAMA(13), GAMA(14), GAMA(15), GAMA(16), GAMA(17), GAMA(18),
|
||||
3 GAMA(19), GAMA(20), GAMA(21), GAMA(22)/
|
||||
4 6.29960524947436582D-01, 2.51984209978974633D-01,
|
||||
5 1.54790300415655846D-01, 1.10713062416159013D-01,
|
||||
6 8.57309395527394825D-02, 6.97161316958684292D-02,
|
||||
7 5.86085671893713576D-02, 5.04698873536310685D-02,
|
||||
8 4.42600580689154809D-02, 3.93720661543509966D-02,
|
||||
9 3.54283195924455368D-02, 3.21818857502098231D-02,
|
||||
A 2.94646240791157679D-02, 2.71581677112934479D-02,
|
||||
B 2.51768272973861779D-02, 2.34570755306078891D-02,
|
||||
C 2.19508390134907203D-02, 2.06210828235646240D-02,
|
||||
D 1.94388240897880846D-02, 1.83810633800683158D-02,
|
||||
E 1.74293213231963172D-02, 1.65685837786612353D-02/
|
||||
DATA GAMA(23), GAMA(24), GAMA(25), GAMA(26), GAMA(27), GAMA(28),
|
||||
1 GAMA(29), GAMA(30)/
|
||||
2 1.57865285987918445D-02, 1.50729501494095594D-02,
|
||||
3 1.44193250839954639D-02, 1.38184805735341786D-02,
|
||||
4 1.32643378994276568D-02, 1.27517121970498651D-02,
|
||||
5 1.22761545318762767D-02, 1.18338262398482403D-02/
|
||||
DATA EX1, EX2, HPI, GPI, THPI /
|
||||
1 3.33333333333333333D-01, 6.66666666666666667D-01,
|
||||
2 1.57079632679489662D+00, 3.14159265358979324D+00,
|
||||
3 4.71238898038468986D+00/
|
||||
DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 /
|
||||
C
|
||||
RFNU = 1.0D0/FNU
|
||||
C-----------------------------------------------------------------------
|
||||
C OVERFLOW TEST (Z/FNU TOO SMALL)
|
||||
C-----------------------------------------------------------------------
|
||||
TEST = D1MACH(1)*1.0D+3
|
||||
AC = FNU*TEST
|
||||
IF (DABS(ZR).GT.AC .OR. DABS(ZI).GT.AC) GO TO 15
|
||||
ZETA1R = 2.0D0*DABS(DLOG(TEST))+FNU
|
||||
ZETA1I = 0.0D0
|
||||
ZETA2R = FNU
|
||||
ZETA2I = 0.0D0
|
||||
PHIR = 1.0D0
|
||||
PHII = 0.0D0
|
||||
ARGR = 1.0D0
|
||||
ARGI = 0.0D0
|
||||
RETURN
|
||||
15 CONTINUE
|
||||
ZBR = ZR*RFNU
|
||||
ZBI = ZI*RFNU
|
||||
RFNU2 = RFNU*RFNU
|
||||
C-----------------------------------------------------------------------
|
||||
C COMPUTE IN THE FOURTH QUADRANT
|
||||
C-----------------------------------------------------------------------
|
||||
FN13 = FNU**EX1
|
||||
FN23 = FN13*FN13
|
||||
RFN13 = 1.0D0/FN13
|
||||
W2R = CONER - ZBR*ZBR + ZBI*ZBI
|
||||
W2I = CONEI - ZBR*ZBI - ZBR*ZBI
|
||||
AW2 = AZABS(W2R,W2I)
|
||||
IF (AW2.GT.0.25D0) GO TO 130
|
||||
C-----------------------------------------------------------------------
|
||||
C POWER SERIES FOR CABS(W2).LE.0.25D0
|
||||
C-----------------------------------------------------------------------
|
||||
K = 1
|
||||
PR(1) = CONER
|
||||
PI(1) = CONEI
|
||||
SUMAR = GAMA(1)
|
||||
SUMAI = ZEROI
|
||||
AP(1) = 1.0D0
|
||||
IF (AW2.LT.TOL) GO TO 20
|
||||
DO 10 K=2,30
|
||||
PR(K) = PR(K-1)*W2R - PI(K-1)*W2I
|
||||
PI(K) = PR(K-1)*W2I + PI(K-1)*W2R
|
||||
SUMAR = SUMAR + PR(K)*GAMA(K)
|
||||
SUMAI = SUMAI + PI(K)*GAMA(K)
|
||||
AP(K) = AP(K-1)*AW2
|
||||
IF (AP(K).LT.TOL) GO TO 20
|
||||
10 CONTINUE
|
||||
K = 30
|
||||
20 CONTINUE
|
||||
KMAX = K
|
||||
ZETAR = W2R*SUMAR - W2I*SUMAI
|
||||
ZETAI = W2R*SUMAI + W2I*SUMAR
|
||||
ARGR = ZETAR*FN23
|
||||
ARGI = ZETAI*FN23
|
||||
CALL AZSQRT(SUMAR, SUMAI, ZAR, ZAI)
|
||||
CALL AZSQRT(W2R, W2I, STR, STI)
|
||||
ZETA2R = STR*FNU
|
||||
ZETA2I = STI*FNU
|
||||
STR = CONER + EX2*(ZETAR*ZAR-ZETAI*ZAI)
|
||||
STI = CONEI + EX2*(ZETAR*ZAI+ZETAI*ZAR)
|
||||
ZETA1R = STR*ZETA2R - STI*ZETA2I
|
||||
ZETA1I = STR*ZETA2I + STI*ZETA2R
|
||||
ZAR = ZAR + ZAR
|
||||
ZAI = ZAI + ZAI
|
||||
CALL AZSQRT(ZAR, ZAI, STR, STI)
|
||||
PHIR = STR*RFN13
|
||||
PHII = STI*RFN13
|
||||
IF (IPMTR.EQ.1) GO TO 120
|
||||
C-----------------------------------------------------------------------
|
||||
C SUM SERIES FOR ASUM AND BSUM
|
||||
C-----------------------------------------------------------------------
|
||||
SUMBR = ZEROR
|
||||
SUMBI = ZEROI
|
||||
DO 30 K=1,KMAX
|
||||
SUMBR = SUMBR + PR(K)*BETA(K)
|
||||
SUMBI = SUMBI + PI(K)*BETA(K)
|
||||
30 CONTINUE
|
||||
ASUMR = ZEROR
|
||||
ASUMI = ZEROI
|
||||
BSUMR = SUMBR
|
||||
BSUMI = SUMBI
|
||||
L1 = 0
|
||||
L2 = 30
|
||||
BTOL = TOL*(DABS(BSUMR)+DABS(BSUMI))
|
||||
ATOL = TOL
|
||||
PP = 1.0D0
|
||||
IAS = 0
|
||||
IBS = 0
|
||||
IF (RFNU2.LT.TOL) GO TO 110
|
||||
DO 100 IS=2,7
|
||||
ATOL = ATOL/RFNU2
|
||||
PP = PP*RFNU2
|
||||
IF (IAS.EQ.1) GO TO 60
|
||||
SUMAR = ZEROR
|
||||
SUMAI = ZEROI
|
||||
DO 40 K=1,KMAX
|
||||
M = L1 + K
|
||||
SUMAR = SUMAR + PR(K)*ALFA(M)
|
||||
SUMAI = SUMAI + PI(K)*ALFA(M)
|
||||
IF (AP(K).LT.ATOL) GO TO 50
|
||||
40 CONTINUE
|
||||
50 CONTINUE
|
||||
ASUMR = ASUMR + SUMAR*PP
|
||||
ASUMI = ASUMI + SUMAI*PP
|
||||
IF (PP.LT.TOL) IAS = 1
|
||||
60 CONTINUE
|
||||
IF (IBS.EQ.1) GO TO 90
|
||||
SUMBR = ZEROR
|
||||
SUMBI = ZEROI
|
||||
DO 70 K=1,KMAX
|
||||
M = L2 + K
|
||||
SUMBR = SUMBR + PR(K)*BETA(M)
|
||||
SUMBI = SUMBI + PI(K)*BETA(M)
|
||||
IF (AP(K).LT.ATOL) GO TO 80
|
||||
70 CONTINUE
|
||||
80 CONTINUE
|
||||
BSUMR = BSUMR + SUMBR*PP
|
||||
BSUMI = BSUMI + SUMBI*PP
|
||||
IF (PP.LT.BTOL) IBS = 1
|
||||
90 CONTINUE
|
||||
IF (IAS.EQ.1 .AND. IBS.EQ.1) GO TO 110
|
||||
L1 = L1 + 30
|
||||
L2 = L2 + 30
|
||||
100 CONTINUE
|
||||
110 CONTINUE
|
||||
ASUMR = ASUMR + CONER
|
||||
PP = RFNU*RFN13
|
||||
BSUMR = BSUMR*PP
|
||||
BSUMI = BSUMI*PP
|
||||
120 CONTINUE
|
||||
RETURN
|
||||
C-----------------------------------------------------------------------
|
||||
C CABS(W2).GT.0.25D0
|
||||
C-----------------------------------------------------------------------
|
||||
130 CONTINUE
|
||||
CALL AZSQRT(W2R, W2I, WR, WI)
|
||||
IF (WR.LT.0.0D0) WR = 0.0D0
|
||||
IF (WI.LT.0.0D0) WI = 0.0D0
|
||||
STR = CONER + WR
|
||||
STI = WI
|
||||
CALL ZDIV(STR, STI, ZBR, ZBI, ZAR, ZAI)
|
||||
CALL AZLOG(ZAR, ZAI, ZCR, ZCI, IDUM)
|
||||
IF (ZCI.LT.0.0D0) ZCI = 0.0D0
|
||||
IF (ZCI.GT.HPI) ZCI = HPI
|
||||
IF (ZCR.LT.0.0D0) ZCR = 0.0D0
|
||||
ZTHR = (ZCR-WR)*1.5D0
|
||||
ZTHI = (ZCI-WI)*1.5D0
|
||||
ZETA1R = ZCR*FNU
|
||||
ZETA1I = ZCI*FNU
|
||||
ZETA2R = WR*FNU
|
||||
ZETA2I = WI*FNU
|
||||
AZTH = AZABS(ZTHR,ZTHI)
|
||||
ANG = THPI
|
||||
IF (ZTHR.GE.0.0D0 .AND. ZTHI.LT.0.0D0) GO TO 140
|
||||
ANG = HPI
|
||||
IF (ZTHR.EQ.0.0D0) GO TO 140
|
||||
ANG = DATAN(ZTHI/ZTHR)
|
||||
IF (ZTHR.LT.0.0D0) ANG = ANG + GPI
|
||||
140 CONTINUE
|
||||
PP = AZTH**EX2
|
||||
ANG = ANG*EX2
|
||||
ZETAR = PP*DCOS(ANG)
|
||||
ZETAI = PP*DSIN(ANG)
|
||||
IF (ZETAI.LT.0.0D0) ZETAI = 0.0D0
|
||||
ARGR = ZETAR*FN23
|
||||
ARGI = ZETAI*FN23
|
||||
CALL ZDIV(ZTHR, ZTHI, ZETAR, ZETAI, RTZTR, RTZTI)
|
||||
CALL ZDIV(RTZTR, RTZTI, WR, WI, ZAR, ZAI)
|
||||
TZAR = ZAR + ZAR
|
||||
TZAI = ZAI + ZAI
|
||||
CALL AZSQRT(TZAR, TZAI, STR, STI)
|
||||
PHIR = STR*RFN13
|
||||
PHII = STI*RFN13
|
||||
IF (IPMTR.EQ.1) GO TO 120
|
||||
RAW = 1.0D0/DSQRT(AW2)
|
||||
STR = WR*RAW
|
||||
STI = -WI*RAW
|
||||
TFNR = STR*RFNU*RAW
|
||||
TFNI = STI*RFNU*RAW
|
||||
RAZTH = 1.0D0/AZTH
|
||||
STR = ZTHR*RAZTH
|
||||
STI = -ZTHI*RAZTH
|
||||
RZTHR = STR*RAZTH*RFNU
|
||||
RZTHI = STI*RAZTH*RFNU
|
||||
ZCR = RZTHR*AR(2)
|
||||
ZCI = RZTHI*AR(2)
|
||||
RAW2 = 1.0D0/AW2
|
||||
STR = W2R*RAW2
|
||||
STI = -W2I*RAW2
|
||||
T2R = STR*RAW2
|
||||
T2I = STI*RAW2
|
||||
STR = T2R*C(2) + C(3)
|
||||
STI = T2I*C(2)
|
||||
UPR(2) = STR*TFNR - STI*TFNI
|
||||
UPI(2) = STR*TFNI + STI*TFNR
|
||||
BSUMR = UPR(2) + ZCR
|
||||
BSUMI = UPI(2) + ZCI
|
||||
ASUMR = ZEROR
|
||||
ASUMI = ZEROI
|
||||
IF (RFNU.LT.TOL) GO TO 220
|
||||
PRZTHR = RZTHR
|
||||
PRZTHI = RZTHI
|
||||
PTFNR = TFNR
|
||||
PTFNI = TFNI
|
||||
UPR(1) = CONER
|
||||
UPI(1) = CONEI
|
||||
PP = 1.0D0
|
||||
BTOL = TOL*(DABS(BSUMR)+DABS(BSUMI))
|
||||
KS = 0
|
||||
KP1 = 2
|
||||
L = 3
|
||||
IAS = 0
|
||||
IBS = 0
|
||||
DO 210 LR=2,12,2
|
||||
LRP1 = LR + 1
|
||||
C-----------------------------------------------------------------------
|
||||
C COMPUTE TWO ADDITIONAL CR, DR, AND UP FOR TWO MORE TERMS IN
|
||||
C NEXT SUMA AND SUMB
|
||||
C-----------------------------------------------------------------------
|
||||
DO 160 K=LR,LRP1
|
||||
KS = KS + 1
|
||||
KP1 = KP1 + 1
|
||||
L = L + 1
|
||||
ZAR = C(L)
|
||||
ZAI = ZEROI
|
||||
DO 150 J=2,KP1
|
||||
L = L + 1
|
||||
STR = ZAR*T2R - T2I*ZAI + C(L)
|
||||
ZAI = ZAR*T2I + ZAI*T2R
|
||||
ZAR = STR
|
||||
150 CONTINUE
|
||||
STR = PTFNR*TFNR - PTFNI*TFNI
|
||||
PTFNI = PTFNR*TFNI + PTFNI*TFNR
|
||||
PTFNR = STR
|
||||
UPR(KP1) = PTFNR*ZAR - PTFNI*ZAI
|
||||
UPI(KP1) = PTFNI*ZAR + PTFNR*ZAI
|
||||
CRR(KS) = PRZTHR*BR(KS+1)
|
||||
CRI(KS) = PRZTHI*BR(KS+1)
|
||||
STR = PRZTHR*RZTHR - PRZTHI*RZTHI
|
||||
PRZTHI = PRZTHR*RZTHI + PRZTHI*RZTHR
|
||||
PRZTHR = STR
|
||||
DRR(KS) = PRZTHR*AR(KS+2)
|
||||
DRI(KS) = PRZTHI*AR(KS+2)
|
||||
160 CONTINUE
|
||||
PP = PP*RFNU2
|
||||
IF (IAS.EQ.1) GO TO 180
|
||||
SUMAR = UPR(LRP1)
|
||||
SUMAI = UPI(LRP1)
|
||||
JU = LRP1
|
||||
DO 170 JR=1,LR
|
||||
JU = JU - 1
|
||||
SUMAR = SUMAR + CRR(JR)*UPR(JU) - CRI(JR)*UPI(JU)
|
||||
SUMAI = SUMAI + CRR(JR)*UPI(JU) + CRI(JR)*UPR(JU)
|
||||
170 CONTINUE
|
||||
ASUMR = ASUMR + SUMAR
|
||||
ASUMI = ASUMI + SUMAI
|
||||
TEST = DABS(SUMAR) + DABS(SUMAI)
|
||||
IF (PP.LT.TOL .AND. TEST.LT.TOL) IAS = 1
|
||||
180 CONTINUE
|
||||
IF (IBS.EQ.1) GO TO 200
|
||||
SUMBR = UPR(LR+2) + UPR(LRP1)*ZCR - UPI(LRP1)*ZCI
|
||||
SUMBI = UPI(LR+2) + UPR(LRP1)*ZCI + UPI(LRP1)*ZCR
|
||||
JU = LRP1
|
||||
DO 190 JR=1,LR
|
||||
JU = JU - 1
|
||||
SUMBR = SUMBR + DRR(JR)*UPR(JU) - DRI(JR)*UPI(JU)
|
||||
SUMBI = SUMBI + DRR(JR)*UPI(JU) + DRI(JR)*UPR(JU)
|
||||
190 CONTINUE
|
||||
BSUMR = BSUMR + SUMBR
|
||||
BSUMI = BSUMI + SUMBI
|
||||
TEST = DABS(SUMBR) + DABS(SUMBI)
|
||||
IF (PP.LT.BTOL .AND. TEST.LT.BTOL) IBS = 1
|
||||
200 CONTINUE
|
||||
IF (IAS.EQ.1 .AND. IBS.EQ.1) GO TO 220
|
||||
210 CONTINUE
|
||||
220 CONTINUE
|
||||
ASUMR = ASUMR + CONER
|
||||
STR = -BSUMR*RFN13
|
||||
STI = -BSUMI*RFN13
|
||||
CALL ZDIV(STR, STI, RTZTR, RTZTI, BSUMR, BSUMI)
|
||||
GO TO 120
|
||||
END
|
204
amos/zuni1.f
204
amos/zuni1.f
|
@ -1,204 +0,0 @@
|
|||
SUBROUTINE ZUNI1(ZR, ZI, FNU, KODE, N, YR, YI, NZ, NLAST, FNUL,
|
||||
* TOL, ELIM, ALIM)
|
||||
C***BEGIN PROLOGUE ZUNI1
|
||||
C***REFER TO ZBESI,ZBESK
|
||||
C
|
||||
C ZUNI1 COMPUTES I(FNU,Z) BY MEANS OF THE UNIFORM ASYMPTOTIC
|
||||
C EXPANSION FOR I(FNU,Z) IN -PI/3.LE.ARG Z.LE.PI/3.
|
||||
C
|
||||
C FNUL IS THE SMALLEST ORDER PERMITTED FOR THE ASYMPTOTIC
|
||||
C EXPANSION. NLAST=0 MEANS ALL OF THE Y VALUES WERE SET.
|
||||
C NLAST.NE.0 IS THE NUMBER LEFT TO BE COMPUTED BY ANOTHER
|
||||
C FORMULA FOR ORDERS FNU TO FNU+NLAST-1 BECAUSE FNU+NLAST-1.LT.FNUL.
