((5*k^6 + 2*k^4*(15 - 8*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 + 8*k^2*(5 - 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^6)/(240*k^4) - (5*k^6 + 2*k^4*(15 - 8*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 + 8*k^2*(5 - 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^6)/(60*k^4) + (5*k^6 + 2*k^4*(15 - 8*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 + 8*k^2*(5 - 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^6)/(40*k^4) - (5*k^6 + 2*k^4*(15 - 8*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 + 8*k^2*(5 - 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^6)/(60*k^4) + (5*k^6 + 2*k^4*(15 - 8*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 + 8*k^2*(5 - 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4 - 16*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^6)/(240*k^4))/k0^4
SeriesData[k, Infinity, {(4*c^4)/k0^4, (-45*c^5)/k0^4 + ((15*I)*c^4)/k0^3, (224*c^6)/k0^4 - ((144*I)*c^5)/k0^3 - (24*c^4)/k0^2, (-35*(30*c^7 - (28*I)*c^6*k0 - 9*c^5*k0^2 + I*c^4*k0^3))/(2*k0^4), 0, (21*(2025*c^9 - (2979*I)*c^8*k0 - 1800*c^7*k0^2 + (560*I)*c^6*k0^3 + 90*c^5*k0^4 - (6*I)*c^4*k0^5))/(16*k0^4), 0, (-33*(25080*c^11 - (49346*I)*c^10*k0 - 42525*c^9*k0^2 + (20853*I)*c^8*k0^3 + 6300*c^7*k0^4 - (1176*I)*c^6*k0^5 - 126*c^5*k0^6 + (6*I)*c^4*k0^7))/(32*k0^4)}, 2, 11, 1]