#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 583 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass article \use_default_options false \maintain_unincluded_children false \language english \language_package none \inputencoding utf8 \fontencoding default \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf false \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \float_placement class \float_alignment class \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 0 \use_package cancel 0 \use_package esint 1 \use_package mathdots 0 \use_package mathtools 0 \use_package mhchem 0 \use_package stackrel 0 \use_package stmaryrd 0 \use_package undertilde 0 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 0 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Subsection Periodic systems and mode analysis \begin_inset CommandInset label LatexCommand label name "subsec:Periodic-systems" \end_inset \end_layout \begin_layout Standard In an infinite periodic array of nanoparticles, the excitations of the nanoparti cles take the quasiperiodic Bloch-wave form \begin_inset Formula \[ \coeffs_{i\nu}=e^{i\vect k\cdot\vect R_{i}}\coeffs_{\nu} \] \end_inset (assuming the incident external field has the same periodicity, \begin_inset Formula $\coeffr_{\mathrm{ext}(i\nu)}=e^{i\vect k\cdot\vect R_{i}}p_{\mathrm{ext}\left(\nu\right)}$ \end_inset ) where \begin_inset Formula $\nu$ \end_inset is the index of a particle inside one unit cell and \begin_inset Formula $\vect R_{i},\vect R_{i'}\in\Lambda$ \end_inset are the lattice vectors corresponding to the sites (labeled by multiindices \begin_inset Formula $i,i'$ \end_inset ) of a Bravais lattice \begin_inset Formula $\Lambda$ \end_inset . The multiple-scattering problem ( \begin_inset CommandInset ref LatexCommand ref reference "eq:multiple scattering per particle a" \end_inset ) then takes the form \end_layout \begin_layout Standard \begin_inset Formula \[ \coeffs_{i\nu}-T_{\nu}\sum_{(i',\nu')\ne\left(i,\nu\right)}S_{i\nu,i'\nu'}e^{i\vect k\cdot\left(\vect R_{i'}-\vect R_{i}\right)}\coeffs_{i\nu'}=T_{\nu}\coeffr_{\mathrm{ext}(i\nu)} \] \end_inset or, labeling \begin_inset Formula $W_{\nu\nu'}=\sum_{i';(i',\nu')\ne\left(i,\nu\right)}S_{i\nu,i'\nu'}e^{i\vect k\cdot\left(\vect R_{i'}-\vect R_{i}\right)}=\sum_{i';(i',\nu')\ne\left(0,\nu\right)}S_{0\nu,i'\nu'}e^{i\vect k\cdot\vect R_{i'}}$ \end_inset and using the quasiperiodicity, \begin_inset Formula \begin{equation} \sum_{\nu'}\left(\delta_{\nu\nu'}\mathbb{I}-T_{\nu}W_{\nu\nu'}\right)\coeffs_{\nu'}=T_{\nu}\coeffr_{\mathrm{ext}(\nu)},\label{eq:multiple scattering per particle a periodic} \end{equation} \end_inset which reduces the linear problem ( \begin_inset CommandInset ref LatexCommand ref reference "eq:multiple scattering per particle a" \end_inset ) to interactions between particles inside single unit cell. A problematic part is the evaluation of the translation operator lattice sums \begin_inset Formula $W_{\nu\nu'}$ \end_inset ; this is performed using exponentially convergent Ewald-type representations \begin_inset CommandInset citation LatexCommand cite key "linton_lattice_2010" literal "true" \end_inset . \end_layout \begin_layout Standard In an infinite periodic system, a nonlossy mode supports itself without external driving, i.e. such mode is described by excitation coefficients \begin_inset Formula $a_{\nu}$ \end_inset that satisfy eq. ( \begin_inset CommandInset ref LatexCommand ref reference "eq:multiple scattering per particle a periodic" \end_inset ) with zero right-hand side. That can happen if the block matrix \begin_inset Formula \begin{equation} M\left(\omega,\vect k\right)=\left\{ \delta_{\nu\nu'}\mathbb{I}-T_{\nu}\left(\omega\right)W_{\nu\nu'}\left(\omega,\vect k\right)\right\} _{\nu\nu'}\label{eq:M matrix definition} \end{equation} \end_inset from the left hand side of ( \begin_inset CommandInset ref LatexCommand ref reference "eq:multiple scattering per particle a periodic" \end_inset ) is singular (here we explicitly note the \begin_inset Formula $\omega,\vect k$ \end_inset depence). \end_layout \begin_layout Standard For lossy nanoparticles, however, perfect propagating modes will not exist and \begin_inset Formula $M\left(\omega,\vect k\right)$ \end_inset will never be perfectly singular. Therefore in practice, we get the bands by scanning over \begin_inset Formula $\omega,\vect k$ \end_inset to search for \begin_inset Formula $M\left(\omega,\vect k\right)$ \end_inset which have an \begin_inset Quotes erd \end_inset almost zero \begin_inset Quotes erd \end_inset singular value. \end_layout \begin_layout Section \begin_inset ERT status collapsed \begin_layout Plain Layout { \end_layout \end_inset Symmetries \begin_inset ERT status collapsed \begin_layout Plain Layout } \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset CommandInset label LatexCommand label name "sm:symmetries" \end_inset \end_layout \begin_layout Standard A general overview of utilizing group theory to find lattice modes at high-symme try points of the Brillouin zone can be found e.g. in \begin_inset CommandInset citation LatexCommand cite after "chapters 10–11" key "dresselhaus_group_2008" literal "true" \end_inset ; here we use the same notation. \end_layout \begin_layout Standard We analyse the symmetries of the system in the same VSWF representation as used in the \begin_inset Formula $T$ \end_inset -matrix formalism introduced above. We are interested in the modes at the \begin_inset Formula $\Kp$ \end_inset -point of the hexagonal lattice, which has the \begin_inset Formula $D_{3h}$ \end_inset point symmetry. The six irreducible representations (irreps) of the \begin_inset Formula $D_{3h}$ \end_inset group are known and are available in the literature in their explicit forms. In order to find and classify the modes, we need to find a decomposition of the lattice mode representation \begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}=\Gamma^{\mathrm{equiv.}}\otimes\Gamma_{\mathrm{vec.}}$ \end_inset into the irreps of \begin_inset Formula $D_{3h}$ \end_inset . The equivalence representation \begin_inset Formula $\Gamma^{\mathrm{equiv.}}$ \end_inset is the \begin_inset Formula $E'$ \end_inset representation as can be deduced from \begin_inset CommandInset citation LatexCommand cite after "eq. (11.19)" key "dresselhaus_group_2008" literal "true" \end_inset , eq. (11.19) and the character table for \begin_inset Formula $D_{3h}$ \end_inset . \begin_inset Formula $\Gamma_{\mathrm{vec.}}$ \end_inset operates on a space spanned by the VSWFs around each nanoparticle in the unit cell (the effects of point group operations on VSWFs are described in \begin_inset CommandInset citation LatexCommand cite key "schulz_point-group_1999" literal "true" \end_inset ). This space can be then decomposed into invariant subspaces of the \begin_inset Formula $D_{3h}$ \end_inset using the projectors \begin_inset Formula $\hat{P}_{ab}^{\left(\Gamma\right)}$ \end_inset defined by \begin_inset CommandInset citation LatexCommand cite after "eq. (4.28)" key "dresselhaus_group_2008" literal "true" \end_inset . This way, we obtain a symmetry adapted basis \begin_inset Formula $\left\{ \vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}\right\} $ \end_inset as linear combinations of VSWFs \begin_inset Formula $\vswfs lm{p,t}$ \end_inset around the constituting nanoparticles (labeled \begin_inset Formula $p$ \end_inset ), \begin_inset Formula \[ \vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}=\sum_{l,m,p,t}U_{\Gamma,r,i}^{p,t,l,m}\vswfs lm{p,t}, \] \end_inset where \begin_inset Formula $\Gamma$ \end_inset stands for one of the six different irreps of \begin_inset Formula $D_{3h}$ \end_inset , \begin_inset Formula $r$ \end_inset labels the different realisations of the same irrep, and the last index \begin_inset Formula $i$ \end_inset going from 1 to \begin_inset Formula $d_{\Gamma}$ \end_inset (the dimensionality of \begin_inset Formula $\Gamma$ \end_inset ) labels the different partners of the same given irrep. The number of how many times is each irrep contained in \begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}$ \end_inset (i.e. the range of index \begin_inset Formula $r$ \end_inset for given \begin_inset Formula $\Gamma$ \end_inset ) depends on the multipole degree cutoff \begin_inset Formula $l_{\mathrm{max}}$ \end_inset . \end_layout \begin_layout Standard Each mode at the \begin_inset Formula $\Kp$ \end_inset -point shall lie in the irreducible spaces of only one of the six possible irreps and it can be shown via \begin_inset CommandInset citation LatexCommand cite after "eq. (2.51)" key "dresselhaus_group_2008" literal "true" \end_inset that, at the \begin_inset Formula $\Kp$ \end_inset -point, the matrix \begin_inset Formula $M\left(\omega,\vect k\right)$ \end_inset defined above takes a block-diagonal form in the symmetry-adapted basis, \begin_inset Formula \[ M\left(\omega,\vect K\right)_{\Gamma,r,i;\Gamma',r',j}^{\mathrm{s.a.b.}}=\frac{\delta_{\Gamma\Gamma'}\delta_{ij}}{d_{\Gamma}}\sum_{q}M\left(\omega,\vect K\right)_{\Gamma,r,q;\Gamma',r',q}^{\mathrm{s.a.b.}}. \] \end_inset This enables us to decompose the matrix according to the irreps and to solve the singular value problem in each irrep separately, as done in Fig. \begin_inset CommandInset ref LatexCommand ref reference "smfig:dispersions" \end_inset (a). \end_layout \end_body \end_document