|
||||
C Y(I)=CZERO FOR I=NLAST+1,N
|
||||
C
|
||||
C***ROUTINES CALLED ZUCHK,ZUNIK,ZUOIK,D1MACH,AZABS
|
||||
C***END PROLOGUE ZUNI1
|
||||
C COMPLEX CFN,CONE,CRSC,CSCL,CSR,CSS,CWRK,CZERO,C1,C2,PHI,RZ,SUM,S1,
|
||||
C *S2,Y,Z,ZETA1,ZETA2
|
||||
DOUBLE PRECISION ALIM, APHI, ASCLE, BRY, CONER, CRSC,
|
||||
* CSCL, CSRR, CSSR, CWRKI, CWRKR, C1R, C2I, C2M, C2R, ELIM, FN,
|
||||
* FNU, FNUL, PHII, PHIR, RAST, RS1, RZI, RZR, STI, STR, SUMI,
|
||||
* SUMR, S1I, S1R, S2I, S2R, TOL, YI, YR, ZEROI, ZEROR, ZETA1I,
|
||||
* ZETA1R, ZETA2I, ZETA2R, ZI, ZR, CYR, CYI, D1MACH, AZABS
|
||||
INTEGER I, IFLAG, INIT, K, KODE, M, N, ND, NLAST, NN, NUF, NW, NZ
|
||||
DIMENSION BRY(3), YR(N), YI(N), CWRKR(16), CWRKI(16), CSSR(3),
|
||||
* CSRR(3), CYR(2), CYI(2)
|
||||
DATA ZEROR,ZEROI,CONER / 0.0D0, 0.0D0, 1.0D0 /
|
||||
C
|
||||
NZ = 0
|
||||
ND = N
|
||||
NLAST = 0
|
||||
C-----------------------------------------------------------------------
|
||||
C COMPUTED VALUES WITH EXPONENTS BETWEEN ALIM AND ELIM IN MAG-
|
||||
C NITUDE ARE SCALED TO KEEP INTERMEDIATE ARITHMETIC ON SCALE,
|
||||
C EXP(ALIM)=EXP(ELIM)*TOL
|
||||
C-----------------------------------------------------------------------
|
||||
CSCL = 1.0D0/TOL
|
||||
CRSC = TOL
|
||||
CSSR(1) = CSCL
|
||||
CSSR(2) = CONER
|
||||
CSSR(3) = CRSC
|
||||
CSRR(1) = CRSC
|
||||
CSRR(2) = CONER
|
||||
CSRR(3) = CSCL
|
||||
BRY(1) = 1.0D+3*D1MACH(1)/TOL
|
||||
C-----------------------------------------------------------------------
|
||||
C CHECK FOR UNDERFLOW AND OVERFLOW ON FIRST MEMBER
|
||||
C-----------------------------------------------------------------------
|
||||
FN = DMAX1(FNU,1.0D0)
|
||||
INIT = 0
|
||||
CALL ZUNIK(ZR, ZI, FN, 1, 1, TOL, INIT, PHIR, PHII, ZETA1R,
|
||||
* ZETA1I, ZETA2R, ZETA2I, SUMR, SUMI, CWRKR, CWRKI)
|
||||
IF (KODE.EQ.1) GO TO 10
|
||||
STR = ZR + ZETA2R
|
||||
STI = ZI + ZETA2I
|
||||
RAST = FN/AZABS(STR,STI)
|
||||
STR = STR*RAST*RAST
|
||||
STI = -STI*RAST*RAST
|
||||
S1R = -ZETA1R + STR
|
||||
S1I = -ZETA1I + STI
|
||||
GO TO 20
|
||||
10 CONTINUE
|
||||
S1R = -ZETA1R + ZETA2R
|
||||
S1I = -ZETA1I + ZETA2I
|
||||
20 CONTINUE
|
||||
RS1 = S1R
|
||||
IF (DABS(RS1).GT.ELIM) GO TO 130
|
||||
30 CONTINUE
|
||||
NN = MIN0(2,ND)
|
||||
DO 80 I=1,NN
|
||||
FN = FNU + DBLE(FLOAT(ND-I))
|
||||
INIT = 0
|
||||
CALL ZUNIK(ZR, ZI, FN, 1, 0, TOL, INIT, PHIR, PHII, ZETA1R,
|
||||
* ZETA1I, ZETA2R, ZETA2I, SUMR, SUMI, CWRKR, CWRKI)
|
||||
IF (KODE.EQ.1) GO TO 40
|
||||
STR = ZR + ZETA2R
|
||||
STI = ZI + ZETA2I
|
||||
RAST = FN/AZABS(STR,STI)
|
||||
STR = STR*RAST*RAST
|
||||
STI = -STI*RAST*RAST
|
||||
S1R = -ZETA1R + STR
|
||||
S1I = -ZETA1I + STI + ZI
|
||||
GO TO 50
|
||||
40 CONTINUE
|
||||
S1R = -ZETA1R + ZETA2R
|
||||
S1I = -ZETA1I + ZETA2I
|
||||
50 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C TEST FOR UNDERFLOW AND OVERFLOW
|
||||
C-----------------------------------------------------------------------
|
||||
RS1 = S1R
|
||||
IF (DABS(RS1).GT.ELIM) GO TO 110
|
||||
IF (I.EQ.1) IFLAG = 2
|
||||
IF (DABS(RS1).LT.ALIM) GO TO 60
|
||||
C-----------------------------------------------------------------------
|
||||
C REFINE TEST AND SCALE
|
||||
C-----------------------------------------------------------------------
|
||||
APHI = AZABS(PHIR,PHII)
|
||||
RS1 = RS1 + DLOG(APHI)
|
||||
IF (DABS(RS1).GT.ELIM) GO TO 110
|
||||
IF (I.EQ.1) IFLAG = 1
|
||||
IF (RS1.LT.0.0D0) GO TO 60
|
||||
IF (I.EQ.1) IFLAG = 3
|
||||
60 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C SCALE S1 IF CABS(S1).LT.ASCLE
|
||||
C-----------------------------------------------------------------------
|
||||
S2R = PHIR*SUMR - PHII*SUMI
|
||||
S2I = PHIR*SUMI + PHII*SUMR
|
||||
STR = DEXP(S1R)*CSSR(IFLAG)
|
||||
S1R = STR*DCOS(S1I)
|
||||
S1I = STR*DSIN(S1I)
|
||||
STR = S2R*S1R - S2I*S1I
|
||||
S2I = S2R*S1I + S2I*S1R
|
||||
S2R = STR
|
||||
IF (IFLAG.NE.1) GO TO 70
|
||||
CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL)
|
||||
IF (NW.NE.0) GO TO 110
|
||||
70 CONTINUE
|
||||
CYR(I) = S2R
|
||||
CYI(I) = S2I
|
||||
M = ND - I + 1
|
||||
YR(M) = S2R*CSRR(IFLAG)
|
||||
YI(M) = S2I*CSRR(IFLAG)
|
||||
80 CONTINUE
|
||||
IF (ND.LE.2) GO TO 100
|
||||
RAST = 1.0D0/AZABS(ZR,ZI)
|
||||
STR = ZR*RAST
|
||||
STI = -ZI*RAST
|
||||
RZR = (STR+STR)*RAST
|
||||
RZI = (STI+STI)*RAST
|
||||
BRY(2) = 1.0D0/BRY(1)
|
||||
BRY(3) = D1MACH(2)
|
||||
S1R = CYR(1)
|
||||
S1I = CYI(1)
|
||||
S2R = CYR(2)
|
||||
S2I = CYI(2)
|
||||
C1R = CSRR(IFLAG)
|
||||
ASCLE = BRY(IFLAG)
|
||||
K = ND - 2
|
||||
FN = DBLE(FLOAT(K))
|
||||
DO 90 I=3,ND
|
||||
C2R = S2R
|
||||
C2I = S2I
|
||||
S2R = S1R + (FNU+FN)*(RZR*C2R-RZI*C2I)
|
||||
S2I = S1I + (FNU+FN)*(RZR*C2I+RZI*C2R)
|
||||
S1R = C2R
|
||||
S1I = C2I
|
||||
C2R = S2R*C1R
|
||||
C2I = S2I*C1R
|
||||
YR(K) = C2R
|
||||
YI(K) = C2I
|
||||
K = K - 1
|
||||
FN = FN - 1.0D0
|
||||
IF (IFLAG.GE.3) GO TO 90
|
||||
STR = DABS(C2R)
|
||||
STI = DABS(C2I)
|
||||
C2M = DMAX1(STR,STI)
|
||||
IF (C2M.LE.ASCLE) GO TO 90
|
||||
IFLAG = IFLAG + 1
|
||||
ASCLE = BRY(IFLAG)
|
||||
S1R = S1R*C1R
|
||||
S1I = S1I*C1R
|
||||
S2R = C2R
|
||||
S2I = C2I
|
||||
S1R = S1R*CSSR(IFLAG)
|
||||
S1I = S1I*CSSR(IFLAG)
|
||||
S2R = S2R*CSSR(IFLAG)
|
||||
S2I = S2I*CSSR(IFLAG)
|
||||
C1R = CSRR(IFLAG)
|
||||
90 CONTINUE
|
||||
100 CONTINUE
|
||||
RETURN
|
||||
C-----------------------------------------------------------------------
|
||||
C SET UNDERFLOW AND UPDATE PARAMETERS
|
||||
C-----------------------------------------------------------------------
|
||||
110 CONTINUE
|
||||
IF (RS1.GT.0.0D0) GO TO 120
|
||||
YR(ND) = ZEROR
|
||||
YI(ND) = ZEROI
|
||||
NZ = NZ + 1
|
||||
ND = ND - 1
|
||||
IF (ND.EQ.0) GO TO 100
|
||||
CALL ZUOIK(ZR, ZI, FNU, KODE, 1, ND, YR, YI, NUF, TOL, ELIM, ALIM)
|
||||
IF (NUF.LT.0) GO TO 120
|
||||
ND = ND - NUF
|
||||
NZ = NZ + NUF
|
||||
IF (ND.EQ.0) GO TO 100
|
||||
FN = FNU + DBLE(FLOAT(ND-1))
|
||||
IF (FN.GE.FNUL) GO TO 30
|
||||
NLAST = ND
|
||||
RETURN
|
||||
120 CONTINUE
|
||||
NZ = -1
|
||||
RETURN
|
||||
130 CONTINUE
|
||||
IF (RS1.GT.0.0D0) GO TO 120
|
||||
NZ = N
|
||||
DO 140 I=1,N
|
||||
YR(I) = ZEROR
|
||||
YI(I) = ZEROI
|
||||
140 CONTINUE
|
||||
RETURN
|
||||
END
|
267
amos/zuni2.f
267
amos/zuni2.f
|
@ -1,267 +0,0 @@
|
|||
SUBROUTINE ZUNI2(ZR, ZI, FNU, KODE, N, YR, YI, NZ, NLAST, FNUL,
|
||||
* TOL, ELIM, ALIM)
|
||||
C***BEGIN PROLOGUE ZUNI2
|
||||
C***REFER TO ZBESI,ZBESK
|
||||
C
|
||||
C ZUNI2 COMPUTES I(FNU,Z) IN THE RIGHT HALF PLANE BY MEANS OF
|
||||
C UNIFORM ASYMPTOTIC EXPANSION FOR J(FNU,ZN) WHERE ZN IS Z*I
|
||||
C OR -Z*I AND ZN IS IN THE RIGHT HALF PLANE ALSO.
|
||||
C
|
||||
C FNUL IS THE SMALLEST ORDER PERMITTED FOR THE ASYMPTOTIC
|
||||
C EXPANSION. NLAST=0 MEANS ALL OF THE Y VALUES WERE SET.
|
||||
C NLAST.NE.0 IS THE NUMBER LEFT TO BE COMPUTED BY ANOTHER
|
||||
C FORMULA FOR ORDERS FNU TO FNU+NLAST-1 BECAUSE FNU+NLAST-1.LT.FNUL.
|
||||
C Y(I)=CZERO FOR I=NLAST+1,N
|
||||
C
|
||||
C***ROUTINES CALLED ZAIRY,ZUCHK,ZUNHJ,ZUOIK,D1MACH,AZABS
|
||||
C***END PROLOGUE ZUNI2
|
||||
C COMPLEX AI,ARG,ASUM,BSUM,CFN,CI,CID,CIP,CONE,CRSC,CSCL,CSR,CSS,
|
||||
C *CZERO,C1,C2,DAI,PHI,RZ,S1,S2,Y,Z,ZB,ZETA1,ZETA2,ZN
|
||||
DOUBLE PRECISION AARG, AIC, AII, AIR, ALIM, ANG, APHI, ARGI,
|
||||
* ARGR, ASCLE, ASUMI, ASUMR, BRY, BSUMI, BSUMR, CIDI, CIPI, CIPR,
|
||||
* CONER, CRSC, CSCL, CSRR, CSSR, C1R, C2I, C2M, C2R, DAII,
|
||||
* DAIR, ELIM, FN, FNU, FNUL, HPI, PHII, PHIR, RAST, RAZ, RS1, RZI,
|
||||
* RZR, STI, STR, S1I, S1R, S2I, S2R, TOL, YI, YR, ZBI, ZBR, ZEROI,
|
||||
* ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R, ZI, ZNI, ZNR, ZR, CYR,
|
||||
* CYI, D1MACH, AZABS, CAR, SAR
|
||||
INTEGER I, IFLAG, IN, INU, J, K, KODE, N, NAI, ND, NDAI, NLAST,
|
||||
* NN, NUF, NW, NZ, IDUM
|
||||
DIMENSION BRY(3), YR(N), YI(N), CIPR(4), CIPI(4), CSSR(3),
|
||||
* CSRR(3), CYR(2), CYI(2)
|
||||
DATA ZEROR,ZEROI,CONER / 0.0D0, 0.0D0, 1.0D0 /
|
||||
DATA CIPR(1),CIPI(1),CIPR(2),CIPI(2),CIPR(3),CIPI(3),CIPR(4),
|
||||
* CIPI(4)/ 1.0D0,0.0D0, 0.0D0,1.0D0, -1.0D0,0.0D0, 0.0D0,-1.0D0/
|
||||
DATA HPI, AIC /
|
||||
1 1.57079632679489662D+00, 1.265512123484645396D+00/
|
||||
C
|
||||
NZ = 0
|
||||
ND = N
|
||||
NLAST = 0
|
||||
C-----------------------------------------------------------------------
|
||||
C COMPUTED VALUES WITH EXPONENTS BETWEEN ALIM AND ELIM IN MAG-
|
||||
C NITUDE ARE SCALED TO KEEP INTERMEDIATE ARITHMETIC ON SCALE,
|
||||
C EXP(ALIM)=EXP(ELIM)*TOL
|
||||
C-----------------------------------------------------------------------
|
||||
CSCL = 1.0D0/TOL
|
||||
CRSC = TOL
|
||||
CSSR(1) = CSCL
|
||||
CSSR(2) = CONER
|
||||
CSSR(3) = CRSC
|
||||
CSRR(1) = CRSC
|
||||
CSRR(2) = CONER
|
||||
CSRR(3) = CSCL
|
||||
BRY(1) = 1.0D+3*D1MACH(1)/TOL
|
||||
C-----------------------------------------------------------------------
|
||||
C ZN IS IN THE RIGHT HALF PLANE AFTER ROTATION BY CI OR -CI
|
||||
C-----------------------------------------------------------------------
|
||||
ZNR = ZI
|
||||
ZNI = -ZR
|
||||
ZBR = ZR
|
||||
ZBI = ZI
|
||||
CIDI = -CONER
|
||||
INU = INT(SNGL(FNU))
|
||||
ANG = HPI*(FNU-DBLE(FLOAT(INU)))
|
||||
C2R = DCOS(ANG)
|
||||
C2I = DSIN(ANG)
|
||||
CAR = C2R
|
||||
SAR = C2I
|
||||
IN = INU + N - 1
|
||||
IN = MOD(IN,4) + 1
|
||||
STR = C2R*CIPR(IN) - C2I*CIPI(IN)
|
||||
C2I = C2R*CIPI(IN) + C2I*CIPR(IN)
|
||||
C2R = STR
|
||||
IF (ZI.GT.0.0D0) GO TO 10
|
||||
ZNR = -ZNR
|
||||
ZBI = -ZBI
|
||||
CIDI = -CIDI
|
||||
C2I = -C2I
|
||||
10 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C CHECK FOR UNDERFLOW AND OVERFLOW ON FIRST MEMBER
|
||||
C-----------------------------------------------------------------------
|
||||
FN = DMAX1(FNU,1.0D0)
|
||||
CALL ZUNHJ(ZNR, ZNI, FN, 1, TOL, PHIR, PHII, ARGR, ARGI, ZETA1R,
|
||||
* ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI)
|
||||
IF (KODE.EQ.1) GO TO 20
|
||||
STR = ZBR + ZETA2R
|
||||
STI = ZBI + ZETA2I
|
||||
RAST = FN/AZABS(STR,STI)
|
||||
STR = STR*RAST*RAST
|
||||
STI = -STI*RAST*RAST
|
||||
S1R = -ZETA1R + STR
|
||||
S1I = -ZETA1I + STI
|
||||
GO TO 30
|
||||
20 CONTINUE
|
||||
S1R = -ZETA1R + ZETA2R
|
||||
S1I = -ZETA1I + ZETA2I
|
||||
30 CONTINUE
|
||||
RS1 = S1R
|
||||
IF (DABS(RS1).GT.ELIM) GO TO 150
|
||||
40 CONTINUE
|
||||
NN = MIN0(2,ND)
|
||||
DO 90 I=1,NN
|
||||
FN = FNU + DBLE(FLOAT(ND-I))
|
||||
CALL ZUNHJ(ZNR, ZNI, FN, 0, TOL, PHIR, PHII, ARGR, ARGI,
|
||||
* ZETA1R, ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI)
|
||||
IF (KODE.EQ.1) GO TO 50
|
||||
STR = ZBR + ZETA2R
|
||||
STI = ZBI + ZETA2I
|
||||
RAST = FN/AZABS(STR,STI)
|
||||
STR = STR*RAST*RAST
|
||||
STI = -STI*RAST*RAST
|
||||
S1R = -ZETA1R + STR
|
||||
S1I = -ZETA1I + STI + DABS(ZI)
|
||||
GO TO 60
|
||||
50 CONTINUE
|
||||
S1R = -ZETA1R + ZETA2R
|
||||
S1I = -ZETA1I + ZETA2I
|
||||
60 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C TEST FOR UNDERFLOW AND OVERFLOW
|
||||
C-----------------------------------------------------------------------
|
||||
RS1 = S1R
|
||||
IF (DABS(RS1).GT.ELIM) GO TO 120
|
||||
IF (I.EQ.1) IFLAG = 2
|
||||
IF (DABS(RS1).LT.ALIM) GO TO 70
|
||||
C-----------------------------------------------------------------------
|
||||
C REFINE TEST AND SCALE
|
||||
C-----------------------------------------------------------------------
|
||||
C-----------------------------------------------------------------------
|
||||
APHI = AZABS(PHIR,PHII)
|
||||
AARG = AZABS(ARGR,ARGI)
|
||||
RS1 = RS1 + DLOG(APHI) - 0.25D0*DLOG(AARG) - AIC
|
||||
IF (DABS(RS1).GT.ELIM) GO TO 120
|
||||
IF (I.EQ.1) IFLAG = 1
|
||||
IF (RS1.LT.0.0D0) GO TO 70
|
||||
IF (I.EQ.1) IFLAG = 3
|
||||
70 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C SCALE S1 TO KEEP INTERMEDIATE ARITHMETIC ON SCALE NEAR
|
||||
C EXPONENT EXTREMES
|
||||
C-----------------------------------------------------------------------
|
||||
CALL ZAIRY(ARGR, ARGI, 0, 2, AIR, AII, NAI, IDUM)
|
||||
CALL ZAIRY(ARGR, ARGI, 1, 2, DAIR, DAII, NDAI, IDUM)
|
||||
STR = DAIR*BSUMR - DAII*BSUMI
|
||||
STI = DAIR*BSUMI + DAII*BSUMR
|
||||
STR = STR + (AIR*ASUMR-AII*ASUMI)
|
||||
STI = STI + (AIR*ASUMI+AII*ASUMR)
|
||||
S2R = PHIR*STR - PHII*STI
|
||||
S2I = PHIR*STI + PHII*STR
|
||||
STR = DEXP(S1R)*CSSR(IFLAG)
|
||||
S1R = STR*DCOS(S1I)
|
||||
S1I = STR*DSIN(S1I)
|
||||
STR = S2R*S1R - S2I*S1I
|
||||
S2I = S2R*S1I + S2I*S1R
|
||||
S2R = STR
|
||||
IF (IFLAG.NE.1) GO TO 80
|
||||
CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL)
|
||||
IF (NW.NE.0) GO TO 120
|
||||
80 CONTINUE
|
||||
IF (ZI.LE.0.0D0) S2I = -S2I
|
||||
STR = S2R*C2R - S2I*C2I
|
||||
S2I = S2R*C2I + S2I*C2R
|
||||
S2R = STR
|
||||
CYR(I) = S2R
|
||||
CYI(I) = S2I
|
||||
J = ND - I + 1
|
||||
YR(J) = S2R*CSRR(IFLAG)
|
||||
YI(J) = S2I*CSRR(IFLAG)
|
||||
STR = -C2I*CIDI
|
||||
C2I = C2R*CIDI
|
||||
C2R = STR
|
||||
90 CONTINUE
|
||||
IF (ND.LE.2) GO TO 110
|
||||
RAZ = 1.0D0/AZABS(ZR,ZI)
|
||||
STR = ZR*RAZ
|
||||
STI = -ZI*RAZ
|
||||
RZR = (STR+STR)*RAZ
|
||||
RZI = (STI+STI)*RAZ
|
||||
BRY(2) = 1.0D0/BRY(1)
|
||||
BRY(3) = D1MACH(2)
|
||||
S1R = CYR(1)
|
||||
S1I = CYI(1)
|
||||
S2R = CYR(2)
|
||||
S2I = CYI(2)
|
||||
C1R = CSRR(IFLAG)
|
||||
ASCLE = BRY(IFLAG)
|
||||
K = ND - 2
|
||||
FN = DBLE(FLOAT(K))
|
||||
DO 100 I=3,ND
|
||||
C2R = S2R
|
||||
C2I = S2I
|
||||
S2R = S1R + (FNU+FN)*(RZR*C2R-RZI*C2I)
|
||||
S2I = S1I + (FNU+FN)*(RZR*C2I+RZI*C2R)
|
||||
S1R = C2R
|
||||
S1I = C2I
|
||||
C2R = S2R*C1R
|
||||
C2I = S2I*C1R
|
||||
YR(K) = C2R
|
||||
YI(K) = C2I
|
||||
K = K - 1
|
||||
FN = FN - 1.0D0
|
||||
IF (IFLAG.GE.3) GO TO 100
|
||||
STR = DABS(C2R)
|
||||
STI = DABS(C2I)
|
||||
C2M = DMAX1(STR,STI)
|
||||
IF (C2M.LE.ASCLE) GO TO 100
|
||||
IFLAG = IFLAG + 1
|
||||
ASCLE = BRY(IFLAG)
|
||||
S1R = S1R*C1R
|
||||
S1I = S1I*C1R
|
||||
S2R = C2R
|
||||
S2I = C2I
|
||||
S1R = S1R*CSSR(IFLAG)
|
||||
S1I = S1I*CSSR(IFLAG)
|
||||
S2R = S2R*CSSR(IFLAG)
|
||||
S2I = S2I*CSSR(IFLAG)
|
||||
C1R = CSRR(IFLAG)
|
||||
100 CONTINUE
|
||||
110 CONTINUE
|
||||
RETURN
|
||||
120 CONTINUE
|
||||
IF (RS1.GT.0.0D0) GO TO 140
|
||||
C-----------------------------------------------------------------------
|
||||
C SET UNDERFLOW AND UPDATE PARAMETERS
|
||||
C-----------------------------------------------------------------------
|
||||
YR(ND) = ZEROR
|
||||
YI(ND) = ZEROI
|
||||
NZ = NZ + 1
|
||||
ND = ND - 1
|
||||
IF (ND.EQ.0) GO TO 110
|
||||
CALL ZUOIK(ZR, ZI, FNU, KODE, 1, ND, YR, YI, NUF, TOL, ELIM, ALIM)
|
||||
IF (NUF.LT.0) GO TO 140
|
||||
ND = ND - NUF
|
||||
NZ = NZ + NUF
|
||||
IF (ND.EQ.0) GO TO 110
|
||||
FN = FNU + DBLE(FLOAT(ND-1))
|
||||
IF (FN.LT.FNUL) GO TO 130
|
||||
C FN = CIDI
|
||||
C J = NUF + 1
|
||||
C K = MOD(J,4) + 1
|
||||
C S1R = CIPR(K)
|
||||
C S1I = CIPI(K)
|
||||
C IF (FN.LT.0.0D0) S1I = -S1I
|
||||
C STR = C2R*S1R - C2I*S1I
|
||||
C C2I = C2R*S1I + C2I*S1R
|
||||
C C2R = STR
|
||||
IN = INU + ND - 1
|
||||
IN = MOD(IN,4) + 1
|
||||
C2R = CAR*CIPR(IN) - SAR*CIPI(IN)
|
||||
C2I = CAR*CIPI(IN) + SAR*CIPR(IN)
|
||||
IF (ZI.LE.0.0D0) C2I = -C2I
|
||||
GO TO 40
|
||||
130 CONTINUE
|
||||
NLAST = ND
|
||||
RETURN
|
||||
140 CONTINUE
|
||||
NZ = -1
|
||||
RETURN
|
||||
150 CONTINUE
|
||||
IF (RS1.GT.0.0D0) GO TO 140
|
||||
NZ = N
|
||||
DO 160 I=1,N
|
||||
YR(I) = ZEROR
|
||||
YI(I) = ZEROI
|
||||
160 CONTINUE
|
||||
RETURN
|
||||
END
|
211
amos/zunik.f
211
amos/zunik.f
|
@ -1,211 +0,0 @@
|
|||
SUBROUTINE ZUNIK(ZRR, ZRI, FNU, IKFLG, IPMTR, TOL, INIT, PHIR,
|
||||
* PHII, ZETA1R, ZETA1I, ZETA2R, ZETA2I, SUMR, SUMI, CWRKR, CWRKI)
|
||||
C***BEGIN PROLOGUE ZUNIK
|
||||
C***REFER TO ZBESI,ZBESK
|
||||
C
|
||||
C ZUNIK COMPUTES PARAMETERS FOR THE UNIFORM ASYMPTOTIC
|
||||
C EXPANSIONS OF THE I AND K FUNCTIONS ON IKFLG= 1 OR 2
|
||||
C RESPECTIVELY BY
|
||||
C
|
||||
C W(FNU,ZR) = PHI*EXP(ZETA)*SUM
|
||||
C
|
||||
C WHERE ZETA=-ZETA1 + ZETA2 OR
|
||||
C ZETA1 - ZETA2
|
||||
C
|
||||
C THE FIRST CALL MUST HAVE INIT=0. SUBSEQUENT CALLS WITH THE
|
||||
C SAME ZR AND FNU WILL RETURN THE I OR K FUNCTION ON IKFLG=
|
||||
C 1 OR 2 WITH NO CHANGE IN INIT. CWRK IS A COMPLEX WORK
|
||||
C ARRAY. IPMTR=0 COMPUTES ALL PARAMETERS. IPMTR=1 COMPUTES PHI,
|
||||
C ZETA1,ZETA2.
