/*! \file quaternions.h * \brief Quaternions and Wigner matrices */ #ifndef QPMS_WIGNER_H #define QPMS_WIGNER_H #ifdef __cplusplus extern "C" { #endif #include "qpms_types.h" #include "vectors.h" #include "tiny_inlines.h" /// Just some arbitrarily chosen "default" value for quaternion comparison tolerance. #define QPMS_QUAT_ATOL (1e-10) /// Conversion from the 4*double to the 2*complex quaternion. // TODO is this really correct? // I.e. do the axis from moble's text match this convention? static inline qpms_quat_t qpms_quat_2c_from_4d (qpms_quat4d_t q) { qpms_quat_t q2c = {q.c1 + I * q.ck, q.cj + I * q.ci}; return q2c; } /// Conversion from the 2*complex to the 4*double quaternion. // TODO is this really correct? // I.e. do the axis from moble's text match this convention? static inline qpms_quat4d_t qpms_quat_4d_from_2c (qpms_quat_t q) { qpms_quat4d_t q4d = {creal(q.a), cimag(q.b), creal(q.b), cimag(q.a)}; return q4d; } /// Quaternion multiplication. /** * \f[ (P Q)_a = P_a Q_a - \bar P_b Q_b, \f] * \f[ (P Q)_b = P_b Q_a + \bar P_a Q_b. \f] */ static inline qpms_quat_t qpms_quat_mult(qpms_quat_t p, qpms_quat_t q) { qpms_quat_t r; r.a = p.a * q.a - conj(p.b) * q.b; r.b = p.b * q.a + conj(p.a) * q.b; return r; } /// Quaternion addition. static inline qpms_quat_t qpms_quat_add(qpms_quat_t p, qpms_quat_t q) { qpms_quat_t r; r.a = p.a+q.a; r.b = p.b+q.b; return r; } /// Quaternion substraction. static inline qpms_quat_t qpms_quat_sub(qpms_quat_t p, qpms_quat_t q) { qpms_quat_t r; r.a = p.a-q.a; r.b = p.b-q.b; return r; } /// Exponential function of a quaternion \f$e^Q$\f. static inline qpms_quat_t qpms_quat_exp(const qpms_quat_t q) { const qpms_quat4d_t q4 = qpms_quat_4d_from_2c(q); const double vn = sqrt(q4.ci*q4.ci + q4.cj*q4.cj + q4.ck *q4.ck); const double ea = exp(q4.c1); const double cv = vn ? (ea*sin(vn)/vn) : ea; // "vector" part common prefactor const qpms_quat4d_t r4 = {ea * cos(vn), cv*q4.ci, cv*q4.cj, cv*q4.ck}; return qpms_quat_2c_from_4d(r4); } /// Quaternion scaling with a real number. static inline qpms_quat_t qpms_quat_rscale(double s, qpms_quat_t q) { qpms_quat_t r = {s * q.a, s * q.b}; return r; } // quaternion "basis" /// Quaternion real unit. static const qpms_quat_t QPMS_QUAT_1 = {1, 0}; /// Quaternion imaginary unit i. static const qpms_quat_t QPMS_QUAT_I = {0, I}; /// Quaternion imaginury unik j. static const qpms_quat_t QPMS_QUAT_J = {0, 1}; /// Quaternion imaginary unit k. static const qpms_quat_t QPMS_QUAT_K = {I, 0}; /// Quaternion conjugation. static inline qpms_quat_t qpms_quat_conj(const qpms_quat_t q) { qpms_quat_t r = {conj(q.a), -q.b}; return r; } /// Quaternion norm. static inline double qpms_quat_norm(const qpms_quat_t q) { return sqrt(creal(q.a * conj(q.a) + q.b * conj(q.b))); } /// Test approximate equality of quaternions. static inline _Bool qpms_quat_isclose(const qpms_quat_t p, const qpms_quat_t q, double atol) { return qpms_quat_norm(qpms_quat_sub(p,q)) <= atol; } /// "Standardises" a quaternion to have the largest component "positive". /** * This is to remove the ambiguity stemming from the double cover of SO(3). */ static inline qpms_quat_t qpms_quat_standardise(qpms_quat_t p, double atol) { //assert(atol >= 0); double maxabs = 0; int maxi = 0; const double *arr = (double *) &(p.a); for(int i = 0; i < 4; ++i) if (fabs(arr[i]) > maxabs + atol) { maxi = i; maxabs = fabs(arr[i]); } if(arr[maxi] < 0) { p.a = -p.a; p.b = -p.b; } return p; } /// Test approximate equality of "standardised" quaternions, so that \f$-q\f$ is considered equal to \f$q\f$. static inline _Bool qpms_quat_isclose2(const qpms_quat_t p, const qpms_quat_t q, double atol) { return qpms_quat_norm(qpms_quat_sub( qpms_quat_standardise(p, atol), qpms_quat_standardise(q, atol))) <= atol; } /// Norm of the quaternion imaginary (vector) part. static inline double qpms_quat_imnorm(const qpms_quat_t q) { const double z = cimag(q.a), x = cimag(q.b), y = creal(q.b); return sqrt(z*z + x*x + y*y); } /// Quaternion normalisation to unit norm. static inline qpms_quat_t qpms_quat_normalise(qpms_quat_t q) { double n = qpms_quat_norm(q); return qpms_quat_rscale(1/n, q); } /// Logarithm of a quaternion. static inline qpms_quat_t qpms_quat_log(const qpms_quat_t q) { const double n = qpms_quat_norm(q); const double imnorm = qpms_quat_imnorm(q); if (imnorm != 0.) { const double vc = acos(creal(q.a)/n) / imnorm; const qpms_quat_t r = {log(n) + cimag(q.a)*vc*I, q.b*vc}; return r; } else { const qpms_quat_t r = {log(n), 0}; return r; } } /// Quaternion power to a real exponent. static inline qpms_quat_t qpms_quat_pow(const qpms_quat_t q, const double exponent) { const qpms_quat_t qe = qpms_quat_rscale(exponent, qpms_quat_log(q)); return qpms_quat_exp(qe); } /// Quaternion inversion. /** \f[ q^{-1} = \frac{q*}{|q|}. \f] */ static inline qpms_quat_t qpms_quat_inv(const qpms_quat_t q) { const double norm = qpms_quat_norm(q); return qpms_quat_rscale(1./(norm*norm), qpms_quat_conj(q)); } /// Make a pure imaginary quaternion from a 3d cartesian vector. static inline qpms_quat_t qpms_quat_from_cart3(const cart3_t c) { const qpms_quat4d_t q4 = {0, c.x, c.y, c.z}; return qpms_quat_2c_from_4d(q4); } /// Make a 3d cartesian vector from the imaginary part of a quaternion. static inline cart3_t qpms_quat_to_cart3(const qpms_quat_t q) { const qpms_quat4d_t q4 = qpms_quat_4d_from_2c(q); const cart3_t c = {q4.ci, q4.cj, q4.ck}; return c; } /// Rotate a 3-dimensional cartesian vector using the quaternion/versor representation. static inline cart3_t qpms_quat_rot_cart3(qpms_quat_t q, const cart3_t v) { q = qpms_quat_normalise(q); //const qpms_quat_t qc = qpms_quat_normalise(qpms_quat_pow(q, -1)); // implementation of _pow wrong! const qpms_quat_t qc = qpms_quat_conj(q); const qpms_quat_t vv = qpms_quat_from_cart3(v); return qpms_quat_to_cart3(qpms_quat_mult(q, qpms_quat_mult(vv, qc))); } /// Versor quaternion from rotation vector (norm of the vector is the rotation angle). static inline qpms_quat_t qpms_quat_from_rotvector(cart3_t v) { return qpms_quat_exp(qpms_quat_rscale(0.5, qpms_quat_from_cart3(v))); } /// Wigner D matrix element from a rotator quaternion for integer \a l. /** * The D matrix are calculated using formulae (3), (4), (6), (7) from * http://moble.github.io/spherical_functions/WignerDMatrices.html */ _Complex double qpms_wignerD_elem(qpms_quat_t q, qpms_l_t l, qpms_m_t mp, qpms_m_t m); /// A VSWF