|
||||
C
|
||||
C***ROUTINES CALLED ZDIV,AZLOG,AZSQRT,D1MACH
|
||||
C***END PROLOGUE ZUNIK
|
||||
C COMPLEX CFN,CON,CONE,CRFN,CWRK,CZERO,PHI,S,SR,SUM,T,T2,ZETA1,
|
||||
C *ZETA2,ZN,ZR
|
||||
DOUBLE PRECISION AC, C, CON, CONEI, CONER, CRFNI, CRFNR, CWRKI,
|
||||
* CWRKR, FNU, PHII, PHIR, RFN, SI, SR, SRI, SRR, STI, STR, SUMI,
|
||||
* SUMR, TEST, TI, TOL, TR, T2I, T2R, ZEROI, ZEROR, ZETA1I, ZETA1R,
|
||||
* ZETA2I, ZETA2R, ZNI, ZNR, ZRI, ZRR, D1MACH
|
||||
INTEGER I, IDUM, IKFLG, INIT, IPMTR, J, K, L
|
||||
DIMENSION C(120), CWRKR(16), CWRKI(16), CON(2)
|
||||
DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 /
|
||||
DATA CON(1), CON(2) /
|
||||
1 3.98942280401432678D-01, 1.25331413731550025D+00 /
|
||||
DATA C(1), C(2), C(3), C(4), C(5), C(6), C(7), C(8), C(9), C(10),
|
||||
1 C(11), C(12), C(13), C(14), C(15), C(16), C(17), C(18),
|
||||
2 C(19), C(20), C(21), C(22), C(23), C(24)/
|
||||
3 1.00000000000000000D+00, -2.08333333333333333D-01,
|
||||
4 1.25000000000000000D-01, 3.34201388888888889D-01,
|
||||
5 -4.01041666666666667D-01, 7.03125000000000000D-02,
|
||||
6 -1.02581259645061728D+00, 1.84646267361111111D+00,
|
||||
7 -8.91210937500000000D-01, 7.32421875000000000D-02,
|
||||
8 4.66958442342624743D+00, -1.12070026162229938D+01,
|
||||
9 8.78912353515625000D+00, -2.36408691406250000D+00,
|
||||
A 1.12152099609375000D-01, -2.82120725582002449D+01,
|
||||
B 8.46362176746007346D+01, -9.18182415432400174D+01,
|
||||
C 4.25349987453884549D+01, -7.36879435947963170D+00,
|
||||
D 2.27108001708984375D-01, 2.12570130039217123D+02,
|
||||
E -7.65252468141181642D+02, 1.05999045252799988D+03/
|
||||
DATA C(25), C(26), C(27), C(28), C(29), C(30), C(31), C(32),
|
||||
1 C(33), C(34), C(35), C(36), C(37), C(38), C(39), C(40),
|
||||
2 C(41), C(42), C(43), C(44), C(45), C(46), C(47), C(48)/
|
||||
3 -6.99579627376132541D+02, 2.18190511744211590D+02,
|
||||
4 -2.64914304869515555D+01, 5.72501420974731445D-01,
|
||||
5 -1.91945766231840700D+03, 8.06172218173730938D+03,
|
||||
6 -1.35865500064341374D+04, 1.16553933368645332D+04,
|
||||
7 -5.30564697861340311D+03, 1.20090291321635246D+03,
|
||||
8 -1.08090919788394656D+02, 1.72772750258445740D+00,
|
||||
9 2.02042913309661486D+04, -9.69805983886375135D+04,
|
||||
A 1.92547001232531532D+05, -2.03400177280415534D+05,
|
||||
B 1.22200464983017460D+05, -4.11926549688975513D+04,
|
||||
C 7.10951430248936372D+03, -4.93915304773088012D+02,
|
||||
D 6.07404200127348304D+00, -2.42919187900551333D+05,
|
||||
E 1.31176361466297720D+06, -2.99801591853810675D+06/
|
||||
DATA C(49), C(50), C(51), C(52), C(53), C(54), C(55), C(56),
|
||||
1 C(57), C(58), C(59), C(60), C(61), C(62), C(63), C(64),
|
||||
2 C(65), C(66), C(67), C(68), C(69), C(70), C(71), C(72)/
|
||||
3 3.76327129765640400D+06, -2.81356322658653411D+06,
|
||||
4 1.26836527332162478D+06, -3.31645172484563578D+05,
|
||||
5 4.52187689813627263D+04, -2.49983048181120962D+03,
|
||||
6 2.43805296995560639D+01, 3.28446985307203782D+06,
|
||||
7 -1.97068191184322269D+07, 5.09526024926646422D+07,
|
||||
8 -7.41051482115326577D+07, 6.63445122747290267D+07,
|
||||
9 -3.75671766607633513D+07, 1.32887671664218183D+07,
|
||||
A -2.78561812808645469D+06, 3.08186404612662398D+05,
|
||||
B -1.38860897537170405D+04, 1.10017140269246738D+02,
|
||||
C -4.93292536645099620D+07, 3.25573074185765749D+08,
|
||||
D -9.39462359681578403D+08, 1.55359689957058006D+09,
|
||||
E -1.62108055210833708D+09, 1.10684281682301447D+09/
|
||||
DATA C(73), C(74), C(75), C(76), C(77), C(78), C(79), C(80),
|
||||
1 C(81), C(82), C(83), C(84), C(85), C(86), C(87), C(88),
|
||||
2 C(89), C(90), C(91), C(92), C(93), C(94), C(95), C(96)/
|
||||
3 -4.95889784275030309D+08, 1.42062907797533095D+08,
|
||||
4 -2.44740627257387285D+07, 2.24376817792244943D+06,
|
||||
5 -8.40054336030240853D+04, 5.51335896122020586D+02,
|
||||
6 8.14789096118312115D+08, -5.86648149205184723D+09,
|
||||
7 1.86882075092958249D+10, -3.46320433881587779D+10,
|
||||
8 4.12801855797539740D+10, -3.30265997498007231D+10,
|
||||
9 1.79542137311556001D+10, -6.56329379261928433D+09,
|
||||
A 1.55927986487925751D+09, -2.25105661889415278D+08,
|
||||
B 1.73951075539781645D+07, -5.49842327572288687D+05,
|
||||
C 3.03809051092238427D+03, -1.46792612476956167D+10,
|
||||
D 1.14498237732025810D+11, -3.99096175224466498D+11,
|
||||
E 8.19218669548577329D+11, -1.09837515608122331D+12/
|
||||
DATA C(97), C(98), C(99), C(100), C(101), C(102), C(103), C(104),
|
||||
1 C(105), C(106), C(107), C(108), C(109), C(110), C(111),
|
||||
2 C(112), C(113), C(114), C(115), C(116), C(117), C(118)/
|
||||
3 1.00815810686538209D+12, -6.45364869245376503D+11,
|
||||
4 2.87900649906150589D+11, -8.78670721780232657D+10,
|
||||
5 1.76347306068349694D+10, -2.16716498322379509D+09,
|
||||
6 1.43157876718888981D+08, -3.87183344257261262D+06,
|
||||
7 1.82577554742931747D+04, 2.86464035717679043D+11,
|
||||
8 -2.40629790002850396D+12, 9.10934118523989896D+12,
|
||||
9 -2.05168994109344374D+13, 3.05651255199353206D+13,
|
||||
A -3.16670885847851584D+13, 2.33483640445818409D+13,
|
||||
B -1.23204913055982872D+13, 4.61272578084913197D+12,
|
||||
C -1.19655288019618160D+12, 2.05914503232410016D+11,
|
||||
D -2.18229277575292237D+10, 1.24700929351271032D+09/
|
||||
DATA C(119), C(120)/
|
||||
1 -2.91883881222208134D+07, 1.18838426256783253D+05/
|
||||
C
|
||||
IF (INIT.NE.0) GO TO 40
|
||||
C-----------------------------------------------------------------------
|
||||
C INITIALIZE ALL VARIABLES
|
||||
C-----------------------------------------------------------------------
|
||||
RFN = 1.0D0/FNU
|
||||
C-----------------------------------------------------------------------
|
||||
C OVERFLOW TEST (ZR/FNU TOO SMALL)
|
||||
C-----------------------------------------------------------------------
|
||||
TEST = D1MACH(1)*1.0D+3
|
||||
AC = FNU*TEST
|
||||
IF (DABS(ZRR).GT.AC .OR. DABS(ZRI).GT.AC) GO TO 15
|
||||
ZETA1R = 2.0D0*DABS(DLOG(TEST))+FNU
|
||||
ZETA1I = 0.0D0
|
||||
ZETA2R = FNU
|
||||
ZETA2I = 0.0D0
|
||||
PHIR = 1.0D0
|
||||
PHII = 0.0D0
|
||||
RETURN
|
||||
15 CONTINUE
|
||||
TR = ZRR*RFN
|
||||
TI = ZRI*RFN
|
||||
SR = CONER + (TR*TR-TI*TI)
|
||||
SI = CONEI + (TR*TI+TI*TR)
|
||||
CALL AZSQRT(SR, SI, SRR, SRI)
|
||||
STR = CONER + SRR
|
||||
STI = CONEI + SRI
|
||||
CALL ZDIV(STR, STI, TR, TI, ZNR, ZNI)
|
||||
CALL AZLOG(ZNR, ZNI, STR, STI, IDUM)
|
||||
ZETA1R = FNU*STR
|
||||
ZETA1I = FNU*STI
|
||||
ZETA2R = FNU*SRR
|
||||
ZETA2I = FNU*SRI
|
||||
CALL ZDIV(CONER, CONEI, SRR, SRI, TR, TI)
|
||||
SRR = TR*RFN
|
||||
SRI = TI*RFN
|
||||
CALL AZSQRT(SRR, SRI, CWRKR(16), CWRKI(16))
|
||||
PHIR = CWRKR(16)*CON(IKFLG)
|
||||
PHII = CWRKI(16)*CON(IKFLG)
|
||||
IF (IPMTR.NE.0) RETURN
|
||||
CALL ZDIV(CONER, CONEI, SR, SI, T2R, T2I)
|
||||
CWRKR(1) = CONER
|
||||
CWRKI(1) = CONEI
|
||||
CRFNR = CONER
|
||||
CRFNI = CONEI
|
||||
AC = 1.0D0
|
||||
L = 1
|
||||
DO 20 K=2,15
|
||||
SR = ZEROR
|
||||
SI = ZEROI
|
||||
DO 10 J=1,K
|
||||
L = L + 1
|
||||
STR = SR*T2R - SI*T2I + C(L)
|
||||
SI = SR*T2I + SI*T2R
|
||||
SR = STR
|
||||
10 CONTINUE
|
||||
STR = CRFNR*SRR - CRFNI*SRI
|
||||
CRFNI = CRFNR*SRI + CRFNI*SRR
|
||||
CRFNR = STR
|
||||
CWRKR(K) = CRFNR*SR - CRFNI*SI
|
||||
CWRKI(K) = CRFNR*SI + CRFNI*SR
|
||||
AC = AC*RFN
|
||||
TEST = DABS(CWRKR(K)) + DABS(CWRKI(K))
|
||||
IF (AC.LT.TOL .AND. TEST.LT.TOL) GO TO 30
|
||||
20 CONTINUE
|
||||
K = 15
|
||||
30 CONTINUE
|
||||
INIT = K
|
||||
40 CONTINUE
|
||||
IF (IKFLG.EQ.2) GO TO 60
|
||||
C-----------------------------------------------------------------------
|
||||
C COMPUTE SUM FOR THE I FUNCTION
|
||||
C-----------------------------------------------------------------------
|
||||
SR = ZEROR
|
||||
SI = ZEROI
|
||||
DO 50 I=1,INIT
|
||||
SR = SR + CWRKR(I)
|
||||
SI = SI + CWRKI(I)
|
||||
50 CONTINUE
|
||||
SUMR = SR
|
||||
SUMI = SI
|
||||
PHIR = CWRKR(16)*CON(1)
|
||||
PHII = CWRKI(16)*CON(1)
|
||||
RETURN
|
||||
60 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C COMPUTE SUM FOR THE K FUNCTION
|
||||
C-----------------------------------------------------------------------
|
||||
SR = ZEROR
|
||||
SI = ZEROI
|
||||
TR = CONER
|
||||
DO 70 I=1,INIT
|
||||
SR = SR + TR*CWRKR(I)
|
||||
SI = SI + TR*CWRKI(I)
|
||||
TR = -TR
|
||||
70 CONTINUE
|
||||
SUMR = SR
|
||||
SUMI = SI
|
||||
PHIR = CWRKR(16)*CON(2)
|
||||
PHII = CWRKI(16)*CON(2)
|
||||
RETURN
|
||||
END
|
426
amos/zunk1.f
426
amos/zunk1.f
|
@ -1,426 +0,0 @@
|
|||
SUBROUTINE ZUNK1(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, TOL, ELIM,
|
||||
* ALIM)
|
||||
C***BEGIN PROLOGUE ZUNK1
|
||||
C***REFER TO ZBESK
|
||||
C
|
||||
C ZUNK1 COMPUTES K(FNU,Z) AND ITS ANALYTIC CONTINUATION FROM THE
|
||||
C RIGHT HALF PLANE TO THE LEFT HALF PLANE BY MEANS OF THE
|
||||
C UNIFORM ASYMPTOTIC EXPANSION.
|
||||
C MR INDICATES THE DIRECTION OF ROTATION FOR ANALYTIC CONTINUATION.
|
||||
C NZ=-1 MEANS AN OVERFLOW WILL OCCUR
|
||||
C
|
||||
C***ROUTINES CALLED ZKSCL,ZS1S2,ZUCHK,ZUNIK,D1MACH,AZABS
|
||||
C***END PROLOGUE ZUNK1
|
||||
C COMPLEX CFN,CK,CONE,CRSC,CS,CSCL,CSGN,CSPN,CSR,CSS,CWRK,CY,CZERO,
|
||||
C *C1,C2,PHI,PHID,RZ,SUM,SUMD,S1,S2,Y,Z,ZETA1,ZETA1D,ZETA2,ZETA2D,ZR
|
||||
DOUBLE PRECISION ALIM, ANG, APHI, ASC, ASCLE, BRY, CKI, CKR,
|
||||
* CONER, CRSC, CSCL, CSGNI, CSPNI, CSPNR, CSR, CSRR, CSSR,
|
||||
* CWRKI, CWRKR, CYI, CYR, C1I, C1R, C2I, C2M, C2R, ELIM, FMR, FN,
|
||||
* FNF, FNU, PHIDI, PHIDR, PHII, PHIR, PI, RAST, RAZR, RS1, RZI,
|
||||
* RZR, SGN, STI, STR, SUMDI, SUMDR, SUMI, SUMR, S1I, S1R, S2I,
|
||||
* S2R, TOL, YI, YR, ZEROI, ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R,
|
||||
* ZET1DI, ZET1DR, ZET2DI, ZET2DR, ZI, ZR, ZRI, ZRR, D1MACH, AZABS
|
||||
INTEGER I, IB, IFLAG, IFN, IL, INIT, INU, IUF, K, KDFLG, KFLAG,
|
||||
* KK, KODE, MR, N, NW, NZ, INITD, IC, IPARD, J
|
||||
DIMENSION BRY(3), INIT(2), YR(N), YI(N), SUMR(2), SUMI(2),
|
||||
* ZETA1R(2), ZETA1I(2), ZETA2R(2), ZETA2I(2), CYR(2), CYI(2),
|
||||
* CWRKR(16,3), CWRKI(16,3), CSSR(3), CSRR(3), PHIR(2), PHII(2)
|
||||
DATA ZEROR,ZEROI,CONER / 0.0D0, 0.0D0, 1.0D0 /
|
||||
DATA PI / 3.14159265358979324D0 /
|
||||
C
|
||||
KDFLG = 1
|
||||
NZ = 0
|
||||
C-----------------------------------------------------------------------
|
||||
C EXP(-ALIM)=EXP(-ELIM)/TOL=APPROX. ONE PRECISION GREATER THAN
|
||||
C THE UNDERFLOW LIMIT
|
||||
C-----------------------------------------------------------------------
|
||||
CSCL = 1.0D0/TOL
|
||||
CRSC = TOL
|
||||
CSSR(1) = CSCL
|
||||
CSSR(2) = CONER
|
||||
CSSR(3) = CRSC
|
||||
CSRR(1) = CRSC
|
||||
CSRR(2) = CONER
|
||||
CSRR(3) = CSCL
|
||||
BRY(1) = 1.0D+3*D1MACH(1)/TOL
|
||||
BRY(2) = 1.0D0/BRY(1)
|
||||
BRY(3) = D1MACH(2)
|
||||
ZRR = ZR
|
||||
ZRI = ZI
|
||||
IF (ZR.GE.0.0D0) GO TO 10
|
||||
ZRR = -ZR
|
||||
ZRI = -ZI
|
||||
10 CONTINUE
|
||||
J = 2
|
||||
DO 70 I=1,N
|
||||
C-----------------------------------------------------------------------
|
||||
C J FLIP FLOPS BETWEEN 1 AND 2 IN J = 3 - J
|
||||
C-----------------------------------------------------------------------
|
||||
J = 3 - J
|
||||
FN = FNU + DBLE(FLOAT(I-1))
|
||||
INIT(J) = 0
|
||||
CALL ZUNIK(ZRR, ZRI, FN, 2, 0, TOL, INIT(J), PHIR(J), PHII(J),
|
||||
* ZETA1R(J), ZETA1I(J), ZETA2R(J), ZETA2I(J), SUMR(J), SUMI(J),
|
||||
* CWRKR(1,J), CWRKI(1,J))
|
||||
IF (KODE.EQ.1) GO TO 20
|
||||
STR = ZRR + ZETA2R(J)
|
||||
STI = ZRI + ZETA2I(J)
|
||||
RAST = FN/AZABS(STR,STI)
|
||||
STR = STR*RAST*RAST
|
||||
STI = -STI*RAST*RAST
|
||||
S1R = ZETA1R(J) - STR
|
||||
S1I = ZETA1I(J) - STI
|
||||
GO TO 30
|
||||
20 CONTINUE
|
||||
S1R = ZETA1R(J) - ZETA2R(J)
|
||||
S1I = ZETA1I(J) - ZETA2I(J)
|
||||
30 CONTINUE
|
||||
RS1 = S1R
|
||||
C-----------------------------------------------------------------------
|
||||
C TEST FOR UNDERFLOW AND OVERFLOW
|
||||
C-----------------------------------------------------------------------
|
||||
IF (DABS(RS1).GT.ELIM) GO TO 60
|
||||
IF (KDFLG.EQ.1) KFLAG = 2
|
||||
IF (DABS(RS1).LT.ALIM) GO TO 40
|
||||
C-----------------------------------------------------------------------
|
||||
C REFINE TEST AND SCALE
|
||||
C-----------------------------------------------------------------------
|
||||
APHI = AZABS(PHIR(J),PHII(J))
|
||||
RS1 = RS1 + DLOG(APHI)
|
||||
IF (DABS(RS1).GT.ELIM) GO TO 60
|
||||
IF (KDFLG.EQ.1) KFLAG = 1
|
||||
IF (RS1.LT.0.0D0) GO TO 40
|
||||
IF (KDFLG.EQ.1) KFLAG = 3
|
||||
40 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C SCALE S1 TO KEEP INTERMEDIATE ARITHMETIC ON SCALE NEAR
|
||||
C EXPONENT EXTREMES
|
||||
C-----------------------------------------------------------------------
|
||||
S2R = PHIR(J)*SUMR(J) - PHII(J)*SUMI(J)
|
||||
S2I = PHIR(J)*SUMI(J) + PHII(J)*SUMR(J)
|
||||
STR = DEXP(S1R)*CSSR(KFLAG)
|
||||
S1R = STR*DCOS(S1I)
|
||||
S1I = STR*DSIN(S1I)
|
||||
STR = S2R*S1R - S2I*S1I
|
||||
S2I = S1R*S2I + S2R*S1I
|
||||
S2R = STR
|
||||
IF (KFLAG.NE.1) GO TO 50
|
||||
CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL)
|
||||
IF (NW.NE.0) GO TO 60
|
||||
50 CONTINUE
|
||||
CYR(KDFLG) = S2R
|
||||
CYI(KDFLG) = S2I
|
||||
YR(I) = S2R*CSRR(KFLAG)
|
||||
YI(I) = S2I*CSRR(KFLAG)
|
||||
IF (KDFLG.EQ.2) GO TO 75
|
||||
KDFLG = 2
|
||||
GO TO 70
|
||||
60 CONTINUE
|
||||
IF (RS1.GT.0.0D0) GO TO 300
|
||||
C-----------------------------------------------------------------------
|
||||
C FOR ZR.LT.0.0, THE I FUNCTION TO BE ADDED WILL OVERFLOW
|
||||
C-----------------------------------------------------------------------
|
||||
IF (ZR.LT.0.0D0) GO TO 300
|
||||
KDFLG = 1
|
||||
YR(I)=ZEROR
|
||||
YI(I)=ZEROI
|
||||
NZ=NZ+1
|
||||
IF (I.EQ.1) GO TO 70
|
||||
IF ((YR(I-1).EQ.ZEROR).AND.(YI(I-1).EQ.ZEROI)) GO TO 70
|
||||
YR(I-1)=ZEROR
|
||||
YI(I-1)=ZEROI
|
||||
NZ=NZ+1
|
||||
70 CONTINUE
|
||||
I = N
|
||||
75 CONTINUE
|
||||
RAZR = 1.0D0/AZABS(ZRR,ZRI)
|
||||
STR = ZRR*RAZR
|
||||
STI = -ZRI*RAZR
|
||||
RZR = (STR+STR)*RAZR
|
||||
RZI = (STI+STI)*RAZR
|
||||
CKR = FN*RZR
|
||||
CKI = FN*RZI
|
||||
IB = I + 1
|
||||
IF (N.LT.IB) GO TO 160
|
||||
C-----------------------------------------------------------------------
|
||||
C TEST LAST MEMBER FOR UNDERFLOW AND OVERFLOW. SET SEQUENCE TO ZERO
|
||||
C ON UNDERFLOW.
|
||||
C-----------------------------------------------------------------------
|
||||
FN = FNU + DBLE(FLOAT(N-1))
|
||||
IPARD = 1
|
||||
IF (MR.NE.0) IPARD = 0
|
||||
INITD = 0
|
||||
CALL ZUNIK(ZRR, ZRI, FN, 2, IPARD, TOL, INITD, PHIDR, PHIDI,
|
||||
* ZET1DR, ZET1DI, ZET2DR, ZET2DI, SUMDR, SUMDI, CWRKR(1,3),
|
||||
* CWRKI(1,3))
|
||||
IF (KODE.EQ.1) GO TO 80
|
||||
STR = ZRR + ZET2DR
|
||||
STI = ZRI + ZET2DI
|
||||
RAST = FN/AZABS(STR,STI)
|
||||
STR = STR*RAST*RAST
|
||||
STI = -STI*RAST*RAST
|
||||
S1R = ZET1DR - STR
|
||||
S1I = ZET1DI - STI
|
||||
GO TO 90
|
||||
80 CONTINUE
|
||||
S1R = ZET1DR - ZET2DR
|
||||
S1I = ZET1DI - ZET2DI
|
||||
90 CONTINUE
|
||||
RS1 = S1R
|
||||
IF (DABS(RS1).GT.ELIM) GO TO 95
|
||||
IF (DABS(RS1).LT.ALIM) GO TO 100
|
||||
C----------------------------------------------------------------------------
|
||||
C REFINE ESTIMATE AND TEST
|
||||
C-------------------------------------------------------------------------
|
||||
APHI = AZABS(PHIDR,PHIDI)
|
||||
RS1 = RS1+DLOG(APHI)
|
||||
IF (DABS(RS1).LT.ELIM) GO TO 100
|
||||
95 CONTINUE
|
||||
IF (DABS(RS1).GT.0.0D0) GO TO 300
|
||||
C-----------------------------------------------------------------------
|
||||
C FOR ZR.LT.0.0, THE I FUNCTION TO BE ADDED WILL OVERFLOW
|
||||
C-----------------------------------------------------------------------
|
||||
IF (ZR.LT.0.0D0) GO TO 300
|
||||
NZ = N
|
||||
DO 96 I=1,N
|
||||
YR(I) = ZEROR
|
||||
YI(I) = ZEROI
|
||||
96 CONTINUE
|
||||
RETURN
|
||||
C---------------------------------------------------------------------------
|
||||
C FORWARD RECUR FOR REMAINDER OF THE SEQUENCE
|
||||
C----------------------------------------------------------------------------
|
||||
100 CONTINUE
|
||||
S1R = CYR(1)
|
||||
S1I = CYI(1)
|
||||
S2R = CYR(2)
|
||||
S2I = CYI(2)
|
||||
C1R = CSRR(KFLAG)
|
||||
ASCLE = BRY(KFLAG)
|
||||
DO 120 I=IB,N
|
||||
C2R = S2R
|
||||
C2I = S2I
|
||||
S2R = CKR*C2R - CKI*C2I + S1R
|
||||
S2I = CKR*C2I + CKI*C2R + S1I
|
||||
S1R = C2R
|
||||
S1I = C2I
|
||||
CKR = CKR + RZR
|
||||
CKI = CKI + RZI
|
||||
C2R = S2R*C1R
|
||||
C2I = S2I*C1R
|
||||
YR(I) = C2R
|
||||
YI(I) = C2I
|
||||
IF (KFLAG.GE.3) GO TO 120
|
||||
STR = DABS(C2R)
|
||||
STI = DABS(C2I)
|
||||
C2M = DMAX1(STR,STI)
|
||||
IF (C2M.LE.ASCLE) GO TO 120
|
||||
KFLAG = KFLAG + 1
|
||||
ASCLE = BRY(KFLAG)
|
||||
S1R = S1R*C1R
|
||||
S1I = S1I*C1R
|
||||
S2R = C2R
|
||||
S2I = C2I
|
||||
S1R = S1R*CSSR(KFLAG)
|
||||
S1I = S1I*CSSR(KFLAG)
|
||||
S2R = S2R*CSSR(KFLAG)
|
||||
S2I = S2I*CSSR(KFLAG)
|
||||
C1R = CSRR(KFLAG)
|
||||
120 CONTINUE
|
||||
160 CONTINUE
|
||||
IF (MR.EQ.0) RETURN
|
||||
C-----------------------------------------------------------------------
|
||||
C ANALYTIC CONTINUATION FOR RE(Z).LT.0.0D0
|
||||
C-----------------------------------------------------------------------
|
||||
NZ = 0
|
||||
FMR = DBLE(FLOAT(MR))
|
||||
SGN = -DSIGN(PI,FMR)
|
||||
C-----------------------------------------------------------------------
|
||||
C CSPN AND CSGN ARE COEFF OF K AND I FUNCTIONS RESP.
|
||||
C-----------------------------------------------------------------------
|
||||
CSGNI = SGN
|
||||
INU = INT(SNGL(FNU))
|
||||
FNF = FNU - DBLE(FLOAT(INU))
|
||||
IFN = INU + N - 1
|
||||
ANG = FNF*SGN
|
||||
CSPNR = DCOS(ANG)
|
||||
CSPNI = DSIN(ANG)
|
||||
IF (MOD(IFN,2).EQ.0) GO TO 170
|
||||
CSPNR = -CSPNR
|
||||
CSPNI = -CSPNI
|
||||
170 CONTINUE
|
||||
ASC = BRY(1)
|
||||
IUF = 0
|
||||
KK = N
|
||||
KDFLG = 1
|
||||
IB = IB - 1
|
||||
IC = IB - 1
|
||||
DO 270 K=1,N
|
||||
FN = FNU + DBLE(FLOAT(KK-1))
|
||||
C-----------------------------------------------------------------------
|
||||
C LOGIC TO SORT OUT CASES WHOSE PARAMETERS WERE SET FOR THE K
|
||||
C FUNCTION ABOVE
|
||||
C-----------------------------------------------------------------------
|
||||
M=3
|
||||
IF (N.GT.2) GO TO 175
|
||||
172 CONTINUE
|
||||
INITD = INIT(J)
|
||||
PHIDR = PHIR(J)
|
||||
PHIDI = PHII(J)
|
||||
ZET1DR = ZETA1R(J)
|
||||
ZET1DI = ZETA1I(J)
|
||||
ZET2DR = ZETA2R(J)
|
||||
ZET2DI = ZETA2I(J)
|
||||
SUMDR = SUMR(J)
|
||||
SUMDI = SUMI(J)
|
||||
M = J
|
||||
J = 3 - J
|
||||
GO TO 180
|
||||
175 CONTINUE
|
||||
IF ((KK.EQ.N).AND.(IB.LT.N)) GO TO 180
|
||||
IF ((KK.EQ.IB).OR.(KK.EQ.IC)) GO TO 172
|
||||
INITD = 0
|
||||
180 CONTINUE
|
||||
CALL ZUNIK(ZRR, ZRI, FN, 1, 0, TOL, INITD, PHIDR, PHIDI,
|
||||
* ZET1DR, ZET1DI, ZET2DR, ZET2DI, SUMDR, SUMDI,
|
||||
* CWRKR(1,M), CWRKI(1,M))
|
||||
IF (KODE.EQ.1) GO TO 200
|
||||
STR = ZRR + ZET2DR
|
||||
STI = ZRI + ZET2DI
|
||||
RAST = FN/AZABS(STR,STI)
|
||||
STR = STR*RAST*RAST
|
||||
STI = -STI*RAST*RAST
|
||||
S1R = -ZET1DR + STR
|
||||
S1I = -ZET1DI + STI
|
||||
GO TO 210
|
||||
200 CONTINUE
|
||||
S1R = -ZET1DR + ZET2DR
|
||||
S1I = -ZET1DI + ZET2DI
|
||||
210 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C TEST FOR UNDERFLOW AND OVERFLOW
|
||||
C-----------------------------------------------------------------------
|
||||
RS1 = S1R
|
||||
IF (DABS(RS1).GT.ELIM) GO TO 260
|
||||
IF (KDFLG.EQ.1) IFLAG = 2
|
||||
IF (DABS(RS1).LT.ALIM) GO TO 220
|
||||
C-----------------------------------------------------------------------
|
||||
C REFINE TEST AND SCALE
|
||||
C-----------------------------------------------------------------------
|
||||
APHI = AZABS(PHIDR,PHIDI)
|
||||
RS1 = RS1 + DLOG(APHI)
|
||||
IF (DABS(RS1).GT.ELIM) GO TO 260
|
||||
IF (KDFLG.EQ.1) IFLAG = 1
|
||||
IF (RS1.LT.0.0D0) GO TO 220
|
||||
IF (KDFLG.EQ.1) IFLAG = 3
|
||||
220 CONTINUE
|
||||
STR = PHIDR*SUMDR - PHIDI*SUMDI
|
||||
STI = PHIDR*SUMDI + PHIDI*SUMDR
|
||||
S2R = -CSGNI*STI
|
||||
S2I = CSGNI*STR
|
||||
STR = DEXP(S1R)*CSSR(IFLAG)
|
||||
S1R = STR*DCOS(S1I)
|
||||
S1I = STR*DSIN(S1I)
|
||||
STR = S2R*S1R - S2I*S1I
|
||||
S2I = S2R*S1I + S2I*S1R
|
||||
S2R = STR
|
||||
IF (IFLAG.NE.1) GO TO 230
|
||||
CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL)
|
||||
IF (NW.EQ.0) GO TO 230
|
||||
S2R = ZEROR
|
||||
S2I = ZEROI
|
||||
230 CONTINUE
|
||||
CYR(KDFLG) = S2R
|
||||
CYI(KDFLG) = S2I
|
||||
C2R = S2R
|
||||
C2I = S2I
|
||||
S2R = S2R*CSRR(IFLAG)
|
||||
S2I = S2I*CSRR(IFLAG)
|
||||
C-----------------------------------------------------------------------
|
||||
C ADD I AND K FUNCTIONS, K SEQUENCE IN Y(I), I=1,N
|
||||
C-----------------------------------------------------------------------
|
||||
S1R = YR(KK)
|
||||
S1I = YI(KK)
|
||||
IF (KODE.EQ.1) GO TO 250
|
||||
CALL ZS1S2(ZRR, ZRI, S1R, S1I, S2R, S2I, NW, ASC, ALIM, IUF)
|
||||
NZ = NZ + NW
|
||||
250 CONTINUE
|
||||
YR(KK) = S1R*CSPNR - S1I*CSPNI + S2R
|
||||
YI(KK) = CSPNR*S1I + CSPNI*S1R + S2I
|
||||
KK = KK - 1
|
||||
CSPNR = -CSPNR
|
||||
CSPNI = -CSPNI
|
||||
IF (C2R.NE.0.0D0 .OR. C2I.NE.0.0D0) GO TO 255
|
||||
KDFLG = 1
|
||||
GO TO 270
|
||||
255 CONTINUE
|
||||
IF (KDFLG.EQ.2) GO TO 275
|
||||
KDFLG = 2
|
||||
GO TO 270
|
||||
260 CONTINUE
|
||||
IF (RS1.GT.0.0D0) GO TO 300
|
||||
S2R = ZEROR
|
||||
S2I = ZEROI
|
||||
GO TO 230
|
||||
270 CONTINUE
|
||||
K = N
|
||||
275 CONTINUE
|
||||
IL = N - K
|
||||
IF (IL.EQ.0) RETURN
|
||||
C-----------------------------------------------------------------------
|
||||
C RECUR BACKWARD FOR REMAINDER OF I SEQUENCE AND ADD IN THE
|
||||
C K FUNCTIONS, SCALING THE I SEQUENCE DURING RECURRENCE TO KEEP
|
||||
C INTERMEDIATE ARITHMETIC ON SCALE NEAR EXPONENT EXTREMES.
|
||||
C-----------------------------------------------------------------------
|
||||
S1R = CYR(1)
|
||||
S1I = CYI(1)
|
||||
S2R = CYR(2)
|
||||
S2I = CYI(2)
|
||||
CSR = CSRR(IFLAG)
|
||||
ASCLE = BRY(IFLAG)
|
||||
FN = DBLE(FLOAT(INU+IL))
|
||||
DO 290 I=1,IL
|
||||
C2R = S2R
|
||||
C2I = S2I
|
||||
S2R = S1R + (FN+FNF)*(RZR*C2R-RZI*C2I)
|
||||
S2I = S1I + (FN+FNF)*(RZR*C2I+RZI*C2R)
|
||||
S1R = C2R
|
||||
S1I = C2I
|
||||
FN = FN - 1.0D0
|
||||
C2R = S2R*CSR
|
||||
C2I = S2I*CSR
|
||||
CKR = C2R
|
||||
CKI = C2I
|
||||
C1R = YR(KK)
|
||||
C1I = YI(KK)
|
||||
IF (KODE.EQ.1) GO TO 280
|
||||
CALL ZS1S2(ZRR, ZRI, C1R, C1I, C2R, C2I, NW, ASC, ALIM, IUF)
|
||||
NZ = NZ + NW
|
||||
280 CONTINUE
|
||||
YR(KK) = C1R*CSPNR - C1I*CSPNI + C2R
|
||||
YI(KK) = C1R*CSPNI + C1I*CSPNR + C2I
|
||||
KK = KK - 1
|
||||
CSPNR = -CSPNR
|
||||
CSPNI = -CSPNI
|
||||
IF (IFLAG.GE.3) GO TO 290
|
||||
C2R = DABS(CKR)
|
||||
C2I = DABS(CKI)
|
||||
C2M = DMAX1(C2R,C2I)
|
||||
IF (C2M.LE.ASCLE) GO TO 290
|
||||
IFLAG = IFLAG + 1
|
||||
ASCLE = BRY(IFLAG)
|
||||
S1R = S1R*CSR
|
||||
S1I = S1I*CSR
|
||||
S2R = CKR
|
||||
S2I = CKI
|
||||
S1R = S1R*CSSR(IFLAG)
|
||||
S1I = S1I*CSSR(IFLAG)
|
||||
S2R = S2R*CSSR(IFLAG)
|
||||
S2I = S2I*CSSR(IFLAG)
|
||||
CSR = CSRR(IFLAG)
|
||||
290 CONTINUE
|
||||
RETURN
|
||||
300 CONTINUE
|
||||
NZ = -1
|
||||
RETURN
|
||||
END
|
505
amos/zunk2.f
505
amos/zunk2.f
|
@ -1,505 +0,0 @@
|
|||
SUBROUTINE ZUNK2(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, TOL, ELIM,
|
||||
* ALIM)
|
||||
C***BEGIN PROLOGUE ZUNK2
|
||||
C***REFER TO ZBESK
|
||||
C
|
||||
C ZUNK2 COMPUTES K(FNU,Z) AND ITS ANALYTIC CONTINUATION FROM THE
|
||||
C RIGHT HALF PLANE TO THE LEFT HALF PLANE BY MEANS OF THE
|
||||
C UNIFORM ASYMPTOTIC EXPANSIONS FOR H(KIND,FNU,ZN) AND J(FNU,ZN)
|
||||
C WHERE ZN IS IN THE RIGHT HALF PLANE, KIND=(3-MR)/2, MR=+1 OR
|
||||
C -1. HERE ZN=ZR*I OR -ZR*I WHERE ZR=Z IF Z IS IN THE RIGHT
|
||||
C HALF PLANE OR ZR=-Z IF Z IS IN THE LEFT HALF PLANE. MR INDIC-
|
||||
C ATES THE DIRECTION OF ROTATION FOR ANALYTIC CONTINUATION.
|
||||
C NZ=-1 MEANS AN OVERFLOW WILL OCCUR
|
||||
C
|
||||
C***ROUTINES CALLED ZAIRY,ZKSCL,ZS1S2,ZUCHK,ZUNHJ,D1MACH,AZABS
|
||||
C***END PROLOGUE ZUNK2
|
||||
C COMPLEX AI,ARG,ARGD,ASUM,ASUMD,BSUM,BSUMD,CFN,CI,CIP,CK,CONE,CRSC,
|
||||
C *CR1,CR2,CS,CSCL,CSGN,CSPN,CSR,CSS,CY,CZERO,C1,C2,DAI,PHI,PHID,RZ,
|
||||
C *S1,S2,Y,Z,ZB,ZETA1,ZETA1D,ZETA2,ZETA2D,ZN,ZR
|
||||
DOUBLE PRECISION AARG, AIC, AII, AIR, ALIM, ANG, APHI, ARGDI,
|
||||
* ARGDR, ARGI, ARGR, ASC, ASCLE, ASUMDI, ASUMDR, ASUMI, ASUMR,
|
||||
* BRY, BSUMDI, BSUMDR, BSUMI, BSUMR, CAR, CIPI, CIPR, CKI, CKR,
|
||||
* CONER, CRSC, CR1I, CR1R, CR2I, CR2R, CSCL, CSGNI, CSI,
|
||||
* CSPNI, CSPNR, CSR, CSRR, CSSR, CYI, CYR, C1I, C1R, C2I, C2M,
|
||||
* C2R, DAII, DAIR, ELIM, FMR, FN, FNF, FNU, HPI, PHIDI, PHIDR,
|
||||
* PHII, PHIR, PI, PTI, PTR, RAST, RAZR, RS1, RZI, RZR, SAR, SGN,
|
||||
* STI, STR, S1I, S1R, S2I, S2R, TOL, YI, YR, YY, ZBI, ZBR, ZEROI,
|
||||
* ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R, ZET1DI, ZET1DR, ZET2DI,
|
||||
* ZET2DR, ZI, ZNI, ZNR, ZR, ZRI, ZRR, D1MACH, AZABS
|
||||
INTEGER I, IB, IFLAG, IFN, IL, IN, INU, IUF, K, KDFLG, KFLAG, KK,
|
||||
* KODE, MR, N, NAI, NDAI, NW, NZ, IDUM, J, IPARD, IC
|
||||
DIMENSION BRY(3), YR(N), YI(N), ASUMR(2), ASUMI(2), BSUMR(2),
|
||||
* BSUMI(2), PHIR(2), PHII(2), ARGR(2), ARGI(2), ZETA1R(2),
|
||||
* ZETA1I(2), ZETA2R(2), ZETA2I(2), CYR(2), CYI(2), CIPR(4),
|
||||
* CIPI(4), CSSR(3), CSRR(3)
|
||||
DATA ZEROR,ZEROI,CONER,CR1R,CR1I,CR2R,CR2I /
|
||||
1 0.0D0, 0.0D0, 1.0D0,
|
||||
1 1.0D0,1.73205080756887729D0 , -0.5D0,-8.66025403784438647D-01 /
|
||||
DATA HPI, PI, AIC /
|
||||
1 1.57079632679489662D+00, 3.14159265358979324D+00,
|
||||
1 1.26551212348464539D+00/
|
||||
DATA CIPR(1),CIPI(1),CIPR(2),CIPI(2),CIPR(3),CIPI(3),CIPR(4),
|
||||
* CIPI(4) /
|
||||
1 1.0D0,0.0D0 , 0.0D0,-1.0D0 , -1.0D0,0.0D0 , 0.0D0,1.0D0 /
|
||||
C
|
||||
KDFLG = 1
|
||||
NZ = 0
|
||||
C-----------------------------------------------------------------------
|
||||
C EXP(-ALIM)=EXP(-ELIM)/TOL=APPROX. ONE PRECISION GREATER THAN
|
||||
C THE UNDERFLOW LIMIT
|
||||
C-----------------------------------------------------------------------
|
||||
CSCL = 1.0D0/TOL
|
||||
CRSC = TOL
|
||||
CSSR(1) = CSCL
|
||||
CSSR(2) = CONER
|
||||
CSSR(3) = CRSC
|
||||
CSRR(1) = CRSC
|
||||
CSRR(2) = CONER
|
||||
CSRR(3) = CSCL
|
||||
BRY(1) = 1.0D+3*D1MACH(1)/TOL
|
||||
BRY(2) = 1.0D0/BRY(1)
|
||||
BRY(3) = D1MACH(2)
|
||||
ZRR = ZR
|
||||
ZRI = ZI
|
||||
IF (ZR.GE.0.0D0) GO TO 10
|
||||
ZRR = -ZR
|
||||
ZRI = -ZI
|
||||
10 CONTINUE
|
||||
YY = ZRI
|
||||
ZNR = ZRI
|
||||
ZNI = -ZRR
|
||||
ZBR = ZRR
|
||||
ZBI = ZRI
|
||||
INU = INT(SNGL(FNU))
|
||||
FNF = FNU - DBLE(FLOAT(INU))
|
||||
ANG = -HPI*FNF
|
||||
CAR = DCOS(ANG)
|
||||
SAR = DSIN(ANG)
|
||||
C2R = HPI*SAR
|
||||
C2I = -HPI*CAR
|
||||
KK = MOD(INU,4) + 1
|
||||
STR = C2R*CIPR(KK) - C2I*CIPI(KK)
|
||||
STI = C2R*CIPI(KK) + C2I*CIPR(KK)
|
||||
CSR = CR1R*STR - CR1I*STI
|
||||
CSI = CR1R*STI + CR1I*STR
|
||||
IF (YY.GT.0.0D0) GO TO 20
|
||||
ZNR = -ZNR
|
||||
ZBI = -ZBI
|
||||
20 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C K(FNU,Z) IS COMPUTED FROM H(2,FNU,-I*Z) WHERE Z IS IN THE FIRST
|
||||
C QUADRANT. FOURTH QUADRANT VALUES (YY.LE.0.0E0) ARE COMPUTED BY
|
||||
C CONJUGATION SINCE THE K FUNCTION IS REAL ON THE POSITIVE REAL AXIS
|
||||
C-----------------------------------------------------------------------
|
||||
J = 2
|
||||
DO 80 I=1,N
|
||||
C-----------------------------------------------------------------------
|
||||
C J FLIP FLOPS BETWEEN 1 AND 2 IN J = 3 - J
|
||||
C-----------------------------------------------------------------------
|
||||
J = 3 - J
|
||||
FN = FNU + DBLE(FLOAT(I-1))
|
||||
CALL ZUNHJ(ZNR, ZNI, FN, 0, TOL, PHIR(J), PHII(J), ARGR(J),
|
||||
* ARGI(J), ZETA1R(J), ZETA1I(J), ZETA2R(J), ZETA2I(J), ASUMR(J),
|
||||
* ASUMI(J), BSUMR(J), BSUMI(J))
|
||||
IF (KODE.EQ.1) GO TO 30
|
||||
STR = ZBR + ZETA2R(J)
|
||||
STI = ZBI + ZETA2I(J)
|
||||
RAST = FN/AZABS(STR,STI)
|
||||
STR = STR*RAST*RAST
|
||||
STI = -STI*RAST*RAST
|
||||
S1R = ZETA1R(J) - STR
|
||||
S1I = ZETA1I(J) - STI
|
||||
GO TO 40
|
||||
30 CONTINUE
|
||||
S1R = ZETA1R(J) - ZETA2R(J)
|
||||
S1I = ZETA1I(J) - ZETA2I(J)
|
||||
40 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C TEST FOR UNDERFLOW AND OVERFLOW
|
||||
C-----------------------------------------------------------------------
|
||||
RS1 = S1R
|
||||
IF (DABS(RS1).GT.ELIM) GO TO 70
|
||||
IF (KDFLG.EQ.1) KFLAG = 2
|
||||
IF (DABS(RS1).LT.ALIM) GO TO 50
|
||||
C-----------------------------------------------------------------------
|
||||
C REFINE TEST AND SCALE
|
||||
C-----------------------------------------------------------------------
|
||||
APHI = AZABS(PHIR(J),PHII(J))
|
||||
AARG = AZABS(ARGR(J),ARGI(J))
|
||||
RS1 = RS1 + DLOG(APHI) - 0.25D0*DLOG(AARG) - AIC
|
||||
IF (DABS(RS1).GT.ELIM) GO TO 70
|
||||
IF (KDFLG.EQ.1) KFLAG = 1
|
||||
IF (RS1.LT.0.0D0) GO TO 50
|
||||
IF (KDFLG.EQ.1) KFLAG = 3
|
||||
50 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C SCALE S1 TO KEEP INTERMEDIATE ARITHMETIC ON SCALE NEAR
|
||||
C EXPONENT EXTREMES
|
||||
C-----------------------------------------------------------------------
|
||||
C2R = ARGR(J)*CR2R - ARGI(J)*CR2I
|
||||
C2I = ARGR(J)*CR2I + ARGI(J)*CR2R
|
||||
CALL ZAIRY(C2R, C2I, 0, 2, AIR, AII, NAI, IDUM)
|
||||
CALL ZAIRY(C2R, C2I, 1, 2, DAIR, DAII, NDAI, IDUM)
|
||||
STR = DAIR*BSUMR(J) - DAII*BSUMI(J)
|
||||
STI = DAIR*BSUMI(J) + DAII*BSUMR(J)
|
||||
PTR = STR*CR2R - STI*CR2I
|
||||
PTI = STR*CR2I + STI*CR2R
|
||||
STR = PTR + (AIR*ASUMR(J)-AII*ASUMI(J))
|
||||
STI = PTI + (AIR*ASUMI(J)+AII*ASUMR(J))
|
||||
PTR = STR*PHIR(J) - STI*PHII(J)
|
||||
PTI = STR*PHII(J) + STI*PHIR(J)
|
||||
S2R = PTR*CSR - PTI*CSI
|
||||
S2I = PTR*CSI + PTI*CSR
|
||||
STR = DEXP(S1R)*CSSR(KFLAG)
|
||||
S1R = STR*DCOS(S1I)
|
||||
S1I = STR*DSIN(S1I)
|
||||
STR = S2R*S1R - S2I*S1I
|
||||
S2I = S1R*S2I + S2R*S1I
|
||||
S2R = STR
|
||||
IF (KFLAG.NE.1) GO TO 60
|
||||
CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL)
|
||||
IF (NW.NE.0) GO TO 70
|
||||
60 CONTINUE
|
||||
IF (YY.LE.0.0D0) S2I = -S2I
|
||||
CYR(KDFLG) = S2R
|
||||
CYI(KDFLG) = S2I
|
||||
YR(I) = S2R*CSRR(KFLAG)
|
||||
YI(I) = S2I*CSRR(KFLAG)
|
||||
STR = CSI
|
||||
CSI = -CSR
|
||||
CSR = STR
|
||||
IF (KDFLG.EQ.2) GO TO 85
|
||||
KDFLG = 2
|
||||
GO TO 80
|
||||
70 CONTINUE
|
||||
IF (RS1.GT.0.0D0) GO TO 320
|
||||
C-----------------------------------------------------------------------
|
||||
C FOR ZR.LT.0.0, THE I FUNCTION TO BE ADDED WILL OVERFLOW
|
||||
C-----------------------------------------------------------------------
|
||||
IF (ZR.LT.0.0D0) GO TO 320
|
||||
KDFLG = 1
|
||||
YR(I)=ZEROR
|
||||
YI(I)=ZEROI
|
||||
NZ=NZ+1
|
||||
STR = CSI
|
||||
CSI =-CSR
|
||||
CSR = STR
|
||||
IF (I.EQ.1) GO TO 80
|
||||
IF ((YR(I-1).EQ.ZEROR).AND.(YI(I-1).EQ.ZEROI)) GO TO 80
|
||||
YR(I-1)=ZEROR
|
||||
YI(I-1)=ZEROI
|
||||
NZ=NZ+1
|
||||
80 CONTINUE
|
||||
I = N
|
||||
85 CONTINUE
|
||||
RAZR = 1.0D0/AZABS(ZRR,ZRI)
|
||||
STR = ZRR*RAZR
|
||||
STI = -ZRI*RAZR
|
||||
RZR = (STR+STR)*RAZR
|
||||
RZI = (STI+STI)*RAZR
|
||||
CKR = FN*RZR
|
||||
CKI = FN*RZI
|
||||
IB = I + 1
|
||||
IF (N.LT.IB) GO TO 180
|
||||
C-----------------------------------------------------------------------
|
||||
C TEST LAST MEMBER FOR UNDERFLOW AND OVERFLOW. SET SEQUENCE TO ZERO
|
||||
C ON UNDERFLOW.