representation element of the O(3) group. /** * TODO more doc. */ _Complex double qpms_vswf_irot_elem_from_irot3( const qpms_irot3_t q, ///< The O(3) element in the quaternion representation. qpms_l_t l, qpms_m_t mp, qpms_m_t m, _Bool pseudo ///< Determines the sign of improper rotations. True for magnetic waves, false otherwise. ); static inline int qpms_irot3_checkdet(const qpms_irot3_t p) { if (p.det != 1 && p.det != -1) abort(); return 0; } /// Improper rotation multiplication. static inline qpms_irot3_t qpms_irot3_mult(const qpms_irot3_t p, const qpms_irot3_t q) { #ifndef NDEBUG qpms_irot3_checkdet(p); qpms_irot3_checkdet(q); #endif const qpms_irot3_t r = {qpms_quat_normalise(qpms_quat_mult(p.rot, q.rot)), p.det*q.det}; return r; } /// Improper rotation inverse operation. static inline qpms_irot3_t qpms_irot3_inv(qpms_irot3_t p) { #ifndef NDEBUG qpms_irot3_checkdet(p); #endif p.rot = qpms_quat_inv(p.rot); return p; } /// Improper rotation power \f$ p^n \f$. static inline qpms_irot3_t qpms_irot3_pow(const qpms_irot3_t p, int n) { #ifndef NDEBUG qpms_irot3_checkdet(p); #endif const qpms_irot3_t r = {qpms_quat_normalise(qpms_quat_pow(p.rot, n)), p.det == -1 ? min1pow(n) : 1}; return r; } /// Test approximate equality of irot3. static inline _Bool qpms_irot3_isclose(const qpms_irot3_t p, const qpms_irot3_t q, double atol) { return qpms_quat_isclose2(p.rot, q.rot, atol) && p.det == q.det; } /// Apply an improper rotation onto a 3d cartesian vector. static inline cart3_t qpms_irot3_apply_cart3(const qpms_irot3_t p, const cart3_t v) { #ifndef NDEBUG qpms_irot3_checkdet(p); #endif return cart3_scale(p.det, qpms_quat_rot_cart3(p.rot, v)); } // Some basic transformations with irot3 type /// Identity static const qpms_irot3_t QPMS_IROT3_IDENTITY = {{1, 0}, 1}; /// \f$ \pi \f$ rotation around x axis. static const qpms_irot3_t QPMS_IROT3_XROT_PI = {{0, I}, 1}; /// \f$ \pi \f$ rotation around y axis. static const qpms_irot3_t QPMS_IROT3_YROT_PI = {{0, 1}, 1}; /// \f$ \pi \f$ rotation around z axis. static const qpms_irot3_t QPMS_IROT3_ZROT_PI = {{I, 0}, 1}; /// Spatial inversion. static const qpms_irot3_t QPMS_IROT3_INVERSION = {{1, 0}, -1}; /// yz-plane mirror symmetry static const qpms_irot3_t QPMS_IROT3_XFLIP = {{0, I}, -1}; /// xz-plane mirror symmetry static const qpms_irot3_t QPMS_IROT3_YFLIP = {{0, 1}, -1}; /// xy-plane mirror symmetry static const qpms_irot3_t QPMS_IROT3_ZFLIP = {{I, 0}, -1}; /// versor representing rotation around z-axis. static inline qpms_quat_t qpms_quat_zrot_angle(double angle) { qpms_quat_t q = {cexp(I*(angle/2)), 0}; return q; } /// versor representing rotation \f$ C_N^k \f$, i.e. of angle \f$ 2\pi k / N\f$ around z axis. static inline qpms_quat_t qpms_quat_zrot_Nk(double N, double k) { return qpms_quat_zrot_angle(2 * M_PI * k / N); } /// Rotation around z-axis. static inline qpms_irot3_t qpms_irot3_zrot_angle(double angle) { qpms_irot3_t q = {qpms_quat_zrot_angle(angle), 1}; return q; } /// Rotation \f$ C_N^k \f$, i.e. of angle \f$ 2\pi k / N\f$ around z axis. static inline qpms_irot3_t qpms_irot3_zrot_Nk(double N, double k) { return qpms_irot3_zrot_angle(2 * M_PI * k / N); } #ifdef __cplusplus } #endif #endif //QPMS_WIGNER_H