|
||||
C-----------------------------------------------------------------------
|
||||
FN = FNU + DBLE(FLOAT(N-1))
|
||||
IPARD = 1
|
||||
IF (MR.NE.0) IPARD = 0
|
||||
CALL ZUNHJ(ZNR, ZNI, FN, IPARD, TOL, PHIDR, PHIDI, ARGDR, ARGDI,
|
||||
* ZET1DR, ZET1DI, ZET2DR, ZET2DI, ASUMDR, ASUMDI, BSUMDR, BSUMDI)
|
||||
IF (KODE.EQ.1) GO TO 90
|
||||
STR = ZBR + ZET2DR
|
||||
STI = ZBI + ZET2DI
|
||||
RAST = FN/AZABS(STR,STI)
|
||||
STR = STR*RAST*RAST
|
||||
STI = -STI*RAST*RAST
|
||||
S1R = ZET1DR - STR
|
||||
S1I = ZET1DI - STI
|
||||
GO TO 100
|
||||
90 CONTINUE
|
||||
S1R = ZET1DR - ZET2DR
|
||||
S1I = ZET1DI - ZET2DI
|
||||
100 CONTINUE
|
||||
RS1 = S1R
|
||||
IF (DABS(RS1).GT.ELIM) GO TO 105
|
||||
IF (DABS(RS1).LT.ALIM) GO TO 120
|
||||
C----------------------------------------------------------------------------
|
||||
C REFINE ESTIMATE AND TEST
|
||||
C-------------------------------------------------------------------------
|
||||
APHI = AZABS(PHIDR,PHIDI)
|
||||
RS1 = RS1+DLOG(APHI)
|
||||
IF (DABS(RS1).LT.ELIM) GO TO 120
|
||||
105 CONTINUE
|
||||
IF (RS1.GT.0.0D0) GO TO 320
|
||||
C-----------------------------------------------------------------------
|
||||
C FOR ZR.LT.0.0, THE I FUNCTION TO BE ADDED WILL OVERFLOW
|
||||
C-----------------------------------------------------------------------
|
||||
IF (ZR.LT.0.0D0) GO TO 320
|
||||
NZ = N
|
||||
DO 106 I=1,N
|
||||
YR(I) = ZEROR
|
||||
YI(I) = ZEROI
|
||||
106 CONTINUE
|
||||
RETURN
|
||||
120 CONTINUE
|
||||
S1R = CYR(1)
|
||||
S1I = CYI(1)
|
||||
S2R = CYR(2)
|
||||
S2I = CYI(2)
|
||||
C1R = CSRR(KFLAG)
|
||||
ASCLE = BRY(KFLAG)
|
||||
DO 130 I=IB,N
|
||||
C2R = S2R
|
||||
C2I = S2I
|
||||
S2R = CKR*C2R - CKI*C2I + S1R
|
||||
S2I = CKR*C2I + CKI*C2R + S1I
|
||||
S1R = C2R
|
||||
S1I = C2I
|
||||
CKR = CKR + RZR
|
||||
CKI = CKI + RZI
|
||||
C2R = S2R*C1R
|
||||
C2I = S2I*C1R
|
||||
YR(I) = C2R
|
||||
YI(I) = C2I
|
||||
IF (KFLAG.GE.3) GO TO 130
|
||||
STR = DABS(C2R)
|
||||
STI = DABS(C2I)
|
||||
C2M = DMAX1(STR,STI)
|
||||
IF (C2M.LE.ASCLE) GO TO 130
|
||||
KFLAG = KFLAG + 1
|
||||
ASCLE = BRY(KFLAG)
|
||||
S1R = S1R*C1R
|
||||
S1I = S1I*C1R
|
||||
S2R = C2R
|
||||
S2I = C2I
|
||||
S1R = S1R*CSSR(KFLAG)
|
||||
S1I = S1I*CSSR(KFLAG)
|
||||
S2R = S2R*CSSR(KFLAG)
|
||||
S2I = S2I*CSSR(KFLAG)
|
||||
C1R = CSRR(KFLAG)
|
||||
130 CONTINUE
|
||||
180 CONTINUE
|
||||
IF (MR.EQ.0) RETURN
|
||||
C-----------------------------------------------------------------------
|
||||
C ANALYTIC CONTINUATION FOR RE(Z).LT.0.0D0
|
||||
C-----------------------------------------------------------------------
|
||||
NZ = 0
|
||||
FMR = DBLE(FLOAT(MR))
|
||||
SGN = -DSIGN(PI,FMR)
|
||||
C-----------------------------------------------------------------------
|
||||
C CSPN AND CSGN ARE COEFF OF K AND I FUNCTIONS RESP.
|
||||
C-----------------------------------------------------------------------
|
||||
CSGNI = SGN
|
||||
IF (YY.LE.0.0D0) CSGNI = -CSGNI
|
||||
IFN = INU + N - 1
|
||||
ANG = FNF*SGN
|
||||
CSPNR = DCOS(ANG)
|
||||
CSPNI = DSIN(ANG)
|
||||
IF (MOD(IFN,2).EQ.0) GO TO 190
|
||||
CSPNR = -CSPNR
|
||||
CSPNI = -CSPNI
|
||||
190 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C CS=COEFF OF THE J FUNCTION TO GET THE I FUNCTION. I(FNU,Z) IS
|
||||
C COMPUTED FROM EXP(I*FNU*HPI)*J(FNU,-I*Z) WHERE Z IS IN THE FIRST
|
||||
C QUADRANT. FOURTH QUADRANT VALUES (YY.LE.0.0E0) ARE COMPUTED BY
|
||||
C CONJUGATION SINCE THE I FUNCTION IS REAL ON THE POSITIVE REAL AXIS
|
||||
C-----------------------------------------------------------------------
|
||||
CSR = SAR*CSGNI
|
||||
CSI = CAR*CSGNI
|
||||
IN = MOD(IFN,4) + 1
|
||||
C2R = CIPR(IN)
|
||||
C2I = CIPI(IN)
|
||||
STR = CSR*C2R + CSI*C2I
|
||||
CSI = -CSR*C2I + CSI*C2R
|
||||
CSR = STR
|
||||
ASC = BRY(1)
|
||||
IUF = 0
|
||||
KK = N
|
||||
KDFLG = 1
|
||||
IB = IB - 1
|
||||
IC = IB - 1
|
||||
DO 290 K=1,N
|
||||
FN = FNU + DBLE(FLOAT(KK-1))
|
||||
C-----------------------------------------------------------------------
|
||||
C LOGIC TO SORT OUT CASES WHOSE PARAMETERS WERE SET FOR THE K
|
||||
C FUNCTION ABOVE
|
||||
C-----------------------------------------------------------------------
|
||||
IF (N.GT.2) GO TO 175
|
||||
172 CONTINUE
|
||||
PHIDR = PHIR(J)
|
||||
PHIDI = PHII(J)
|
||||
ARGDR = ARGR(J)
|
||||
ARGDI = ARGI(J)
|
||||
ZET1DR = ZETA1R(J)
|
||||
ZET1DI = ZETA1I(J)
|
||||
ZET2DR = ZETA2R(J)
|
||||
ZET2DI = ZETA2I(J)
|
||||
ASUMDR = ASUMR(J)
|
||||
ASUMDI = ASUMI(J)
|
||||
BSUMDR = BSUMR(J)
|
||||
BSUMDI = BSUMI(J)
|
||||
J = 3 - J
|
||||
GO TO 210
|
||||
175 CONTINUE
|
||||
IF ((KK.EQ.N).AND.(IB.LT.N)) GO TO 210
|
||||
IF ((KK.EQ.IB).OR.(KK.EQ.IC)) GO TO 172
|
||||
CALL ZUNHJ(ZNR, ZNI, FN, 0, TOL, PHIDR, PHIDI, ARGDR,
|
||||
* ARGDI, ZET1DR, ZET1DI, ZET2DR, ZET2DI, ASUMDR,
|
||||
* ASUMDI, BSUMDR, BSUMDI)
|
||||
210 CONTINUE
|
||||
IF (KODE.EQ.1) GO TO 220
|
||||
STR = ZBR + ZET2DR
|
||||
STI = ZBI + ZET2DI
|
||||
RAST = FN/AZABS(STR,STI)
|
||||
STR = STR*RAST*RAST
|
||||
STI = -STI*RAST*RAST
|
||||
S1R = -ZET1DR + STR
|
||||
S1I = -ZET1DI + STI
|
||||
GO TO 230
|
||||
220 CONTINUE
|
||||
S1R = -ZET1DR + ZET2DR
|
||||
S1I = -ZET1DI + ZET2DI
|
||||
230 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C TEST FOR UNDERFLOW AND OVERFLOW
|
||||
C-----------------------------------------------------------------------
|
||||
RS1 = S1R
|
||||
IF (DABS(RS1).GT.ELIM) GO TO 280
|
||||
IF (KDFLG.EQ.1) IFLAG = 2
|
||||
IF (DABS(RS1).LT.ALIM) GO TO 240
|
||||
C-----------------------------------------------------------------------
|
||||
C REFINE TEST AND SCALE
|
||||
C-----------------------------------------------------------------------
|
||||
APHI = AZABS(PHIDR,PHIDI)
|
||||
AARG = AZABS(ARGDR,ARGDI)
|
||||
RS1 = RS1 + DLOG(APHI) - 0.25D0*DLOG(AARG) - AIC
|
||||
IF (DABS(RS1).GT.ELIM) GO TO 280
|
||||
IF (KDFLG.EQ.1) IFLAG = 1
|
||||
IF (RS1.LT.0.0D0) GO TO 240
|
||||
IF (KDFLG.EQ.1) IFLAG = 3
|
||||
240 CONTINUE
|
||||
CALL ZAIRY(ARGDR, ARGDI, 0, 2, AIR, AII, NAI, IDUM)
|
||||
CALL ZAIRY(ARGDR, ARGDI, 1, 2, DAIR, DAII, NDAI, IDUM)
|
||||
STR = DAIR*BSUMDR - DAII*BSUMDI
|
||||
STI = DAIR*BSUMDI + DAII*BSUMDR
|
||||
STR = STR + (AIR*ASUMDR-AII*ASUMDI)
|
||||
STI = STI + (AIR*ASUMDI+AII*ASUMDR)
|
||||
PTR = STR*PHIDR - STI*PHIDI
|
||||
PTI = STR*PHIDI + STI*PHIDR
|
||||
S2R = PTR*CSR - PTI*CSI
|
||||
S2I = PTR*CSI + PTI*CSR
|
||||
STR = DEXP(S1R)*CSSR(IFLAG)
|
||||
S1R = STR*DCOS(S1I)
|
||||
S1I = STR*DSIN(S1I)
|
||||
STR = S2R*S1R - S2I*S1I
|
||||
S2I = S2R*S1I + S2I*S1R
|
||||
S2R = STR
|
||||
IF (IFLAG.NE.1) GO TO 250
|
||||
CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL)
|
||||
IF (NW.EQ.0) GO TO 250
|
||||
S2R = ZEROR
|
||||
S2I = ZEROI
|
||||
250 CONTINUE
|
||||
IF (YY.LE.0.0D0) S2I = -S2I
|
||||
CYR(KDFLG) = S2R
|
||||
CYI(KDFLG) = S2I
|
||||
C2R = S2R
|
||||
C2I = S2I
|
||||
S2R = S2R*CSRR(IFLAG)
|
||||
S2I = S2I*CSRR(IFLAG)
|
||||
C-----------------------------------------------------------------------
|
||||
C ADD I AND K FUNCTIONS, K SEQUENCE IN Y(I), I=1,N
|
||||
C-----------------------------------------------------------------------
|
||||
S1R = YR(KK)
|
||||
S1I = YI(KK)
|
||||
IF (KODE.EQ.1) GO TO 270
|
||||
CALL ZS1S2(ZRR, ZRI, S1R, S1I, S2R, S2I, NW, ASC, ALIM, IUF)
|
||||
NZ = NZ + NW
|
||||
270 CONTINUE
|
||||
YR(KK) = S1R*CSPNR - S1I*CSPNI + S2R
|
||||
YI(KK) = S1R*CSPNI + S1I*CSPNR + S2I
|
||||
KK = KK - 1
|
||||
CSPNR = -CSPNR
|
||||
CSPNI = -CSPNI
|
||||
STR = CSI
|
||||
CSI = -CSR
|
||||
CSR = STR
|
||||
IF (C2R.NE.0.0D0 .OR. C2I.NE.0.0D0) GO TO 255
|
||||
KDFLG = 1
|
||||
GO TO 290
|
||||
255 CONTINUE
|
||||
IF (KDFLG.EQ.2) GO TO 295
|
||||
KDFLG = 2
|
||||
GO TO 290
|
||||
280 CONTINUE
|
||||
IF (RS1.GT.0.0D0) GO TO 320
|
||||
S2R = ZEROR
|
||||
S2I = ZEROI
|
||||
GO TO 250
|
||||
290 CONTINUE
|
||||
K = N
|
||||
295 CONTINUE
|
||||
IL = N - K
|
||||
IF (IL.EQ.0) RETURN
|
||||
C-----------------------------------------------------------------------
|
||||
C RECUR BACKWARD FOR REMAINDER OF I SEQUENCE AND ADD IN THE
|
||||
C K FUNCTIONS, SCALING THE I SEQUENCE DURING RECURRENCE TO KEEP
|
||||
C INTERMEDIATE ARITHMETIC ON SCALE NEAR EXPONENT EXTREMES.
|
||||
C-----------------------------------------------------------------------
|
||||
S1R = CYR(1)
|
||||
S1I = CYI(1)
|
||||
S2R = CYR(2)
|
||||
S2I = CYI(2)
|
||||
CSR = CSRR(IFLAG)
|
||||
ASCLE = BRY(IFLAG)
|
||||
FN = DBLE(FLOAT(INU+IL))
|
||||
DO 310 I=1,IL
|
||||
C2R = S2R
|
||||
C2I = S2I
|
||||
S2R = S1R + (FN+FNF)*(RZR*C2R-RZI*C2I)
|
||||
S2I = S1I + (FN+FNF)*(RZR*C2I+RZI*C2R)
|
||||
S1R = C2R
|
||||
S1I = C2I
|
||||
FN = FN - 1.0D0
|
||||
C2R = S2R*CSR
|
||||
C2I = S2I*CSR
|
||||
CKR = C2R
|
||||
CKI = C2I
|
||||
C1R = YR(KK)
|
||||
C1I = YI(KK)
|
||||
IF (KODE.EQ.1) GO TO 300
|
||||
CALL ZS1S2(ZRR, ZRI, C1R, C1I, C2R, C2I, NW, ASC, ALIM, IUF)
|
||||
NZ = NZ + NW
|
||||
300 CONTINUE
|
||||
YR(KK) = C1R*CSPNR - C1I*CSPNI + C2R
|
||||
YI(KK) = C1R*CSPNI + C1I*CSPNR + C2I
|
||||
KK = KK - 1
|
||||
CSPNR = -CSPNR
|
||||
CSPNI = -CSPNI
|
||||
IF (IFLAG.GE.3) GO TO 310
|
||||
C2R = DABS(CKR)
|
||||
C2I = DABS(CKI)
|
||||
C2M = DMAX1(C2R,C2I)
|
||||
IF (C2M.LE.ASCLE) GO TO 310
|
||||
IFLAG = IFLAG + 1
|
||||
ASCLE = BRY(IFLAG)
|
||||
S1R = S1R*CSR
|
||||
S1I = S1I*CSR
|
||||
S2R = CKR
|
||||
S2I = CKI
|
||||
S1R = S1R*CSSR(IFLAG)
|
||||
S1I = S1I*CSSR(IFLAG)
|
||||
S2R = S2R*CSSR(IFLAG)
|
||||
S2I = S2I*CSSR(IFLAG)
|
||||
CSR = CSRR(IFLAG)
|
||||
310 CONTINUE
|
||||
RETURN
|
||||
320 CONTINUE
|
||||
NZ = -1
|
||||
RETURN
|
||||
END
|
194
amos/zuoik.f
194
amos/zuoik.f
|
@ -1,194 +0,0 @@
|
|||
SUBROUTINE ZUOIK(ZR, ZI, FNU, KODE, IKFLG, N, YR, YI, NUF, TOL,
|
||||
* ELIM, ALIM)
|
||||
C***BEGIN PROLOGUE ZUOIK
|
||||
C***REFER TO ZBESI,ZBESK,ZBESH
|
||||
C
|
||||
C ZUOIK COMPUTES THE LEADING TERMS OF THE UNIFORM ASYMPTOTIC
|
||||
C EXPANSIONS FOR THE I AND K FUNCTIONS AND COMPARES THEM
|
||||
C (IN LOGARITHMIC FORM) TO ALIM AND ELIM FOR OVER AND UNDERFLOW
|
||||
C WHERE ALIM.LT.ELIM. IF THE MAGNITUDE, BASED ON THE LEADING
|
||||
C EXPONENTIAL, IS LESS THAN ALIM OR GREATER THAN -ALIM, THEN
|
||||
C THE RESULT IS ON SCALE. IF NOT, THEN A REFINED TEST USING OTHER
|
||||
C MULTIPLIERS (IN LOGARITHMIC FORM) IS MADE BASED ON ELIM. HERE
|
||||
C EXP(-ELIM)=SMALLEST MACHINE NUMBER*1.0E+3 AND EXP(-ALIM)=
|
||||
C EXP(-ELIM)/TOL
|
||||
C
|
||||
C IKFLG=1 MEANS THE I SEQUENCE IS TESTED
|
||||
C =2 MEANS THE K SEQUENCE IS TESTED
|
||||
C NUF = 0 MEANS THE LAST MEMBER OF THE SEQUENCE IS ON SCALE
|
||||
C =-1 MEANS AN OVERFLOW WOULD OCCUR
|
||||
C IKFLG=1 AND NUF.GT.0 MEANS THE LAST NUF Y VALUES WERE SET TO ZERO
|
||||
C THE FIRST N-NUF VALUES MUST BE SET BY ANOTHER ROUTINE
|
||||
C IKFLG=2 AND NUF.EQ.N MEANS ALL Y VALUES WERE SET TO ZERO
|
||||
C IKFLG=2 AND 0.LT.NUF.LT.N NOT CONSIDERED. Y MUST BE SET BY
|
||||
C ANOTHER ROUTINE
|
||||
C
|
||||
C***ROUTINES CALLED ZUCHK,ZUNHJ,ZUNIK,D1MACH,AZABS,AZLOG
|
||||
C***END PROLOGUE ZUOIK
|
||||
C COMPLEX ARG,ASUM,BSUM,CWRK,CZ,CZERO,PHI,SUM,Y,Z,ZB,ZETA1,ZETA2,ZN,
|
||||
C *ZR
|
||||
DOUBLE PRECISION AARG, AIC, ALIM, APHI, ARGI, ARGR, ASUMI, ASUMR,
|
||||
* ASCLE, AX, AY, BSUMI, BSUMR, CWRKI, CWRKR, CZI, CZR, ELIM, FNN,
|
||||
* FNU, GNN, GNU, PHII, PHIR, RCZ, STR, STI, SUMI, SUMR, TOL, YI,
|
||||
* YR, ZBI, ZBR, ZEROI, ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R, ZI,
|
||||
* ZNI, ZNR, ZR, ZRI, ZRR, D1MACH, AZABS
|
||||
INTEGER I, IDUM, IFORM, IKFLG, INIT, KODE, N, NN, NUF, NW
|
||||
DIMENSION YR(N), YI(N), CWRKR(16), CWRKI(16)
|
||||
DATA ZEROR,ZEROI / 0.0D0, 0.0D0 /
|
||||
DATA AIC / 1.265512123484645396D+00 /
|
||||
NUF = 0
|
||||
NN = N
|
||||
ZRR = ZR
|
||||
ZRI = ZI
|
||||
IF (ZR.GE.0.0D0) GO TO 10
|
||||
ZRR = -ZR
|
||||
ZRI = -ZI
|
||||
10 CONTINUE
|
||||
ZBR = ZRR
|
||||
ZBI = ZRI
|
||||
AX = DABS(ZR)*1.7321D0
|
||||
AY = DABS(ZI)
|
||||
IFORM = 1
|
||||
IF (AY.GT.AX) IFORM = 2
|
||||
GNU = DMAX1(FNU,1.0D0)
|
||||
IF (IKFLG.EQ.1) GO TO 20
|
||||
FNN = DBLE(FLOAT(NN))
|
||||
GNN = FNU + FNN - 1.0D0
|
||||
GNU = DMAX1(GNN,FNN)
|
||||
20 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C ONLY THE MAGNITUDE OF ARG AND PHI ARE NEEDED ALONG WITH THE
|
||||
C REAL PARTS OF ZETA1, ZETA2 AND ZB. NO ATTEMPT IS MADE TO GET
|
||||
C THE SIGN OF THE IMAGINARY PART CORRECT.
|
||||
C-----------------------------------------------------------------------
|
||||
IF (IFORM.EQ.2) GO TO 30
|
||||
INIT = 0
|
||||
CALL ZUNIK(ZRR, ZRI, GNU, IKFLG, 1, TOL, INIT, PHIR, PHII,
|
||||
* ZETA1R, ZETA1I, ZETA2R, ZETA2I, SUMR, SUMI, CWRKR, CWRKI)
|
||||
CZR = -ZETA1R + ZETA2R
|
||||
CZI = -ZETA1I + ZETA2I
|
||||
GO TO 50
|
||||
30 CONTINUE
|
||||
ZNR = ZRI
|
||||
ZNI = -ZRR
|
||||
IF (ZI.GT.0.0D0) GO TO 40
|
||||
ZNR = -ZNR
|
||||
40 CONTINUE
|
||||
CALL ZUNHJ(ZNR, ZNI, GNU, 1, TOL, PHIR, PHII, ARGR, ARGI, ZETA1R,
|
||||
* ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI)
|
||||
CZR = -ZETA1R + ZETA2R
|
||||
CZI = -ZETA1I + ZETA2I
|
||||
AARG = AZABS(ARGR,ARGI)
|
||||
50 CONTINUE
|
||||
IF (KODE.EQ.1) GO TO 60
|
||||
CZR = CZR - ZBR
|
||||
CZI = CZI - ZBI
|
||||
60 CONTINUE
|
||||
IF (IKFLG.EQ.1) GO TO 70
|
||||
CZR = -CZR
|
||||
CZI = -CZI
|
||||
70 CONTINUE
|
||||
APHI = AZABS(PHIR,PHII)
|
||||
RCZ = CZR
|
||||
C-----------------------------------------------------------------------
|
||||
C OVERFLOW TEST
|
||||
C-----------------------------------------------------------------------
|
||||
IF (RCZ.GT.ELIM) GO TO 210
|
||||
IF (RCZ.LT.ALIM) GO TO 80
|
||||
RCZ = RCZ + DLOG(APHI)
|
||||
IF (IFORM.EQ.2) RCZ = RCZ - 0.25D0*DLOG(AARG) - AIC
|
||||
IF (RCZ.GT.ELIM) GO TO 210
|
||||
GO TO 130
|
||||
80 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C UNDERFLOW TEST
|
||||
C-----------------------------------------------------------------------
|
||||
IF (RCZ.LT.(-ELIM)) GO TO 90
|
||||
IF (RCZ.GT.(-ALIM)) GO TO 130
|
||||
RCZ = RCZ + DLOG(APHI)
|
||||
IF (IFORM.EQ.2) RCZ = RCZ - 0.25D0*DLOG(AARG) - AIC
|
||||
IF (RCZ.GT.(-ELIM)) GO TO 110
|
||||
90 CONTINUE
|
||||
DO 100 I=1,NN
|
||||
YR(I) = ZEROR
|
||||
YI(I) = ZEROI
|
||||
100 CONTINUE
|
||||
NUF = NN
|
||||
RETURN
|
||||
110 CONTINUE
|
||||
ASCLE = 1.0D+3*D1MACH(1)/TOL
|
||||
CALL AZLOG(PHIR, PHII, STR, STI, IDUM)
|
||||
CZR = CZR + STR
|
||||
CZI = CZI + STI
|
||||
IF (IFORM.EQ.1) GO TO 120
|
||||
CALL AZLOG(ARGR, ARGI, STR, STI, IDUM)
|
||||
CZR = CZR - 0.25D0*STR - AIC
|
||||
CZI = CZI - 0.25D0*STI
|
||||
120 CONTINUE
|
||||
AX = DEXP(RCZ)/TOL
|
||||
AY = CZI
|
||||
CZR = AX*DCOS(AY)
|
||||
CZI = AX*DSIN(AY)
|
||||
CALL ZUCHK(CZR, CZI, NW, ASCLE, TOL)
|
||||
IF (NW.NE.0) GO TO 90
|
||||
130 CONTINUE
|
||||
IF (IKFLG.EQ.2) RETURN
|
||||
IF (N.EQ.1) RETURN
|
||||
C-----------------------------------------------------------------------
|
||||
C SET UNDERFLOWS ON I SEQUENCE
|
||||
C-----------------------------------------------------------------------
|
||||
140 CONTINUE
|
||||
GNU = FNU + DBLE(FLOAT(NN-1))
|
||||
IF (IFORM.EQ.2) GO TO 150
|
||||
INIT = 0
|
||||
CALL ZUNIK(ZRR, ZRI, GNU, IKFLG, 1, TOL, INIT, PHIR, PHII,
|
||||
* ZETA1R, ZETA1I, ZETA2R, ZETA2I, SUMR, SUMI, CWRKR, CWRKI)
|
||||
CZR = -ZETA1R + ZETA2R
|
||||
CZI = -ZETA1I + ZETA2I
|
||||
GO TO 160
|
||||
150 CONTINUE
|
||||
CALL ZUNHJ(ZNR, ZNI, GNU, 1, TOL, PHIR, PHII, ARGR, ARGI, ZETA1R,
|
||||
* ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI)
|
||||
CZR = -ZETA1R + ZETA2R
|
||||
CZI = -ZETA1I + ZETA2I
|
||||
AARG = AZABS(ARGR,ARGI)
|
||||
160 CONTINUE
|
||||
IF (KODE.EQ.1) GO TO 170
|
||||
CZR = CZR - ZBR
|
||||
CZI = CZI - ZBI
|
||||
170 CONTINUE
|
||||
APHI = AZABS(PHIR,PHII)
|
||||
RCZ = CZR
|
||||
IF (RCZ.LT.(-ELIM)) GO TO 180
|
||||
IF (RCZ.GT.(-ALIM)) RETURN
|
||||
RCZ = RCZ + DLOG(APHI)
|
||||
IF (IFORM.EQ.2) RCZ = RCZ - 0.25D0*DLOG(AARG) - AIC
|
||||
IF (RCZ.GT.(-ELIM)) GO TO 190
|
||||
180 CONTINUE
|
||||
YR(NN) = ZEROR
|
||||
YI(NN) = ZEROI
|
||||
NN = NN - 1
|
||||
NUF = NUF + 1
|
||||
IF (NN.EQ.0) RETURN
|
||||
GO TO 140
|
||||
190 CONTINUE
|
||||
ASCLE = 1.0D+3*D1MACH(1)/TOL
|
||||
CALL AZLOG(PHIR, PHII, STR, STI, IDUM)
|
||||
CZR = CZR + STR
|
||||
CZI = CZI + STI
|
||||
IF (IFORM.EQ.1) GO TO 200
|
||||
CALL AZLOG(ARGR, ARGI, STR, STI, IDUM)
|
||||
CZR = CZR - 0.25D0*STR - AIC
|
||||
CZI = CZI - 0.25D0*STI
|
||||
200 CONTINUE
|
||||
AX = DEXP(RCZ)/TOL
|
||||
AY = CZI
|
||||
CZR = AX*DCOS(AY)
|
||||
CZI = AX*DSIN(AY)
|
||||
CALL ZUCHK(CZR, CZI, NW, ASCLE, TOL)
|
||||
IF (NW.NE.0) GO TO 180
|
||||
RETURN
|
||||
210 CONTINUE
|
||||
NUF = -1
|
||||
RETURN
|
||||
END
|
94
amos/zwrsk.f
94
amos/zwrsk.f
|
@ -1,94 +0,0 @@
|
|||
SUBROUTINE ZWRSK(ZRR, ZRI, FNU, KODE, N, YR, YI, NZ, CWR, CWI,
|
||||
* TOL, ELIM, ALIM)
|
||||
C***BEGIN PROLOGUE ZWRSK
|
||||
C***REFER TO ZBESI,ZBESK
|
||||
C
|
||||
C ZWRSK COMPUTES THE I BESSEL FUNCTION FOR RE(Z).GE.0.0 BY
|
||||
C NORMALIZING THE I FUNCTION RATIOS FROM ZRATI BY THE WRONSKIAN
|
||||
C
|
||||
C***ROUTINES CALLED D1MACH,ZBKNU,ZRATI,AZABS
|
||||
C***END PROLOGUE ZWRSK
|
||||
C COMPLEX CINU,CSCL,CT,CW,C1,C2,RCT,ST,Y,ZR
|
||||
DOUBLE PRECISION ACT, ACW, ALIM, ASCLE, CINUI, CINUR, CSCLR, CTI,
|
||||
* CTR, CWI, CWR, C1I, C1R, C2I, C2R, ELIM, FNU, PTI, PTR, RACT,
|
||||
* STI, STR, TOL, YI, YR, ZRI, ZRR, AZABS, D1MACH
|
||||
INTEGER I, KODE, N, NW, NZ
|
||||
DIMENSION YR(N), YI(N), CWR(2), CWI(2)
|
||||
C-----------------------------------------------------------------------
|
||||
C I(FNU+I-1,Z) BY BACKWARD RECURRENCE FOR RATIOS
|
||||
C Y(I)=I(FNU+I,Z)/I(FNU+I-1,Z) FROM CRATI NORMALIZED BY THE
|
||||
C WRONSKIAN WITH K(FNU,Z) AND K(FNU+1,Z) FROM CBKNU.
|
||||
C-----------------------------------------------------------------------
|
||||
NZ = 0
|
||||
CALL ZBKNU(ZRR, ZRI, FNU, KODE, 2, CWR, CWI, NW, TOL, ELIM, ALIM)
|
||||
IF (NW.NE.0) GO TO 50
|
||||
CALL ZRATI(ZRR, ZRI, FNU, N, YR, YI, TOL)
|
||||
C-----------------------------------------------------------------------
|
||||
C RECUR FORWARD ON I(FNU+1,Z) = R(FNU,Z)*I(FNU,Z),
|
||||
C R(FNU+J-1,Z)=Y(J), J=1,...,N
|
||||
C-----------------------------------------------------------------------
|
||||
CINUR = 1.0D0
|
||||
CINUI = 0.0D0
|
||||
IF (KODE.EQ.1) GO TO 10
|
||||
CINUR = DCOS(ZRI)
|
||||
CINUI = DSIN(ZRI)
|
||||
10 CONTINUE
|
||||
C-----------------------------------------------------------------------
|
||||
C ON LOW EXPONENT MACHINES THE K FUNCTIONS CAN BE CLOSE TO BOTH
|
||||
C THE UNDER AND OVERFLOW LIMITS AND THE NORMALIZATION MUST BE
|
||||
C SCALED TO PREVENT OVER OR UNDERFLOW. CUOIK HAS DETERMINED THAT
|
||||
C THE RESULT IS ON SCALE.
|
||||
C-----------------------------------------------------------------------
|
||||
ACW = AZABS(CWR(2),CWI(2))
|
||||
ASCLE = 1.0D+3*D1MACH(1)/TOL
|
||||
CSCLR = 1.0D0
|
||||
IF (ACW.GT.ASCLE) GO TO 20
|
||||
CSCLR = 1.0D0/TOL
|
||||
GO TO 30
|
||||
20 CONTINUE
|
||||
ASCLE = 1.0D0/ASCLE
|
||||
IF (ACW.LT.ASCLE) GO TO 30
|
||||
CSCLR = TOL
|
||||
30 CONTINUE
|
||||
C1R = CWR(1)*CSCLR
|
||||
C1I = CWI(1)*CSCLR
|
||||
C2R = CWR(2)*CSCLR
|
||||
C2I = CWI(2)*CSCLR
|
||||
STR = YR(1)
|
||||
STI = YI(1)
|
||||
C-----------------------------------------------------------------------
|
||||
C CINU=CINU*(CONJG(CT)/CABS(CT))*(1.0D0/CABS(CT) PREVENTS
|
||||
C UNDER- OR OVERFLOW PREMATURELY BY SQUARING CABS(CT)
|
||||
C-----------------------------------------------------------------------
|
||||
PTR = STR*C1R - STI*C1I
|
||||
PTI = STR*C1I + STI*C1R
|
||||
PTR = PTR + C2R
|
||||
PTI = PTI + C2I
|
||||
CTR = ZRR*PTR - ZRI*PTI
|
||||
CTI = ZRR*PTI + ZRI*PTR
|
||||
ACT = AZABS(CTR,CTI)
|
||||
RACT = 1.0D0/ACT
|
||||
CTR = CTR*RACT
|
||||
CTI = -CTI*RACT
|
||||
PTR = CINUR*RACT
|
||||
PTI = CINUI*RACT
|
||||
CINUR = PTR*CTR - PTI*CTI
|
||||
CINUI = PTR*CTI + PTI*CTR
|
||||
YR(1) = CINUR*CSCLR
|
||||
YI(1) = CINUI*CSCLR
|
||||
IF (N.EQ.1) RETURN
|
||||
DO 40 I=2,N
|
||||
PTR = STR*CINUR - STI*CINUI
|
||||
CINUI = STR*CINUI + STI*CINUR
|
||||
CINUR = PTR
|
||||
STR = YR(I)
|
||||
STI = YI(I)
|
||||
YR(I) = CINUR*CSCLR
|
||||
YI(I) = CINUI*CSCLR
|
||||
40 CONTINUE
|
||||
RETURN
|
||||
50 CONTINUE
|
||||
NZ = -1
|
||||
IF(NW.EQ.(-2)) NZ=-2
|
||||
RETURN
|
||||
END
|
1
camos
1
camos
|
@ -1 +0,0 @@
|
|||
Subproject commit 19e7ae82e7e0b436bd273557a87d288f8f338221
|
|
@ -1,7 +0,0 @@
|
|||
#!/bin/sh
|
||||
DP=Dockerfile_parts
|
||||
# "Build environment" Dockerfiles
|
||||
cat >Dockerfile.benv.debian.bnl ${DP}/00_common.debian ${DP}/01_numlibs.built
|
||||
cat >Dockerfile.benv.debian.pnl ${DP}/00_common.debian ${DP}/01_numlibs.debian.pkgd
|
||||
cat >Dockerfile.benv.alpine.bnl ${DP}/00_common.alpine ${DP}/01_numlibs.built
|
||||
cat >Dockerfile.benv.alpine.pnl ${DP}/00_common.alpine ${DP}/01_numlibs.alpine.pkgd
|
|
@ -1,5 +0,0 @@
|
|||
#!/bin/sh
|
||||
docker build -t qpms/buildenv/debian/builtnumlib -f Dockerfile.benv.debian.bnl .
|
||||
docker build -t qpms/buildenv/debian/pkgdnumlib -f Dockerfile.benv.debian.pnl .
|
||||
docker build -t qpms/buildenv/alpine/builtnumlib -f Dockerfile.benv.alpine.bnl .
|
||||
docker build -t qpms/buildenv/alpine/pkgdnumlib -f Dockerfile.benv.alpine.pnl .
|
|
@ -1,5 +0,0 @@
|
|||
FROM alpine:latest AS commondeps
|
||||
RUN apk update \
|
||||
&& apk add cmake python3-dev py3-pip gcc g++ wget git make libc-dev bc \
|
||||
&& adduser -D qpmsbuild
|
||||
|
|
@ -1,6 +0,0 @@
|
|||
FROM debian:stable AS commondeps
|
||||
RUN apt-get update \
|
||||
&& apt-get -y install --no-install-recommends build-essential cmake python3 python3-pip git wget python3-dev bc \
|
||||
&& apt-get clean \
|
||||
&& useradd -m qpmsbuild
|
||||
|
|
@ -1,3 +0,0 @@
|
|||
FROM commondeps AS numlibs
|
||||
# openblas-dev adds gfortran :(
|
||||
RUN apk add openblas-dev gsl-dev
|
|
@ -1,16 +0,0 @@
|
|||
FROM commondeps AS buildopenblas
|
||||
USER qpmsbuild
|
||||
RUN cd && git clone --depth 1 https://github.com/xianyi/OpenBLAS.git \
|
||||
&& cd OpenBLAS && make \
|
||||
&& make install PREFIX=$HOME/.local/ \
|
||||
&& make clean \
|
||||
&& cd .. && rm -rf OpenBLAS
|
||||
|
||||
FROM buildopenblas AS numlibs
|
||||
USER qpmsbuild
|
||||
RUN cd && wget https://ftp.gnu.org/gnu/gsl/gsl-latest.tar.gz \
|
||||
&& tar xf gsl-latest.tar.gz \
|
||||
&& cd $( tar tf gsl-latest.tar.gz | head -n 1 ) \
|
||||
&& ./configure --prefix=$HOME/.local \
|
||||
&& make && make install && make clean \
|
||||
&& cd .. && rm -rf $OLDPWD gsl-latest.tar.gz
|
|
@ -1,4 +0,0 @@
|
|||
FROM commondeps AS numlibs
|
||||
RUN apt-get -y install --no-install-recommends libopenblas-dev libgsl-dev liblapacke-dev \
|
||||
&& apt-get clean
|
||||
|
|
@ -1,12 +0,0 @@
|
|||
FROM numlibs AS buildqpms
|
||||
USER qpmsbuild
|
||||
ENV LD_LIBRARY_PATH /home/qpmsbuild/.local/lib
|
||||
ENV LIBRARY_PATH /home/qpmsbuild/.local/lib
|
||||
ENV C_INCLUDE_PATH /home/qpmsbuild/.local/include
|
||||
RUN cd && git clone --depth 1 https://repo.or.cz/qpms.git \
|
||||
&& cd qpms && git submodule init && git submodule update
|
||||
RUN cd ~/qpms && cmake -DCMAKE_INSTALL_PREFIX=$HOME/.local . \
|
||||
&& make \
|
||||
&& make install
|
||||
RUN cd ~/qpms && python3 setup.py install --user
|
||||
|
|
@ -1 +0,0 @@
|
|||
../.drone.yml
|
|
@ -0,0 +1,17 @@
|
|||
# Try to find the ZBESSEL librairies
|
||||
# ZBESSEL_FOUND - system has ZBESSEL lib
|
||||
# ZBESSEL_INCLUDE_DIR - the ZBESSEL include directory
|
||||
# ZBESSEL_LIBRARIES - Libraries needed to use ZBESSEL
|
||||
|
||||
if (ZBESSEL_INCLUDE_DIR AND ZBESSEL_LIBRARIES)
|
||||
# Already in cache, be silent
|
||||
set(ZBESSEL_FIND_QUIETLY TRUE)
|
||||
endif (ZBESSEL_INCLUDE_DIR AND ZBESSEL_LIBRARIES)
|
||||
|
||||
find_path(ZBESSEL_INCLUDE_DIR NAMES zbessel.h )
|
||||
find_library(ZBESSEL_LIBRARIES NAMES zbessel libzbessel)
|
||||
|
||||
include(FindPackageHandleStandardArgs)
|
||||
FIND_PACKAGE_HANDLE_STANDARD_ARGS(ZBESSEL DEFAULT_MSG ZBESSEL_INCLUDE_DIR ZBESSEL_LIBRARIES)
|
||||
|
||||
mark_as_advanced(ZBESSEL_INCLUDE_DIR ZBESSEL_LIBRARIES)
|
|
@ -1,284 +0,0 @@
|
|||
# - Returns a version string from Git
|
||||
#
|
||||
# These functions force a re-configure on each git commit so that you can
|
||||
# trust the values of the variables in your build system.
|
||||
#
|
||||
# get_git_head_revision(<refspecvar> <hashvar> [ALLOW_LOOKING_ABOVE_CMAKE_SOURCE_DIR])
|
||||
#
|
||||
# Returns the refspec and sha hash of the current head revision
|
||||
#
|
||||
# git_describe(<var> [<additional arguments to git describe> ...])
|
||||
#
|
||||
# Returns the results of git describe on the source tree, and adjusting
|
||||
# the output so that it tests false if an error occurs.
|
||||
#
|
||||
# git_describe_working_tree(<var> [<additional arguments to git describe> ...])
|
||||
#
|
||||
# Returns the results of git describe on the working tree (--dirty option),
|
||||
# and adjusting the output so that it tests false if an error occurs.
|
||||
#
|
||||
# git_get_exact_tag(<var> [<additional arguments to git describe> ...])
|
||||
#
|
||||
# Returns the results of git describe --exact-match on the source tree,
|
||||
# and adjusting the output so that it tests false if there was no exact
|
||||
# matching tag.
|
||||
#
|
||||
# git_local_changes(<var>)
|
||||
#
|
||||
# Returns either "CLEAN" or "DIRTY" with respect to uncommitted changes.
|
||||
# Uses the return code of "git diff-index --quiet HEAD --".
|
||||
# Does not regard untracked files.
|
||||
#
|
||||
# Requires CMake 2.6 or newer (uses the 'function' command)
|
||||
#
|
||||
# Original Author:
|
||||
# 2009-2020 Ryan Pavlik <ryan.pavlik@gmail.com> <abiryan@ryand.net>
|
||||
# http://academic.cleardefinition.com
|
||||
#
|
||||
# Copyright 2009-2013, Iowa State University.
|
||||
# Copyright 2013-2020, Ryan Pavlik
|
||||
# Copyright 2013-2020, Contributors
|
||||
# SPDX-License-Identifier: BSL-1.0
|
||||
# Distributed under the Boost Software License, Version 1.0.
|
||||
# (See accompanying file LICENSE_1_0.txt or copy at
|
||||
# http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
if(__get_git_revision_description)
|
||||
return()
|
||||
endif()
|
||||
set(__get_git_revision_description YES)
|
||||
|
||||
# We must run the following at "include" time, not at function call time,
|
||||
# to find the path to this module rather than the path to a calling list file
|
||||
get_filename_component(_gitdescmoddir ${CMAKE_CURRENT_LIST_FILE} PATH)
|
||||
|
||||
# Function _git_find_closest_git_dir finds the next closest .git directory
|
||||
# that is part of any directory in the path defined by _start_dir.
|
||||
# The result is returned in the parent scope variable whose name is passed
|
||||
# as variable _git_dir_var. If no .git directory can be found, the
|
||||
# function returns an empty string via _git_dir_var.
|
||||
#
|
||||
# Example: Given a path C:/bla/foo/bar and assuming C:/bla/.git exists and
|
||||
# neither foo nor bar contain a file/directory .git. This wil return
|
||||
# C:/bla/.git
|
||||
#
|
||||
function(_git_find_closest_git_dir _start_dir _git_dir_var)
|
||||
set(cur_dir "${_start_dir}")
|
||||
set(git_dir "${_start_dir}/.git")
|
||||
while(NOT EXISTS "${git_dir}")
|
||||
# .git dir not found, search parent directories
|
||||
set(git_previous_parent "${cur_dir}")
|
||||
get_filename_component(cur_dir "${cur_dir}" DIRECTORY)
|
||||
if(cur_dir STREQUAL git_previous_parent)
|
||||
# We have reached the root directory, we are not in git
|
||||
set(${_git_dir_var}
|
||||
""
|
||||
PARENT_SCOPE)
|
||||
return()
|
||||
endif()
|
||||
set(git_dir "${cur_dir}/.git")
|
||||
endwhile()
|
||||
set(${_git_dir_var}
|
||||
"${git_dir}"
|
||||
PARENT_SCOPE)
|
||||
endfunction()
|
||||
|
||||
function(get_git_head_revision _refspecvar _hashvar)
|
||||
_git_find_closest_git_dir("${CMAKE_CURRENT_SOURCE_DIR}" GIT_DIR)
|
||||
|
||||
if("${ARGN}" STREQUAL "ALLOW_LOOKING_ABOVE_CMAKE_SOURCE_DIR")
|
||||
set(ALLOW_LOOKING_ABOVE_CMAKE_SOURCE_DIR TRUE)
|
||||
else()
|
||||
set(ALLOW_LOOKING_ABOVE_CMAKE_SOURCE_DIR FALSE)
|
||||
endif()
|
||||
if(NOT "${GIT_DIR}" STREQUAL "")
|
||||
file(RELATIVE_PATH _relative_to_source_dir "${CMAKE_SOURCE_DIR}"
|
||||
"${GIT_DIR}")
|
||||
if("${_relative_to_source_dir}" MATCHES "[.][.]" AND NOT ALLOW_LOOKING_ABOVE_CMAKE_SOURCE_DIR)
|
||||
# We've gone above the CMake root dir.
|
||||
set(GIT_DIR "")
|
||||
endif()
|
||||
endif()
|
||||
if("${GIT_DIR}" STREQUAL "")
|
||||
set(${_refspecvar}
|
||||
"GITDIR-NOTFOUND"
|
||||
PARENT_SCOPE)
|
||||
set(${_hashvar}
|
||||
"GITDIR-NOTFOUND"
|
||||
PARENT_SCOPE)
|
||||
return()
|
||||
endif()
|
||||
|
||||
# Check if the current source dir is a git submodule or a worktree.
|
||||
# In both cases .git is a file instead of a directory.
|
||||
#
|
||||
if(NOT IS_DIRECTORY ${GIT_DIR})
|
||||
# The following git command will return a non empty string that
|
||||
# points to the super project working tree if the current
|
||||
# source dir is inside a git submodule.
|
||||
# Otherwise the command will return an empty string.
|
||||
#
|
||||
execute_process(
|
||||
COMMAND "${GIT_EXECUTABLE}" rev-parse
|
||||
--show-superproject-working-tree
|
||||
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}"
|
||||
OUTPUT_VARIABLE out
|
||||
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
|
||||
if(NOT "${out}" STREQUAL "")
|
||||
# If out is empty, GIT_DIR/CMAKE_CURRENT_SOURCE_DIR is in a submodule
|
||||
file(READ ${GIT_DIR} submodule)
|
||||
string(REGEX REPLACE "gitdir: (.*)$" "\\1" GIT_DIR_RELATIVE
|
||||
${submodule})
|
||||
string(STRIP ${GIT_DIR_RELATIVE} GIT_DIR_RELATIVE)
|
||||
get_filename_component(SUBMODULE_DIR ${GIT_DIR} PATH)
|
||||
get_filename_component(GIT_DIR ${SUBMODULE_DIR}/${GIT_DIR_RELATIVE}
|
||||
ABSOLUTE)
|
||||
set(HEAD_SOURCE_FILE "${GIT_DIR}/HEAD")
|
||||
else()
|
||||
# GIT_DIR/CMAKE_CURRENT_SOURCE_DIR is in a worktree
|
||||
file(READ ${GIT_DIR} worktree_ref)
|
||||
# The .git directory contains a path to the worktree information directory
|
||||
# inside the parent git repo of the worktree.
|
||||
#
|
||||
string(REGEX REPLACE "gitdir: (.*)$" "\\1" git_worktree_dir
|
||||
${worktree_ref})
|
||||
string(STRIP ${git_worktree_dir} git_worktree_dir)
|
||||
_git_find_closest_git_dir("${git_worktree_dir}" GIT_DIR)
|
||||
set(HEAD_SOURCE_FILE "${git_worktree_dir}/HEAD")
|
||||
endif()
|
||||
else()
|
||||
set(HEAD_SOURCE_FILE "${GIT_DIR}/HEAD")
|
||||
endif()
|
||||
set(GIT_DATA "${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/git-data")
|
||||
if(NOT EXISTS "${GIT_DATA}")
|
||||
file(MAKE_DIRECTORY "${GIT_DATA}")
|
||||
endif()
|
||||
|
||||
if(NOT EXISTS "${HEAD_SOURCE_FILE}")
|
||||
return()
|
||||
endif()
|
||||
set(HEAD_FILE "${GIT_DATA}/HEAD")
|
||||
configure_file("${HEAD_SOURCE_FILE}" "${HEAD_FILE}" COPYONLY)
|
||||
|
||||
configure_file("${_gitdescmoddir}/GetGitRevisionDescription.cmake.in"
|
||||
"${GIT_DATA}/grabRef.cmake" @ONLY)
|
||||
include("${GIT_DATA}/grabRef.cmake")
|
||||
|
||||
set(${_refspecvar}
|
||||
"${HEAD_REF}"
|
||||
PARENT_SCOPE)
|
||||
set(${_hashvar}
|
||||
"${HEAD_HASH}"
|
||||
PARENT_SCOPE)
|
||||
endfunction()
|
||||
|
||||
function(git_describe _var)
|
||||
if(NOT GIT_FOUND)
|
||||
find_package(Git QUIET)
|
||||
endif()
|
||||
get_git_head_revision(refspec hash)
|
||||
if(NOT GIT_FOUND)
|
||||
set(${_var}
|
||||
"GIT-NOTFOUND"
|
||||
PARENT_SCOPE)
|
||||
return()
|
||||
endif()
|
||||
if(NOT hash)
|
||||
set(${_var}
|
||||
"HEAD-HASH-NOTFOUND"
|
||||
PARENT_SCOPE)
|
||||
return()
|
||||
endif()
|
||||
|
||||
# TODO sanitize
|
||||
#if((${ARGN}" MATCHES "&&") OR
|
||||
# (ARGN MATCHES "||") OR
|
||||
# (ARGN MATCHES "\\;"))
|
||||
# message("Please report the following error to the project!")
|
||||
# message(FATAL_ERROR "Looks like someone's doing something nefarious with git_describe! Passed arguments ${ARGN}")
|
||||
#endif()
|
||||
|
||||
#message(STATUS "Arguments to execute_process: ${ARGN}")
|
||||
|
||||
execute_process(
|
||||
COMMAND "${GIT_EXECUTABLE}" describe --tags --always ${hash} ${ARGN}
|
||||
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}"
|
||||
RESULT_VARIABLE res
|
||||
OUTPUT_VARIABLE out
|
||||
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
|
||||
if(NOT res EQUAL 0)
|
||||
set(out "${out}-${res}-NOTFOUND")
|
||||
endif()
|
||||
|
||||
set(${_var}
|
||||
"${out}"
|
||||
PARENT_SCOPE)
|
||||
endfunction()
|
||||
|
||||
function(git_describe_working_tree _var)
|
||||
if(NOT GIT_FOUND)
|
||||
find_package(Git QUIET)
|
||||
endif()
|
||||
if(NOT GIT_FOUND)
|
||||
set(${_var}
|
||||
"GIT-NOTFOUND"
|
||||
PARENT_SCOPE)
|
||||
return()
|
||||
endif()
|
||||
|
||||
execute_process(
|
||||
COMMAND "${GIT_EXECUTABLE}" describe --dirty ${ARGN}
|
||||
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}"
|
||||
RESULT_VARIABLE res
|
||||
OUTPUT_VARIABLE out
|
||||
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
|
||||
if(NOT res EQUAL 0)
|
||||
set(out "${out}-${res}-NOTFOUND")
|
||||
endif()
|
||||
|
||||
set(${_var}
|
||||
"${out}"
|
||||
PARENT_SCOPE)
|
||||
endfunction()
|
||||
|
||||
function(git_get_exact_tag _var)
|
||||
git_describe(out --exact-match ${ARGN})
|
||||
set(${_var}
|
||||
"${out}"
|
||||
PARENT_SCOPE)
|
||||
endfunction()
|
||||
|
||||
function(git_local_changes _var)
|
||||
if(NOT GIT_FOUND)
|
||||
find_package(Git QUIET)
|
||||
endif()
|
||||
get_git_head_revision(refspec hash)
|
||||
if(NOT GIT_FOUND)
|
||||
set(${_var}
|
||||
"GIT-NOTFOUND"
|
||||
PARENT_SCOPE)
|
||||
return()
|
||||
endif()
|
||||
if(NOT hash)
|
||||
set(${_var}
|
||||
"HEAD-HASH-NOTFOUND"
|
||||
PARENT_SCOPE)
|
||||
return()
|
||||
endif()
|
||||
|
||||
execute_process(
|
||||
COMMAND "${GIT_EXECUTABLE}" diff-index --quiet HEAD --
|
||||
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}"
|
||||
RESULT_VARIABLE res
|
||||
OUTPUT_VARIABLE out
|
||||
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
|
||||
if(res EQUAL 0)
|
||||
set(${_var}
|
||||
"CLEAN"
|
||||
PARENT_SCOPE)
|
||||
else()
|
||||
set(${_var}
|
||||
"DIRTY"
|
||||
PARENT_SCOPE)
|
||||
endif()
|
||||
endfunction()
|
|
@ -1,43 +0,0 @@
|
|||
#
|
||||
# Internal file for GetGitRevisionDescription.cmake
|
||||
#
|
||||
# Requires CMake 2.6 or newer (uses the 'function' command)
|
||||
#
|
||||
# Original Author:
|
||||
# 2009-2010 Ryan Pavlik <rpavlik@iastate.edu> <abiryan@ryand.net>
|
||||
# http://academic.cleardefinition.com
|
||||
# Iowa State University HCI Graduate Program/VRAC
|
||||
#
|
||||
# Copyright 2009-2012, Iowa State University
|
||||
# Copyright 2011-2015, Contributors
|
||||
# Distributed under the Boost Software License, Version 1.0.
|
||||
# (See accompanying file LICENSE_1_0.txt or copy at
|
||||
# http://www.boost.org/LICENSE_1_0.txt)
|
||||
# SPDX-License-Identifier: BSL-1.0
|
||||
|
||||
set(HEAD_HASH)
|
||||
|
||||
file(READ "@HEAD_FILE@" HEAD_CONTENTS LIMIT 1024)
|
||||
|
||||
string(STRIP "${HEAD_CONTENTS}" HEAD_CONTENTS)
|
||||
if(HEAD_CONTENTS MATCHES "ref")
|
||||
# named branch
|
||||
string(REPLACE "ref: " "" HEAD_REF "${HEAD_CONTENTS}")
|
||||
if(EXISTS "@GIT_DIR@/${HEAD_REF}")
|
||||
configure_file("@GIT_DIR@/${HEAD_REF}" "@GIT_DATA@/head-ref" COPYONLY)
|
||||
else()
|
||||
configure_file("@GIT_DIR@/packed-refs" "@GIT_DATA@/packed-refs" COPYONLY)
|
||||
file(READ "@GIT_DATA@/packed-refs" PACKED_REFS)
|
||||
if(${PACKED_REFS} MATCHES "([0-9a-z]*) ${HEAD_REF}")
|
||||
set(HEAD_HASH "${CMAKE_MATCH_1}")
|
||||
endif()
|
||||
endif()
|
||||
else()
|
||||
# detached HEAD
|
||||
configure_file("@GIT_DIR@/HEAD" "@GIT_DATA@/head-ref" COPYONLY)
|
||||
endif()
|
||||
|
||||
if(NOT HEAD_HASH)
|
||||
file(READ "@GIT_DATA@/head-ref" HEAD_HASH LIMIT 1024)
|
||||
string(STRIP "${HEAD_HASH}" HEAD_HASH)
|
||||
endif()
|
|
@ -1,23 +0,0 @@
|
|||
Boost Software License - Version 1.0 - August 17th, 2003
|
||||
|
||||
Permission is hereby granted, free of charge, to any person or organization
|
||||
obtaining a copy of the software and accompanying documentation covered by
|
||||
this license (the "Software") to use, reproduce, display, distribute,
|
||||
execute, and transmit the Software, and to prepare derivative works of the
|
||||
Software, and to permit third-parties to whom the Software is furnished to
|
||||
do so, all subject to the following:
|
||||
|
||||
The copyright notices in the Software and this entire statement, including
|
||||
the above license grant, this restriction and the following disclaimer,
|
||||
must be included in all copies of the Software, in whole or in part, and
|
||||
all derivative works of the Software, unless such copies or derivative
|
||||
works are solely in the form of machine-executable object code generated by
|
||||
a source language processor.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
|
||||
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
|
||||
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
|
||||
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
DEALINGS IN THE SOFTWARE.
|
|
@ -1,36 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
from qpms import TMatrixGenerator, BaseSpec, eV, hbar
|
||||
import numpy as np
|
||||
import sys
|
||||
|
||||
errors = 0
|
||||
|
||||
def tmg_diagonal_fun(tmatrix, omega):
|
||||
'''
|
||||
Example of a python function used as a custom T-matrix generator
|
||||
|
||||
It receives a CTMatrix argument with pre-filled BaseSpec
|
||||
(in tmatrix.spec) and angular frequency.
|
||||
|
||||
It has to fill in the T-matrix elements tmatrix[...]
|
||||
(a numpy array of shape (len(tmatrix.spec),len(tmatrix.spec)))
|
||||
and return zero (on success) or other integral value on error.
|
||||
|
||||
Note that this in justa an example of using the API,
|
||||
not supposed to be anything physical.
|
||||
'''
|
||||
l = tmatrix.spec.l()
|
||||
tmatrix[...] = np.diag(1./l**2)
|
||||
return 0
|
||||
|
||||
# Wrap the function as an actual TMatrixGenerator
|
||||
tmg_diagonal = TMatrixGenerator(tmg_diagonal_fun)
|
||||
|
||||
bspec = BaseSpec(lMax=2)
|
||||
|
||||
tmatrix = tmg_diagonal(bspec, (2.0+.01j) * eV/hbar)
|
||||
|
||||
errors += np.sum(tmatrix[...] != np.diag(1./bspec.l()**2))
|
||||
|
||||
sys.exit(errors)
|
||||
|
|
@ -1,38 +0,0 @@
|
|||
#!/bin/bash
|
||||
echo 'scale=20;pi=3.14159265358979323846;' > bc_env
|
||||
export BC_ENV_ARGS="bc_env"
|
||||
|
||||
# We put those into bc, which does not understant exponential notation
|
||||
SEPARATION_nm=576
|
||||
|
||||
# Particle positions within unit cell
|
||||
export P1X_nm=0
|
||||
export P1Y_nm=$(bc <<< ${SEPARATION_nm}/2)
|
||||
export P2X_nm=0
|
||||
export P2Y_nm=-$P1Y_nm
|
||||
|
||||
# Lattice vectors
|
||||
export A1X_nm=$(bc <<< ${SEPARATION_nm}'*sqrt(3)')
|
||||
export A1Y_nm=0
|
||||
export A2X_nm=$(bc <<< ${SEPARATION_nm}'*sqrt(3)/2')
|
||||
export A2Y_nm=$(bc <<< ${SEPARATION_nm}'*3/2')
|
||||
|
||||
# Reciprocal lattice vectors
|
||||
export B1X_nmi=$(bc <<< '2*pi/sqrt(3)/'${SEPARATION_nm})
|
||||
export B1Y_nmi=$(bc <<< '-2*pi/3/'${SEPARATION_nm})
|
||||
export B2X_nmi=0
|
||||
export B2Y_nmi=$(bc <<< '4*pi/3/'${SEPARATION_nm})
|
||||
|
||||
# a K-point coordinates
|
||||
export KPOINTX_nmi=$(bc <<< '4*pi/3/sqrt(3)'/${SEPARATION_nm})
|
||||
export KPOINTY_nmi=0.0 #$(bc <<< '4*pi/3/sqrt(3)'/${SEPARATION_nm})
|
||||
|
||||
# a M-point coordinates
|
||||
export MPOINTX_nmi=0.0
|
||||
export MPOINTY_nmi=$(bc <<< '2*pi/3'/${SEPARATION_nm})
|
||||
|
||||
|
||||
export RADIUS_nm=50
|
||||
export HEIGHT_nm=50
|
||||
export METAL=Au
|
||||
export BG_REFINDEX=1.52
|
|
@ -1,18 +0,0 @@
|
|||
#!/bin/bash
|
||||
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
MISCDIR=../../../misc
|
||||
|
||||
source ${SCRIPTDIR}/00_params.sh
|
||||
|
||||
${MISCDIR}/lat2d_modes.py \
|
||||
-n $BG_REFINDEX \
|
||||
-b s${A1X_nm}e-9 s${A1Y_nm}e-9 \
|
||||
-b s${A2X_nm}e-9 s${A2Y_nm}e-9 \
|
||||
-p s${P1X_nm}e-9 s${P1Y_nm}e-9 \
|
||||
-p s${P2X_nm}e-9 s${P2Y_nm}e-9 \
|
||||
-L 3 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
|
||||
-k s${KPOINTX_nmi}e9 s${KPOINTY_nmi}e9 \
|
||||
-d -3 \
|
||||
-t 0.01 \
|
||||
-c 250 \
|
||||
-P
|
|
@ -1,16 +0,0 @@
|
|||
#!/bin/bash
|
||||
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
MISCDIR=../../../misc
|
||||
|
||||
source ${SCRIPTDIR}/00_params.sh
|
||||
|
||||
${MISCDIR}/lat2d_realfreqsvd.py \
|
||||
-B $BG_REFINDEX \
|
||||
-b s${A1X_nm}e-9 s${A1Y_nm}e-9 \
|
||||
-b s${A2X_nm}e-9 s${A2Y_nm}e-9 \
|
||||
-p s${P1X_nm}e-9 s${P1Y_nm}e-9 \
|
||||
-p s${P2X_nm}e-9 s${P2Y_nm}e-9 \
|
||||
-L 3 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
|
||||
-k s${KPOINTX_nmi}e9 s${KPOINTY_nmi}e9 \
|
||||
-F 1.3 0.001 1.5 \
|
||||
-P
|
|
@ -1,22 +0,0 @@
|
|||
#!/bin/bash
|
||||
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
MISCDIR=../../../misc
|
||||
|
||||
source ${SCRIPTDIR}/00_params.sh
|
||||
|
||||
for bbb in 1 -2 -3 -4 ; do
|
||||
for coeff in $(seq 0.80 0.01 1.50 | sed -e s/,/./g) ; do
|
||||
${MISCDIR}/lat2d_modes.py \
|
||||
-n $BG_REFINDEX \
|
||||
-b s${A1X_nm}e-9 s${A1Y_nm}e-9 \
|
||||
-b s${A2X_nm}e-9 s${A2Y_nm}e-9 \
|
||||
-p s${P1X_nm}e-9 s${P1Y_nm}e-9 \
|
||||
-p s${P2X_nm}e-9 s${P2Y_nm}e-9 \
|
||||
-L 3 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
|
||||
-k s$(bc <<< ${KPOINTX_nmi}*${coeff})e9 s$(bc <<< ${KPOINTY_nmi}*${coeff})e9 \
|
||||
-d $bbb \
|
||||
-t 1e13 \
|
||||
-T 0.2 \
|
||||
-c 250
|
||||
done
|
||||
done
|
|
@ -1,24 +0,0 @@
|
|||
#!/bin/bash
|
||||
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
MISCDIR=../../../misc
|
||||
|
||||
source ${SCRIPTDIR}/00_params.sh
|
||||
|
||||
for bbb in 1 -2 -3 -4 ; do
|
||||
for coeff in $(seq 0.00 0.01 1.00 | sed -e s/,/./g) ; do
|
||||
${MISCDIR}/lat2d_modes.py \
|
||||
-n $BG_REFINDEX \
|
||||
-b s${A1X_nm}e-9 s${A1Y_nm}e-9 \
|
||||
-b s${A2X_nm}e-9 s${A2Y_nm}e-9 \
|
||||
-p s${P1X_nm}e-9 s${P1Y_nm}e-9 \
|
||||
-p s${P2X_nm}e-9 s${P2Y_nm}e-9 \
|
||||
-L 3 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
|
||||
-k s$(bc <<< ${MPOINTX_nmi}*${coeff})e9 s$(bc <<< ${MPOINTY_nmi}*${coeff})e9 \
|
||||
-d $bbb \
|
||||
-t 1e12 \
|
||||
-T 0.3 \
|
||||
-c 250 \
|
||||
-P
|
||||
done
|
||||
done
|
||||
|
|
@ -1,24 +0,0 @@
|
|||
#!/bin/bash
|
||||
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
MISCDIR=../../../misc
|
||||
|
||||
source ${SCRIPTDIR}/00_params.sh
|
||||
|
||||
for bbb in 1 2 ; do
|
||||
for coeff in $(seq 0.80 0.01 2.00 | sed -e s/,/./g) ; do
|
||||
${MISCDIR}/lat2d_modes.py \
|
||||
-n $BG_REFINDEX \
|
||||
-b s${A1X_nm}e-9 s${A1Y_nm}e-9 \
|
||||
-b s${A2X_nm}e-9 s${A2Y_nm}e-9 \
|
||||
-p s${P1X_nm}e-9 s${P1Y_nm}e-9 \
|
||||
-p s${P2X_nm}e-9 s${P2Y_nm}e-9 \
|
||||
-L 3 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
|
||||
-k s$(bc <<< ${KPOINTX_nmi}*${coeff})e9 s$(bc <<< ${KPOINTY_nmi}*${coeff})e9 \
|
||||
-d -$bbb \
|
||||
-t 1e12 \
|
||||
-T 0.2 \
|
||||
-c 250 \
|
||||
-P
|
||||
done
|
||||
done
|
||||
|
|
@ -1 +0,0 @@
|
|||
scale=20;pi=3.14159265358979323846;
|
|
@ -1,37 +0,0 @@
|
|||
#!/bin/bash
|
||||
|
||||
# Common parameters for a rectangular array
|
||||
# N.B. We put those into bc, which does not understant exponential notation
|
||||
|
||||
export PX_nm=375
|
||||
export PY_nm=375
|
||||
export RADIUS_nm=30
|
||||
export HEIGHT_nm=30
|
||||
export METAL=Ag
|
||||
export BG_REFINDEX=1.52
|
||||
|
||||
|
||||
# Setup bc
|
||||
|
||||
echo 'scale=20;pi=3.14159265358979323846;' > bc_env
|
||||
export BC_ENV_ARGS="bc_env"
|
||||
|
||||
|
||||
# We have only one particle per unit cell here
|
||||
export P1X_nm=0
|
||||
export P1Y_nm=0
|
||||
|
||||
|
||||
# Lattice vectors (for the general scripts)
|
||||
export A1X_nm=${PX_nm}
|
||||
export A1Y_nm=0
|
||||
export A2X_nm=0
|
||||
export A2Y_nm=${PY_nm}
|
||||
|
||||
# Reciprocal lattice vectors
|
||||
export B1X_nmi=$(bc <<< '1/'${PX_nm})
|
||||
export B1Y_nmi=0
|
||||
export B2X_nmi=0
|
||||
export B2Y_nmi=$(bc <<< '1/'${PY_nm})
|
||||
|
||||
|
|
@ -1,18 +0,0 @@
|
|||
#!/bin/bash
|
||||
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
MISCDIR=../../../misc
|
||||
|
||||
source ${SCRIPTDIR}/00_params.sh
|
||||
|
||||
${MISCDIR}/lat2d_modes.py \
|
||||
-n $BG_REFINDEX \
|
||||
-b s${A1X_nm}e-9 s${A1Y_nm}e-9 \
|
||||
-b s${A2X_nm}e-9 s${A2Y_nm}e-9 \
|
||||
-p s${P1X_nm}e-9 s${P1Y_nm}e-9 \
|
||||
-p s${P2X_nm}e-9 s${P2Y_nm}e-9 \
|
||||
-L 3 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
|
||||
-k s${KPOINTX_nmi}e9 s${KPOINTY_nmi}e9 \
|
||||
-d -3 \
|
||||
-t 0.01 \
|
||||
-c 250 \
|
||||
-P
|
|
@ -1,17 +0,0 @@
|
|||
#!/bin/bash
|
||||
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
MISCDIR=../../../misc
|
||||
|
||||
source ${SCRIPTDIR}/00_params.sh
|
||||
|
||||
# try several lMaxes
|
||||
|
||||
${MISCDIR}/lat2d_realfreqsvd.py \
|
||||
-B $BG_REFINDEX \
|
||||
-b s${A1X_nm}e-9 s${A1Y_nm}e-9 \
|
||||
-b s${A2X_nm}e-9 s${A2Y_nm}e-9 \
|
||||
-p s${P1X_nm}e-9 s${P1Y_nm}e-9 \
|
||||
-L 2 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
|
||||
-k 0 0 \
|
||||
-F 2.001 0.001 2.250 \
|
||||
-P
|
|
@ -1,15 +0,0 @@
|
|||
#!/bin/bash
|
||||
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
MISCDIR=../../../misc
|
||||
|
||||
source ${SCRIPTDIR}/00_params.sh
|
||||
|
||||
|
||||
for LMAX in 1 2 3 ; do # try several cutoffs
|
||||
${MISCDIR}/infiniterectlat-k0realfreqsvd.py \
|
||||
-B $BG_REFINDEX \
|
||||
-p ${PX_nm}e-9 ${PY_nm}e-9 \
|
||||
-L $LMAX -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
|
||||
-F 2.001 0.001 2.250 \
|
||||
-P
|
||||
done
|
|
@ -1,22 +0,0 @@
|
|||
#!/bin/bash
|
||||
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
MISCDIR=../../../misc
|
||||
|
||||
source ${SCRIPTDIR}/00_params.sh
|
||||
|
||||
for bbb in 1 -2 -3 -4 ; do
|
||||
for coeff in $(seq 0.80 0.01 1.50 | sed -e s/,/./g) ; do
|
||||
${MISCDIR}/lat2d_modes.py \
|
||||
-n $BG_REFINDEX \
|
||||
-b s${A1X_nm}e-9 s${A1Y_nm}e-9 \
|
||||
-b s${A2X_nm}e-9 s${A2Y_nm}e-9 \
|
||||
-p s${P1X_nm}e-9 s${P1Y_nm}e-9 \
|
||||
-p s${P2X_nm}e-9 s${P2Y_nm}e-9 \
|
||||
-L 3 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
|
||||
-k s$(bc <<< ${KPOINTX_nmi}*${coeff})e9 s$(bc <<< ${KPOINTY_nmi}*${coeff})e9 \
|
||||
-d $bbb \
|
||||
-t 1e13 \
|
||||
-T 0.2 \
|
||||
-c 250
|
||||
done
|
||||
done
|
|
@ -1,24 +0,0 @@
|
|||
#!/bin/bash
|
||||
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
MISCDIR=../../../misc
|
||||
|
||||
source ${SCRIPTDIR}/00_params.sh
|
||||
|
||||
for bbb in 1 -2 -3 -4 ; do
|
||||
for coeff in $(seq 0.00 0.01 1.00 | sed -e s/,/./g) ; do
|
||||
${MISCDIR}/lat2d_modes.py \
|
||||
-n $BG_REFINDEX \
|
||||
-b s${A1X_nm}e-9 s${A1Y_nm}e-9 \
|
||||
-b s${A2X_nm}e-9 s${A2Y_nm}e-9 \
|
||||
-p s${P1X_nm}e-9 s${P1Y_nm}e-9 \
|
||||
-p s${P2X_nm}e-9 s${P2Y_nm}e-9 \
|
||||
-L 3 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
|
||||
-k s$(bc <<< ${MPOINTX_nmi}*${coeff})e9 s$(bc <<< ${MPOINTY_nmi}*${coeff})e9 \
|
||||
-d $bbb \
|
||||
-t 1e12 \
|
||||
-T 0.3 \
|
||||
-c 250 \
|
||||
-P
|
||||
done
|
||||
done
|
||||
|
|
@ -1,21 +0,0 @@
|
|||
#!/bin/bash
|
||||
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
MISCDIR=../../../misc
|
||||
|
||||
source ${SCRIPTDIR}/00_params.sh
|
||||
|
||||
for bbb in 1 -2 2 -3 ; do
|
||||
for coeff in $(seq -0.200 0.010 0.200 | sed -e s/,/./g) ; do
|
||||
${MISCDIR}/lat2d_modes.py \
|
||||
-n $BG_REFINDEX \
|
||||
-b s${A1X_nm}e-9 s${A1Y_nm}e-9 \
|
||||
-b s${A2X_nm}e-9 s${A2Y_nm}e-9 \
|
||||
-p s${P1X_nm}e-9 s${P1Y_nm}e-9 \
|
||||
-L 3 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
|
||||
-k s$(bc <<< ${B1X_nmi}*${coeff})e9 s$(bc <<< ${B1Y_nmi}*${coeff})e9 \
|
||||
-d $bbb \
|
||||
-T 0.2 \
|
||||
-c 250
|
||||
done
|
||||
done
|
||||
|
File diff suppressed because one or more lines are too long
|
@ -1 +0,0 @@
|
|||
../modes/00_params.sh
|
|
@ -1,19 +0,0 @@
|
|||
#!/bin/bash
|
||||
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
MISCDIR=../../../misc
|
||||
|
||||
source ${SCRIPTDIR}/00_params.sh
|
||||
|
||||
for PSI in 0 1; do
|
||||
${MISCDIR}/infiniterectlat-scatter.py \
|
||||
-B $BG_REFINDEX \
|
||||
-p ${PX_nm}e-9 ${PY_nm}e-9 \
|
||||
-L 3 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
|
||||
--theta "s-0.015:0.015|201" \
|
||||
--phi 0 \
|
||||
--psi $PSI \
|
||||
--chi 0 \
|
||||
-f "s2.110:2.230|100" \
|
||||
-P
|
||||
done
|
||||
|
|
@ -1,19 +0,0 @@
|
|||
#!/bin/bash
|
||||
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
MISCDIR=../../../misc
|
||||
|
||||
source ${SCRIPTDIR}/00_params.sh
|
||||
|
||||
for PSI in 1; do
|
||||
${MISCDIR}/finiterectlat-scatter.py \
|
||||
--size 5 5\
|
||||
-B $BG_REFINDEX \
|
||||
-p ${PX_nm}e-9 ${PY_nm}e-9 \
|
||||
-L 2 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
|
||||
--theta "s-0.05:0.05|101" \
|
||||
--phi 0 \
|
||||
--psi $PSI \
|
||||
--chi 0 \
|
||||
-f 2.15
|
||||
done
|
||||
|
|
@ -1,19 +0,0 @@
|
|||
#!/bin/bash
|
||||
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
MISCDIR=../../../misc
|
||||
|
||||
source ${SCRIPTDIR}/00_params.sh
|
||||
|
||||
for PSI in 0 1; do
|
||||
${MISCDIR}/infiniterectlat-scatter.py \
|
||||
-B $BG_REFINDEX \
|
||||
-p ${PX_nm}e-9 ${PY_nm}e-9 \
|
||||
-L 2 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
|
||||
--theta "s-0.05:0.05|101" \
|
||||
--phi 0 \
|
||||
--psi $PSI \
|
||||
--chi 0 \
|
||||
-P \
|
||||
-f 2.15
|
||||
done
|
||||
|
|
@ -1,25 +0,0 @@
|
|||
#!/bin/bash
|
||||
##SBATCH --mem=50000
|
||||
##SBATCH -c 12
|
||||
##SBATCH -t 14:00:00
|
||||
##SBATCH -p batch
|
||||
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
MISCDIR=../../../misc
|
||||
|
||||
source ${SCRIPTDIR}/00_params.sh
|
||||
|
||||
for PSI in 0 1; do
|
||||
${MISCDIR}/finiterectlat-scatter.py \
|
||||
--size 140 100 \
|
||||
-B $BG_REFINDEX \
|
||||
-p ${PX_nm}e-9 ${PY_nm}e-9 \
|
||||
-L 2 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
|
||||
--theta "s-0.05:0.05|101" \
|
||||
--phi 0 \
|
||||
--psi $PSI \
|
||||
--chi 0 \
|
||||
-o 140x100.npz -O 140x100.pdf \
|
||||
-P \
|
||||
-f 2.15
|
||||
done
|
||||
|
|
@ -1,25 +0,0 @@
|
|||
#!/bin/bash
|
||||
##SBATCH --mem=30000
|
||||
##SBATCH -c 12
|
||||
##SBATCH -t 14:00:00
|
||||
##SBATCH -p batch
|
||||
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
MISCDIR=../../../misc
|
||||
|
||||
source ${SCRIPTDIR}/00_params.sh
|
||||
|
||||
for PSI in 1; do
|
||||
${MISCDIR}/finiterectlat-scatter.py \
|
||||
--size 100 100 \
|
||||
-B $BG_REFINDEX \
|
||||
-p ${PX_nm}e-9 ${PY_nm}e-9 \
|
||||
-L 2 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
|
||||
--theta "s-0.05:0.05|101" \
|
||||
--phi 0 \
|
||||
--psi $PSI \
|
||||
--chi 0 \
|
||||
-o 100x100.npz -O 100x100.pdf \
|
||||
-P \
|
||||
-f 2.15
|
||||
done
|
||||
|
|
@ -1,25 +0,0 @@
|
|||
#!/bin/bash
|
||||
##SBATCH --mem=50000
|
||||
##SBATCH -c 12
|
||||
##SBATCH -t 14:00:00
|
||||
##SBATCH -p batch
|
||||
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
MISCDIR=../../../misc
|
||||
|
||||
source ${SCRIPTDIR}/00_params.sh
|
||||
|
||||
for PSI in 0 1; do
|
||||
${MISCDIR}/finiterectlat-scatter.py \
|
||||
--size 140 140 \
|
||||
-B $BG_REFINDEX \
|
||||
-p ${PX_nm}e-9 ${PY_nm}e-9 \
|
||||
-L 2 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
|
||||
--theta "s-0.05:0.05|101" \
|
||||
--phi 0 \
|
||||
--psi $PSI \
|
||||
--chi 0 \
|
||||
-o 140x140.npz -O 140x140.pdf \
|
||||
-P \
|
||||
-f 2.15
|
||||
done
|
||||
|
|
@ -1,21 +0,0 @@
|
|||
#!/bin/bash
|
||||
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
MISCDIR=../../../misc
|
||||
|
||||
source ${SCRIPTDIR}/00_params.sh
|
||||
|
||||
for PSI in 1; do
|
||||
${MISCDIR}/finiterectlat-scatter.py \
|
||||
--size 20 20 \
|
||||
-B $BG_REFINDEX \
|
||||
-p ${PX_nm}e-9 ${PY_nm}e-9 \
|
||||
-L 3 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
|
||||
--theta "s-0.005:0.005|101" \
|
||||
--phi 0 \
|
||||
--psi $PSI \
|
||||
--chi 0 \
|
||||
-P \
|
||||
-f "s2.150:2.180|100" \
|
||||
|
||||
done
|
||||
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
|
@ -1,19 +0,0 @@
|
|||
#!/bin/bash
|
||||
#SBATCH --mem=200
|
||||
#SBATCH -t 30:00
|
||||
#SBATCH -c 4
|
||||
#SBATCH -p short-ivb
|
||||
#SBATCH --array=0-250
|
||||
|
||||
cat $0
|
||||
|
||||
contour_points=410
|
||||
|
||||
#radii_nm=(`seq 80 1 150`)
|
||||
radii_nm=(`seq 50 1 300`)
|
||||
radius_nm=${radii_nm[$SLURM_ARRAY_TASK_ID]}
|
||||
|
||||
for lMax in $(seq 1 5); do
|
||||
srun rectlat_simple_modes.py -p 580e-9 -m '4+0.7j' -r ${radius_nm}e-9 -k 0 0 --kpi -n 1.52 -L lMax -t 1e11 -b -2 -f 0.1 -i 1. -T .3 -N ${contour_points}
|
||||
done
|
||||
|
|
@ -1,13 +0,0 @@
|
|||
#!/bin/bash
|
||||
|
||||
kx=0.0
|
||||
contour_points=410
|
||||
|
||||
radii_nm=(`seq 50 1 300`)
|
||||
radius_nm=${radii_nm[$SLURM_ARRAY_TASK_ID]}
|
||||
|
||||
for lMax in $(seq 1 5) ; do
|
||||
for radius_nm in $(seq 50 1 300) ; do
|
||||
rectlat_simple_modes.py -p 580e-9 -m 'Au' -r ${radius_nm}e-9 -k $kx 0 --kpi -n 1.52 -L $lMax -t 1e11 -b -2 -f 0.1 -i 1. -T .3 -N ${contour_points} --lMax-extend 10
|
||||
done
|
||||
done
|
|
@ -1,11 +0,0 @@
|
|||
#!/bin/bash
|
||||
|
||||
kx=0.0
|
||||
contour_points=410
|
||||
|
||||
radii_nm=(`seq 50 1 300`)
|
||||
radius_nm=${radii_nm[$SLURM_ARRAY_TASK_ID]}
|
||||
|
||||
for radius_nm in $(seq 50 1 300) ; do
|
||||
rectlat_simple_modes.py -p 580e-9 -m 'Au' -r ${radius_nm}e-9 -k $kx 0 --kpi -n 1.52 -L 1 -t 1e11 -b -2 -f 0.1 -i 1. -T .3 -N ${contour_points}
|
||||
done
|
|
@ -1,300 +0,0 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%matplotlib inline\n",
|
||||
"import re\n",
|
||||
"import numpy as np\n",
|
||||
"import matplotlib\n",
|
||||
"from matplotlib import pyplot as plt\n",
|
||||
"from scipy.constants import hbar, e as eV, c\n",
|
||||
"eh = eV/hbar\n",
|
||||
"import glob\n",
|
||||
"def ri(z): return (z.real, z.imag)\n",
|
||||
"#m = re.compile(r\"([^_]+)_r([0-9.]+)nm_\")\n",
|
||||
"#removek = re.compile(r\"(k\\([^)]+\\)um-1_)\")\n",
|
||||
"remover = re.compile(r\"r[0-9.]+nm_\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"markerdict = {\n",
|
||||
" 4: \"3\",\n",
|
||||
" -4: \"4\",\n",
|
||||
" 3: \"^\",\n",
|
||||
" -3: \"v\",\n",
|
||||
" -2: 'x',\n",
|
||||
" 2: '+',\n",
|
||||
" 1: 's',\n",
|
||||
" -1: 'd',\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"prop_cycle = plt.rcParams['axes.prop_cycle']\n",
|
||||
"colors = prop_cycle.by_key()['color']\n",
|
||||
"colordict = {i: colors[(i+1)] for i in range(-4,8)}\n",
|
||||
"\n",
|
||||
"def markerfun(b):\n",
|
||||
" if b in markerdict.keys():\n",
|
||||
" return markerdict[b]\n",
|
||||
" else: return 'X'\n",
|
||||
"\n",
|
||||
"def colorfun(b):\n",
|
||||
" if (b+1) in colordict.keys():\n",
|
||||
" return colordict[b+1]\n",
|
||||
" else: return colordict[0]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"allfiles=glob.glob('*sph*k(0_0)*.npz')\n",
|
||||
"allgraphs=dict()\n",
|
||||
"for f in allfiles:\n",
|
||||
" base = remover.sub('', f)\n",
|
||||
" if base in allgraphs.keys():\n",
|
||||
" allgraphs[base] += 1\n",
|
||||
" else:\n",
|
||||
" allgraphs[base] = 1\n",
|
||||
"for k in sorted(allgraphs.keys()):\n",
|
||||
" print(k, allgraphs[k])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"ename": "FileNotFoundError",
|
||||
"evalue": "[Errno 2] No such file or directory: 'projectors_D4h_lMax1.npz'",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
|
||||
"\u001b[0;32m<ipython-input-3-0c266089be08>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mlMaxes\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mlMax\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mlMax\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m6\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mlMax\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mlMaxes\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mproj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'projectors_D4h_lMax%d.npz'\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mlMax\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0mirlabels\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msorted\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mproj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mproj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mproj\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mf\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mirlabels\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/.local/lib/python3.7/site-packages/numpy-1.17.3-py3.7-linux-x86_64.egg/numpy/lib/npyio.py\u001b[0m in \u001b[0;36mload\u001b[0;34m(file, mmap_mode, allow_pickle, fix_imports, encoding)\u001b[0m\n\u001b[1;32m 426\u001b[0m \u001b[0mown_fid\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 427\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 428\u001b[0;31m \u001b[0mfid\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos_fspath\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfile\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"rb\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 429\u001b[0m \u001b[0mown_fid\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 430\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'projectors_D4h_lMax1.npz'"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"projectors = dict()\n",
|
||||
"projectors_list = dict()\n",
|
||||
"lMaxes = [lMax for lMax in range(1,6)]\n",
|
||||
"for lMax in lMaxes:\n",
|
||||
" proj = np.load('projectors_D4h_lMax%d.npz' % lMax)\n",
|
||||
" irlabels = sorted(proj.keys())\n",
|
||||
" proj = {f: proj[f] for f in irlabels}\n",
|
||||
" proj_list = [proj[irlabels[i]] for i in range(len(proj))]\n",
|
||||
" projectors[lMax] = proj\n",
|
||||
" projectors_list[lMax] = proj_list\n",
|
||||
"globpattern = '*sph_r*_p580nmx580nm_mAu_n1.52_b?2_k(0_0)um-1_L?_cn???.npz'\n",
|
||||
"filenames=glob.glob(globpattern)\n",
|
||||
"plotfilename = 'collected_' + globpattern.replace('*', 'XXX').replace('?', 'X').replace('npz','pdf')\n",
|
||||
"print(filenames[:4], plotfilename)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 41,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#projectors\n",
|
||||
"#glob.glob('cyl_r100nm*L3*3100.npz')\n",
|
||||
"#glob.glob('sph_r100*m5*.npz')\n",
|
||||
"#dat['meta'][()],list(dat.keys())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 42,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"inpure result detected [1. 0.99999999 1. 0.97991334 0.99999996 0.9999989\n",
|
||||
" 0.99999983 0.99999966 0.99999322 0.99999721 0.99999653] [3.28735741e-04 2.66532534e-05 2.47011478e-05 1.45012420e-01\n",
|
||||
" 2.44785416e-04 7.05405359e-04 1.60203586e-03 1.71245137e-03\n",
|
||||
" 1.03244480e-02 9.18732728e-03 1.18651583e-02]\n",
|
||||
"inpure result detected [1. 1. 0.99999998 0.99999999 0.99999996 0.96608887\n",
|
||||
" 0.99999852 0.99999397 0.99998951 0.99999912 0.99982435] [2.66223026e-04 2.12357147e-05 3.54211968e-05 1.06651057e-04\n",
|
||||
" 2.79595790e-04 2.41939163e-01 2.17645058e-03 3.41541473e-03\n",
|
||||
" 1.14507609e-02 1.49639498e-02 2.33483138e-02]\n",
|
||||
"inpure result detected [1. 1. 0.92521572 1. 0.99999627 0.99990293\n",
|
||||
" 0.99946049] [1.59712906e-05 3.60193407e-05 2.48341492e-01 1.21848930e-03\n",
|
||||
" 3.81805601e-03 2.42649228e-02 2.99534246e-02]\n",
|
||||
"inpure result detected [1. 1. 0.99999998 0.99999961 0.93267685 0.99999964\n",
|
||||
" 0.99999822 0.99921774 0.99995547 0.99997301] [5.22490396e-04 3.01556792e-05 4.88795563e-05 6.29703960e-04\n",
|
||||
" 2.34414238e-01 3.72766210e-03 4.72444059e-03 7.62106094e-02\n",
|
||||
" 6.32796684e-02 5.63231562e-02]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"plotdata = {}\n",
|
||||
"for file in filenames:\n",
|
||||
" dat = np.load(file, allow_pickle=True)\n",
|
||||
" kx = dat['meta'][()]['k'][0]\n",
|
||||
" radius = dat['meta'][()]['radius']\n",
|
||||
" b = dat['meta'][()]['band_index']\n",
|
||||
" eigvals = dat['eigval']\n",
|
||||
" lMax = dat['meta'][()]['lMax']\n",
|
||||
" residuals = dat['residuals']\n",
|
||||
" ef =dat['empty_freqs']\n",
|
||||
" eigvecs = dat['eigvec']\n",
|
||||
" irweights = []\n",
|
||||
" #for proj in projectors_list[lMax]:\n",
|
||||
" # try:\n",
|
||||
" # irweights.append(np.linalg.norm(np.tensordot(proj, eigvecs, axes=(-1, -1)), axis=0,ord=2) if len(proj) != 0 else np.zeros((len(eigvecs),)))\n",
|
||||
" # except ValueError as err:\n",
|
||||
" # print(proj, len(proj))\n",
|
||||
" # raise err\n",
|
||||
" irweights = np.array(irweights)\n",
|
||||
" #print(irweights)\n",
|
||||
" irweights = np.array([np.linalg.norm(np.tensordot(proj, eigvecs, axes=(-1, -1)), axis=0,ord=2) if len(proj) != 0 else np.zeros((len(eigvecs),)) for proj in projectors_list[lMax]]).T\n",
|
||||
" irclass = np.argmax(irweights, axis=-1)\n",
|
||||
" purities = np.amax(irweights, axis=-1)\n",
|
||||
" if (np.any(purities < 0.98)):\n",
|
||||
" print(\"inpure result detected\", purities, residuals)\n",
|
||||
" #print(purities)\n",
|
||||
" \n",
|
||||
" #for i in range(len(residuals)): \n",
|
||||
" # if residuals[i] < 0.01:\n",
|
||||
" # vec = eigvecs[i]\n",
|
||||
" # for irlabel, proj in projectors.items():\n",
|
||||
" # print(irlabel, np.linalg.norm(np.dot(proj, vec))) #maybe some conj() here?\n",
|
||||
" # print('--->', irlabels[irclass[i]])\n",
|
||||
"\n",
|
||||
" \n",
|
||||
" plotdata[(lMax,radius)] = (eigvals, residuals, b, ef, irclass,)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"fig = plt.figure(figsize=(15,6))\n",
|
||||
"axesR = {}\n",
|
||||
"axesI = {}\n",
|
||||
"for i, lMax in enumerate(lMaxes):\n",
|
||||
" axesR[lMax] = fig.add_subplot(2,len(lMaxes),i+1)\n",
|
||||
" axesR[lMax].set_xlim([50,300])\n",
|
||||
" axesR[lMax].set_ylim([1.25, ef[1]/eh])\n",
|
||||
" axesI[lMax] = fig.add_subplot(2,len(lMaxes),len(lMaxes)+i+1)\n",
|
||||
" axesI[lMax].set_xlim([50,300])\n",
|
||||
" axesI[lMax].set_ylim([-60, 30])\n",
|
||||
" axesR[lMax].set_title('$l_\\max = %d $' % lMax) \n",
|
||||
" axesR[lMax].tick_params(labelbottom=False) \n",
|
||||
" if i == len(lMaxes)//2:\n",
|
||||
" axesI[lMax].set_xlabel(\"Particle base radius / nm\")\n",
|
||||
" if i == 0:\n",
|
||||
" axesR[lMax].set_ylabel('$\\hbar \\Re \\omega / \\mathrm{eV}$')\n",
|
||||
" axesI[lMax].set_ylabel('$\\hbar \\Im \\omega / \\mathrm{meV}$')\n",
|
||||
" else:\n",
|
||||
" axesR[lMax].tick_params(labelleft=False) \n",
|
||||
" axesI[lMax].tick_params(labelleft=False) \n",
|
||||
"\n",
|
||||
"res_thr = 0.005\n",
|
||||
"\n",
|
||||
"ir_labeled=set()\n",
|
||||
"if True:\n",
|
||||
" for (lMax, radius), (eigvals, residuals, b, ef, irclass) in plotdata.items():\n",
|
||||
" for i, (e, res, iri) in enumerate(zip(eigvals, residuals, irclass)):\n",
|
||||
" #if i == 0:\n",
|
||||
" if res < res_thr:# and e.real < 2.14e15:\n",
|
||||
" if iri in ir_labeled: \n",
|
||||
" label=None\n",
|
||||
" else:\n",
|
||||
" ir_labeled.add(iri)\n",
|
||||
" label=irlabels[iri]\n",
|
||||
" axesR[lMax].plot(radius*1e9, e.real/eh, \n",
|
||||
" marker='.',\n",
|
||||
" #marker=markerfun(b),\n",
|
||||
" ms=4, #c=colorfun(b)\n",
|
||||
" c=matplotlib.cm.hsv(iri/9),\n",
|
||||
" #c = colorfun(iri),\n",
|
||||
" label=label,\n",
|
||||
" )\n",
|
||||
" axesI[lMax].plot(radius*1e9, e.imag/eh*1000, \n",
|
||||
" #marker='x', \n",
|
||||
" #c=colorfun(b), \n",
|
||||
" c=matplotlib.cm.hsv(iri/9),#colorfun(iri),\n",
|
||||
" marker='.', #markerfun(b),\n",
|
||||
" ms=4,\n",
|
||||
" #label=label\n",
|
||||
" )\n",
|
||||
"fig.legend(title=\"Irrep\", loc=\"center right\")\n",
|
||||
"#fig.suptitle('$l_\\mathrm{max}=%d$, residual threshold = %g' % (lMax, res_thr) )\n",
|
||||
"fig.savefig(plotfilename)\n",
|
||||
"fig.savefig(plotfilename.replace('pdf', 'png'))\n",
|
||||
"print(plotfilename)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 55,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"array([0. , 1.40635433, 1.98888536, 2.81270865, 3.14470387,\n",
|
||||
" 3.97777072, 4.21906298, 4.44728287])"
|
||||
]
|
||||
},
|
||||
"execution_count": 55,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"ef / eh"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
|
@ -1,19 +0,0 @@
|
|||
cmake_minimum_required(VERSION 3.0)
|
||||
include(GNUInstallDirs)
|
||||
|
||||
project(Faddeeva VERSION 1.0 LANGUAGES C)
|
||||
|
||||
option(FADDEEVA_BUILD_STATIC "Build Faddeeva as static library" OFF)
|
||||
|
||||
if (FADDEEVA_BUILD_STATIC)
|
||||
add_library(Faddeeva STATIC Faddeeva.h Faddeeva.c Faddeeva.cc)
|
||||
else (FADDEEVA_BUILD_STATIC)
|
||||
add_library(Faddeeva SHARED Faddeeva.c)
|
||||
set_target_properties(Faddeeva PROPERTIES PUBLIC_HEADER "Faddeeva.h")
|
||||
install(TARGETS Faddeeva
|
||||
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
|
||||
PUBLIC_HEADER DESTINATION ${CMAKE_INSTALL_INCLUDEDIR})
|
||||
endif (FADDEEVA_BUILD_STATIC)
|
||||
target_include_directories(Faddeeva PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
||||
|
|
@ -1,3 +0,0 @@
|
|||
/* The Faddeeva.cc file contains macros to let it compile as C code
|
||||
(assuming C99 complex-number support), so just #include it. */
|
||||
#include "Faddeeva.cc"
|
2517
faddeeva/Faddeeva.cc
2517
faddeeva/Faddeeva.cc
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue