#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 584 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass article \use_default_options true \maintain_unincluded_children false \language english \language_package default \inputencoding utf8 \fontencoding auto \font_roman "default" "TeX Gyre Pagella" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf true \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \float_placement class \float_alignment class \paperfontsize default \spacing single \use_hyperref true \pdf_author "Marek Nečada" \pdf_bookmarks true \pdf_bookmarksnumbered false \pdf_bookmarksopen false \pdf_bookmarksopenlevel 1 \pdf_breaklinks false \pdf_pdfborder false \pdf_colorlinks false \pdf_backref false \pdf_pdfusetitle true \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Section Infinite periodic systems \begin_inset CommandInset label LatexCommand label name "sec:Infinite" \end_inset \begin_inset FormulaMacro \newcommand{\dlv}{\vect a} \end_inset \begin_inset FormulaMacro \newcommand{\rlv}{\vect b} \end_inset \end_layout \begin_layout Standard Although large finite systems are where MSTMM excels the most, there are several reasons that makes its extension to infinite lattices (where periodic boundary conditions might be applied) desirable as well. Other methods might be already fast enough, but MSTMM will be faster in most cases in which there is enough spacing between the neighboring particles. MSTMM works well with any space group symmetry the system might have (as opposed to, for example, FDTD with a cubic mesh applied to a honeycomb lattice), which makes e.g. application of group theory in mode analysis quite easy. \begin_inset Note Note status open \begin_layout Plain Layout Topology anoyne? \end_layout \end_inset And finally, having a method that handles well both infinite and large finite systems gives a possibility to study finite-size effects in periodic scatterer arrays. \end_layout \begin_layout Subsection Formulation of the problem \begin_inset CommandInset label LatexCommand label name "subsec:Quasiperiodic scattering problem" \end_inset \end_layout \begin_layout Standard Let us have a linear system of compact EM scatterers on a homogeneous background as in Section \begin_inset CommandInset ref LatexCommand eqref reference "subsec:Multiple-scattering" plural "false" caps "false" noprefix "false" \end_inset , but this time, the system shall be periodic: let there be a \begin_inset Formula $d$ \end_inset -dimensional ( \begin_inset Formula $d$ \end_inset can be 1, 2 or 3) Bravais lattice embedded into the three-dimensional real space, with lattice vectors \begin_inset Formula $\left\{ \dlv_{i}\right\} _{i=1}^{d}$ \end_inset , and let the lattice points be labeled with an \begin_inset Formula $d$ \end_inset -dimensional integer multi-index \begin_inset Formula $\vect n\in\ints^{d}$ \end_inset , so the lattice points have cartesian coordinates \begin_inset Formula $\vect R_{\vect n}=\sum_{i=1}^{d}n_{i}\vect a_{i}$ \end_inset . There can be several scatterers per unit cell with indices \begin_inset Formula $\alpha$ \end_inset from a set \begin_inset Formula $\mathcal{P}_{1}$ \end_inset and (relative) positions \begin_inset Formula $\vect r_{\alpha}$ \end_inset inside the unit cell; any particle of the periodic system can thus be labeled by a multiindex from \begin_inset Formula $\mathcal{P}=\ints^{d}\times\mathcal{P}_{1}$ \end_inset . The scatterers are located at positions \begin_inset Formula $\vect r_{\vect n,\alpha}=\vect R_{\vect n}+\vect r_{\alpha}$ \end_inset and their \begin_inset Formula $T$ \end_inset -matrices are periodic, \begin_inset Formula $T_{\vect n,\alpha}=T_{\alpha}$ \end_inset . In such system, the multiple-scattering problem \begin_inset CommandInset ref LatexCommand eqref reference "eq:Multiple-scattering problem" plural "false" caps "false" noprefix "false" \end_inset can be rewritten as \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \outcoeffp{\vect n,\alpha}-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect n,\alpha}{\vect m,\beta}\outcoeffp{\vect m,\beta}=T_{\alpha}\rcoeffincp{\vect n,\alpha}.\quad\left(\vect n,\alpha\right)\in\mathcal{P}\label{eq:Multiple-scattering problem periodic} \end{equation} \end_inset \end_layout \begin_layout Standard Due to periodicity, we can also write \begin_inset Formula $\tropsp{\vect n,\alpha}{\vect m,\beta}=\tropsp{\alpha}{\beta}\left(\vect R_{\vect m}-\vect R_{\vect n}\right)=\tropsp{\alpha}{\beta}\left(\vect R_{\vect m-\vect n}\right)=\tropsp{\vect 0,\alpha}{\vect m-\vect n,\beta}$ \end_inset . Assuming quasi-periodic right-hand side with quasi-momentum \begin_inset Formula $\vect k$ \end_inset , \begin_inset Formula $\rcoeffincp{\vect n,\alpha}=\rcoeffincp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}$ \end_inset , the solutions of \begin_inset CommandInset ref LatexCommand eqref reference "eq:Multiple-scattering problem periodic" plural "false" caps "false" noprefix "false" \end_inset will be also quasi-periodic according to Bloch theorem, \begin_inset Formula $\outcoeffp{\vect n,\alpha}=\outcoeffp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}$ \end_inset , and eq. \begin_inset CommandInset ref LatexCommand eqref reference "eq:Multiple-scattering problem periodic" plural "false" caps "false" noprefix "false" \end_inset can be rewritten as follows \begin_inset Formula \begin{align} \outcoeffp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect n,\alpha}{\vect m,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}},\nonumber \\ \outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect 0,\alpha}{\vect m-\vect n,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m-\vect n}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\nonumber \\ \outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect 0,\alpha\right)\right\} }\tropsp{\vect 0,\alpha}{\vect m,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\nonumber \\ \outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\beta\in\mathcal{P}}W_{\alpha\beta}\left(\vect k\right)\outcoeffp{\vect 0,\beta}\left(\vect k\right) & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\label{eq:Multiple-scattering problem unit cell} \end{align} \end_inset so we reduced the initial scattering problem to one involving only the field expansion coefficients from a single unit cell, but we need to compute the \begin_inset Quotes eld \end_inset lattice Fourier transform \begin_inset Quotes erd \end_inset of the translation operator, \begin_inset Formula \begin{equation} W_{\alpha\beta}(\vect k)\equiv\sum_{\vect m\in\ints^{d}}\left(1-\delta_{\alpha\beta}\delta_{\vect m\vect 0}\right)\tropsp{\vect 0,\alpha}{\vect m,\beta}e^{i\vect k\cdot\vect R_{\vect m}},\label{eq:W definition} \end{equation} \end_inset evaluation of which is possible but rather non-trivial due to the infinite lattice sum, so we cover it separately in Sect. \begin_inset CommandInset ref LatexCommand eqref reference "subsec:W operator evaluation" plural "false" caps "false" noprefix "false" \end_inset . \end_layout \begin_layout Standard As in the case of a finite system, eq. \begin_inset CommandInset ref LatexCommand eqref reference "eq:Multiple-scattering problem unit cell" plural "false" caps "false" noprefix "false" \end_inset can be written in a shorter block-matrix form, \begin_inset Formula \begin{equation} \left(I-TW\right)\outcoeffp{\vect 0}\left(\vect k\right)=T\rcoeffincp{\vect 0}\left(\vect k\right)\label{eq:Multiple-scattering problem unit cell block form} \end{equation} \end_inset Eq. \begin_inset CommandInset ref LatexCommand eqref reference "eq:Multiple-scattering problem unit cell" plural "false" caps "false" noprefix "false" \end_inset can be used to calculate electromagnetic response of the structure to external quasiperiodic driving field – most notably a plane wave. However, the non-trivial solutions of the equation with right hand side (i.e. the external driving) set to zero, \begin_inset Formula \begin{equation} \left(I-TW\right)\outcoeffp{\vect 0}\left(\vect k\right)=0,\label{eq:lattice mode equation} \end{equation} \end_inset describes the \emph on lattice modes. \emph default Non-trivial solutions to \begin_inset CommandInset ref LatexCommand eqref reference "eq:lattice mode equation" plural "false" caps "false" noprefix "false" \end_inset exist if the matrix on the left-hand side \begin_inset Formula $M\left(\omega,\vect k\right)=\left(I-T\left(\omega\right)W\left(\omega,\vect k\right)\right)$ \end_inset is singular – this condition gives the \emph on dispersion relation \emph default for the periodic structure. Note that in realistic (lossy) systems, at least one of the pair \begin_inset Formula $\omega,\vect k$ \end_inset will acquire complex values. The solution \begin_inset Formula $\outcoeffp{\vect 0}\left(\vect k\right)$ \end_inset is then obtained as the right \begin_inset Note Note status open \begin_layout Plain Layout CHECK! \end_layout \end_inset singular vector of \begin_inset Formula $M\left(\omega,\vect k\right)$ \end_inset corresponding to the zero singular value. \end_layout \begin_layout Standard Loss in the scatterers causes the solutions of \begin_inset CommandInset ref LatexCommand eqref reference "eq:lattice mode equation" plural "false" caps "false" noprefix "false" \end_inset shift to complex frequencies. If the background medium has constant real refractive index \begin_inset Formula $n$ \end_inset , negative (or positive) imaginary part of the frequency \begin_inset Formula $\omega$ \end_inset causes an artificial gain (or loss) in the medium, which manifests itself as exponential magnification (or attenuation) of the radial parts of the translation operators, \begin_inset Formula $h_{l}^{\left(1\right)}\left(rn\omega/c\right)$ \end_inset , w.r.t. the distance; the gain might then balance the losses in particles, resulting in sustained modes satisfying eq. \begin_inset CommandInset ref LatexCommand eqref reference "eq:lattice mode equation" plural "false" caps "false" noprefix "false" \end_inset . \begin_inset Note Note status open \begin_layout Plain Layout The gain in the system introduces some challenges, which we will discuss in Section \begin_inset CommandInset ref LatexCommand eqref reference "subsec:Physical-interpretation-of" plural "false" caps "false" noprefix "false" \end_inset . \end_layout \end_inset \end_layout \begin_layout Subsection Numerical solution \end_layout \begin_layout Standard In practice, equation \begin_inset CommandInset ref LatexCommand eqref reference "eq:Multiple-scattering problem unit cell block form" plural "false" caps "false" noprefix "false" \end_inset is solved in the same way as eq. \begin_inset CommandInset ref LatexCommand eqref reference "eq:Multiple-scattering problem block form" plural "false" caps "false" noprefix "false" \end_inset in the multipole degree truncated form. \end_layout \begin_layout Standard The lattice mode problem \begin_inset CommandInset ref LatexCommand eqref reference "eq:lattice mode equation" plural "false" caps "false" noprefix "false" \end_inset is (after multipole degree truncation) solved by finding \begin_inset Formula $\omega,\vect k$ \end_inset for which the matrix \begin_inset Formula $M\left(\omega,\vect k\right)$ \end_inset has a zero singular value. A naïve approach to do that is to sample a volume with a grid in the \begin_inset Formula $\left(\omega,\vect k\right)$ \end_inset space, performing a singular value decomposition of \begin_inset Formula $M\left(\omega,\vect k\right)$ \end_inset at each point and finding where the lowest singular value of \begin_inset Formula $M\left(\omega,\vect k\right)$ \end_inset is close enough to zero. However, this approach is quite expensive, since \begin_inset Formula $W\left(\omega,\vect k\right)$ \end_inset has to be evaluated for each \begin_inset Formula $\omega,\vect k$ \end_inset pair separately (unlike the original finite case \begin_inset CommandInset ref LatexCommand eqref reference "eq:Multiple-scattering problem block form" plural "false" caps "false" noprefix "false" \end_inset translation operator \begin_inset Formula $\trops$ \end_inset , which, for a given geometry, depends only on frequency). Therefore, a much more efficient but not completely robust approach to determine the photonic bands is to sample the \begin_inset Formula $\vect k$ \end_inset -space (a whole Brillouin zone or its part) and for each fixed \begin_inset Formula $\vect k$ \end_inset to find a corresponding frequency \begin_inset Formula $\omega$ \end_inset with zero singular value of \begin_inset Formula $M\left(\omega,\vect k\right)$ \end_inset using a minimisation algorithm (two- or one-dimensional, depending on whether one needs the exact complex-valued \begin_inset Formula $\omega$ \end_inset or whether the its real-valued approximation is satisfactory). Typically, a good initial guess for \begin_inset Formula $\omega\left(\vect k\right)$ \end_inset is obtained from the empty lattice approximation, \begin_inset Formula $\left|\vect k\right|=\sqrt{\epsilon\mu}\omega/c_{0}$ \end_inset (modulo reciprocal lattice points \begin_inset Note Note status open \begin_layout Plain Layout TODO write this in a clean way \end_layout \end_inset ). A somehow challenging step is to distinguish the different bands that can all be very close to the empty lattice approximation, especially if the particles in the system are small. In high-symmetry points of the Brilloin zone, this can be solved by factorising \begin_inset Formula $M\left(\omega,\vect k\right)$ \end_inset into irreducible representations \begin_inset Formula $\Gamma_{i}$ \end_inset and performing the minimisation in each irrep separately, cf. Section \begin_inset CommandInset ref LatexCommand ref reference "sec:Symmetries" plural "false" caps "false" noprefix "false" \end_inset , and using the different \begin_inset Formula $\omega_{\Gamma_{i}}\left(\vect k\right)$ \end_inset to obtain the initial guesses for the nearby points \begin_inset Formula $\vect k+\delta\vect k$ \end_inset . \end_layout \begin_layout Standard An alternative, faster and more robust approach to generic minimisation algorithms are eigensolvers for nonlinear eigenvalue problems based on contour integration \begin_inset CommandInset citation LatexCommand cite key "beyn_integral_2012,gavin_feast_2018" literal "false" \end_inset which are able to find the roots of \begin_inset Formula $M\left(\omega,\vect k\right)=0$ \end_inset inside an area enclosed by a given complex frequency plane contour, assuming that \begin_inset Formula $M\left(\omega,\vect k\right)$ \end_inset is an analytical function of \begin_inset Formula $\omega$ \end_inset inside the contour. A necessary prerequisite for this is that all the ingredients of \begin_inset Formula $M\left(\omega,\vect k\right)$ \end_inset are analytical as well. It practice, this usually means that interpolation cannot be used in a straightforward way for material properties or \begin_inset Formula $T$ \end_inset -matrices. For material response, constant permittivity or Drude-Lorentz models suit this purpose well. The need to evaluate the \begin_inset Formula $T$ \end_inset -matrices precisely (without the speedup provided by interpolation) at many points might cause a performance bottleneck for scatterers with more complicate d shapes. And finally, the integration contour has to evade any branch cuts appearing in the lattice-summed translation operator \begin_inset Formula $W\left(\omega,\vect k\right)$ \end_inset , as described in the following and illustrated in Fig. \begin_inset space \space{} \end_inset \begin_inset CommandInset ref LatexCommand ref reference "fig:ewald branch cuts" plural "false" caps "false" noprefix "false" \end_inset . \end_layout \begin_layout Standard \begin_inset Float figure placement document alignment document wide false sideways false status open \begin_layout Plain Layout \align center \begin_inset Graphics filename figs/ewald_branchcuts.pdf width 100col% \end_inset \end_layout \begin_layout Plain Layout \begin_inset Caption Standard \begin_layout Plain Layout Left: Illustration of branch cuts in \begin_inset Formula $M\left(\omega,\vect k\right)$ \end_inset obtained using Ewald summation over two-dimensional square lattice in three-dim ensional space filled with dielectric medium with constant real refraction index \begin_inset Formula $n$ \end_inset and wavenumber \begin_inset Formula $\kappa\left(\omega\right)=\omega n/c$ \end_inset . The function is holomorphic in the positive imaginary half-plane. The points corresponding to the diffraction orders of an \begin_inset Quotes eld \end_inset empty \begin_inset Quotes erd \end_inset lattice lie on the real axis (pink), and from each of them two branch cuts originate: one due to the branch cut in the incomplete \begin_inset Formula $\Gamma$ \end_inset function (orange, hyperbolic shape), and another due to the branch cut of \begin_inset Formula $\gamma(z)$ \end_inset if the branch is selected to be continuous for \begin_inset Formula $-3\pi/2<\arg\left(z-1\right)<\pi/2$ \end_inset \begin_inset Note Note status open \begin_layout Plain Layout as defined in \begin_inset CommandInset ref LatexCommand eqref reference "eq:lilgamma_old" plural "false" caps "false" noprefix "false" \end_inset \end_layout \end_inset (blue, circular shape). Further non-analyticities might stem from the material model: the violet curve represents a branch cut originating from a complex square root in the refractive index \begin_inset Formula $n_{\mathrm{Au}}\left(\omega\right)=\sqrt{\varepsilon_{\mathrm{Au}}\left(\omega\right)}$ \end_inset , where \begin_inset Formula $\varepsilon_{\mathrm{Au}}\left(\omega\right)$ \end_inset is the Drude-Lorentz permittivity model of gold used for the scatterers. The other parameters used here are \begin_inset Formula $p_{x}=580\,\mathrm{nm}$ \end_inset (lattice period), \begin_inset Formula $\vect k=\left(0.2\pi/p_{x},0\right)$ \end_inset , \begin_inset Formula $n=1.52$ \end_inset . The plot on the right shows the \begin_inset Quotes eld \end_inset empty \begin_inset Quotes erd \end_inset lattice diffraction orders on the line \begin_inset Formula $\vect k=\left(k_{x},0\right),k_{x}\in\left[0,\pi/p_{x}\right].$ \end_inset \begin_inset CommandInset label LatexCommand label name "fig:ewald branch cuts" \end_inset \end_layout \end_inset \end_layout \end_inset \end_layout \begin_layout Subsection Computing the lattice sum of the translation operator \begin_inset CommandInset label LatexCommand label name "subsec:W operator evaluation" \end_inset \end_layout \begin_layout Standard The problem in evaluating \begin_inset CommandInset ref LatexCommand eqref reference "eq:W definition" \end_inset is the asymptotic behaviour of the translation operator at large distances, \begin_inset Formula $\tropsp{\vect 0,\alpha}{\vect m,\beta}\sim\left|\vect R_{\vect m}\right|^{-1}e^{i\kappa\left|\vect R_{\vect m}\right|}$ \end_inset , so that its lattice sum does not in the strict sense converge for any \begin_inset Formula $d>1$ \end_inset -dimensional lattice unless \begin_inset Formula $\Im\kappa>0$ \end_inset . \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Foot status open \begin_layout Plain Layout Note that \begin_inset Formula $d$ \end_inset here is dimensionality of the lattice, not the space it lies in, which I for certain reasons assume to be three. (TODO few notes on integration and reciprocal lattices in some appendix) \end_layout \end_inset \end_layout \end_inset The problem of poorly converging lattice sums can be solved by decomposing the lattice-summed function into two parts: a short-range part that decays fast and can be summed directly, and a long-range part which decays poorly but is fairly smooth everywhere, so that its Fourier transform decays fast enough, and to deal with the long range part by Poisson summation over the reciprocal lattice; these two parts put together shall give an analytical continuation of the original sum for \begin_inset Formula $\Im\kappa\le0$ \end_inset . This idea dates back to Ewald \begin_inset CommandInset citation LatexCommand cite key "ewald_berechnung_1921" literal "false" \end_inset who solved the problem for electrostatic potentials (Green's functions for Laplace's equation). For linear electrodynamic problems, ruled by Helmholtz equation, the same basic idea can be used as well, resulting in exponentially convergent summation formulae, but the technical details are considerably more complicated than in electrostatics. For the scalar Helmholtz equation in three dimensions, the formulae were developed by Ham & Segall \begin_inset CommandInset citation LatexCommand cite key "ham_energy_1961" literal "false" \end_inset for 3D periodicity, Kambe \begin_inset CommandInset citation LatexCommand cite key "kambe_theory_1967,kambe_theory_1967-1,kambe_theory_1968" literal "false" \end_inset for 2D periodicity and Moroz \begin_inset CommandInset citation LatexCommand cite key "moroz_quasi-periodic_2006" literal "false" \end_inset for 1D periodicity. A review of these methods can be found in \begin_inset CommandInset citation LatexCommand cite key "linton_lattice_2010" literal "false" \end_inset . We will not rederive the formulae here, but for reference, we restate the results in a form independent upon the normalisation and phase conventions for spherical harmonic bases (pointing out some errors in the aforementioned literature) and discuss some practical aspects of the numerical evaluation. \begin_inset Note Note status open \begin_layout Plain Layout Tady ještě upřesnit, co vlastně dělám. \end_layout \end_inset \end_layout \begin_layout Standard We note that the lattice sums for \emph on scalar \emph default Helmholtz equation are enough for the evaluation of the translation operator lattice sum \begin_inset Formula $W_{\alpha\beta}(\vect k)$ \end_inset : in eq. \begin_inset CommandInset ref LatexCommand eqref reference "eq:translation operator singular" plural "false" caps "false" noprefix "false" \end_inset we demonstratively expressed the translation operator elements as linear combinations of (outgoing) \emph on scalar \emph default spherical wavefunctions \begin_inset Formula \begin{equation} \sswfoutlm lm\left(\vect r\right)=h_{l}^{\left(1\right)}\left(r\right)\ush lm\left(\uvec r\right).\label{eq:scalar spherical wavefunctions} \end{equation} \end_inset If we formally label \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Marginal status open \begin_layout Plain Layout FP: Check signs. \end_layout \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} \sigma_{l,m}\left(\vect k,\vect s\right)=\sum_{\vect n\in\ints^{d}}\left(1-\delta_{\vect{R_{n}},\vect s}\right)e^{i\vect{\vect k}\cdot\left(\vect R_{\vect n}-\vect s\right)}\sswfoutlm lm\left(\vect{R_{n}}-\vect s\right),\label{eq:sigma lattice sums} \end{equation} \end_inset we see from eqs. \begin_inset CommandInset ref LatexCommand eqref reference "eq:translation operator singular" plural "false" caps "false" noprefix "false" \end_inset , \begin_inset CommandInset ref LatexCommand eqref reference "eq:W definition" plural "false" caps "false" noprefix "false" \end_inset that the matrix elements of \begin_inset Formula $W_{\alpha\beta}(\vect k)$ \end_inset read \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula \[ W_{\alpha\beta}(\vect k)\equiv\sum_{\vect m\in\ints^{d}}\left(1-\delta_{\alpha\beta}\right)\tropsp{\vect 0,\alpha}{\vect m,\beta}e^{i\vect k\cdot\vect R_{\vect m}}, \] \end_inset \end_layout \end_inset \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula \begin{align*} W_{\alpha,\tau lm;\beta,\tau l'm'}(\vect k) & =\sum_{\lambda=\left|l-l'\right|}^{l+l'}C_{lm;l'm'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r_{\beta}-\vect r_{\alpha}\right),\\ W_{\alpha,\tau lm;\beta,\tau'l'm'}(\vect k) & =\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}D_{lm;l'm'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r_{\beta}-\vect r_{\alpha}\right),\quad\tau'\ne\tau, \end{align*} \end_inset \end_layout \end_inset \begin_inset Formula \[ W_{\alpha,\tau lm;\beta,\tau'l'm'}(\vect k)=\sum_{\lambda=\left|l-l'\right|+\left|\tau-\tau'\right|}^{l+l'}\tropcoeff_{\tau lm;\tau'l'm'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r_{\beta}-\vect r_{\alpha}\right),\quad\tau'\ne\tau, \] \end_inset \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Marginal status open \begin_layout Plain Layout Check signs \end_layout \end_inset \end_layout \end_inset where the constant factors are exactly the same as in \begin_inset CommandInset ref LatexCommand eqref reference "eq:translation operator constant factors" plural "false" caps "false" noprefix "false" \end_inset . \end_layout \begin_layout Standard The lattice sums \begin_inset Formula $\sigma_{l,m}\left(\vect k,\vect s\right)$ \end_inset are related to what is also called \emph on structural constants \emph default in some literature \begin_inset CommandInset citation LatexCommand cite key "kambe_theory_1967,kambe_theory_1967-1,kambe_theory_1968" literal "false" \end_inset , but the phase and normalisation differ. For reader's reference, we list the Ewald-type formulae for lattice sums \begin_inset Formula $\sigma_{l,m}\left(\vect k,\vect s\right)$ \end_inset rewritten in a way that is independent on particular phase or normalisation conventions of vector spherical harmonics. \end_layout \begin_layout Standard In all three lattice dimensionality cases, the lattice sums are divided into short-range and long-range parts, \begin_inset Formula $\sigma_{l,m}\left(\vect k,\vect s\right)=\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)+\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)$ \end_inset depending on a positive parameter \begin_inset Formula $\eta$ \end_inset . The short-range part has in all three cases the same form: \begin_inset Note Note status open \begin_layout Plain Layout FP: Check sign of s \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{multline} \sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=-\frac{2^{l+1}i}{\kappa^{l+1}\sqrt{\pi}}\sum_{\vect n\in\ints^{d}}\left(1-\delta_{\vect{R_{n}},-\vect s}\right)\left|\vect{R_{n}+\vect s}\right|^{l}\ush lm\left(\vect{R_{n}+\vect s}\right)e^{i\vect k\cdot\left(\vect{R_{n}+\vect s}\right)}\\ \times\int_{\eta}^{\infty}e^{-\left|\vect{R_{n}+\vect s}\right|^{2}\xi^{2}}e^{-\kappa^{2}/4\xi^{2}}\xi^{2l}\ud\xi\\ +\delta_{\vect{R_{n}},-\vect s}\frac{\delta_{l0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{\kappa^{2}}{4\eta^{2}}\right)\ush lm\left(\vect{R_{n}+\vect s}\right).\label{eq:Ewald in 3D short-range part} \end{multline} \end_inset The formal \begin_inset Formula $\left(1-\delta_{\vect{R_{n}},-\vect s}\right)$ \end_inset factor here accounts for leaving out the direct excitation of a particle by itself, corresponding to the \begin_inset Formula $\left(1-\delta_{\alpha\beta}\delta_{\vect m\vect 0}\right)$ \end_inset factor in \begin_inset CommandInset ref LatexCommand eqref reference "eq:W definition" plural "false" caps "false" noprefix "false" \end_inset . The leaving out then causes an additional ( \begin_inset Quotes eld \end_inset self-interaction \begin_inset Quotes erd \end_inset ) term on the last line of \begin_inset CommandInset ref LatexCommand eqref reference "eq:Ewald in 3D short-range part" plural "false" caps "false" noprefix "false" \end_inset , which appears only when the displacement vector \begin_inset Formula $\vect s$ \end_inset coincides with a lattice point. Strictly speaking, this is not a \begin_inset Quotes eld \end_inset short-range \begin_inset Quotes erd \end_inset term, hence it is often noted separately in the literature; however, we keep it in \begin_inset Formula $\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)$ \end_inset for formal convenience. \begin_inset Formula $\Gamma(a,z)$ \end_inset is the incomplete Gamma function. \begin_inset Note Note status open \begin_layout Plain Layout Poznámka ohledně zahození radiální části u kulových fcí? \end_layout \end_inset \end_layout \begin_layout Standard In practice, the integrals in \begin_inset CommandInset ref LatexCommand eqref reference "eq:Ewald in 3D short-range part" plural "false" caps "false" noprefix "false" \end_inset can be easily evaluated by numerical quadrature and the incomplete \begin_inset Formula $\Gamma$ \end_inset -functions using the series or continued fraction representations from \begin_inset CommandInset citation LatexCommand cite key "NIST:DLMF" literal "false" \end_inset . \end_layout \begin_layout Standard The explicit form of the long-range part of the lattice sum depends on the lattice dimensionality. The long-range parts are calculated as sums over the reciprocal lattice \begin_inset Formula $\Lambda^{*}$ \end_inset with lattice vectors \begin_inset Formula $\left\{ \vect b_{i}\right\} _{i=1}^{d}$ \end_inset lying in the same \begin_inset Formula $d$ \end_inset -dimensional subspace as the direct lattice vectors \begin_inset Formula $\left\{ \vect a_{i}\right\} _{i=1}^{d}$ \end_inset and satisfying \begin_inset Formula $\vect a_{i}\cdot\vect b_{j}=\delta_{ij}$ \end_inset . \end_layout \begin_layout Paragraph Case \begin_inset Formula $d=3$ \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)=\frac{4\pi i^{l+1}}{\kappa\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}\underbrace{e^{i\vect K\cdot\vect s}}_{\text{nemá tu být \ensuremath{\vect{k\cdot s}?}}}\frac{\left(\left|\vect k+\vect K\right|/\kappa\right)^{l}}{\kappa^{2}-\left|\vect k+\vect K\right|^{2}}e^{\left(\kappa^{2}-\left|\vect k+\vect K\right|^{2}\right)/4\eta^{2}}\ush lm\left(\vect k+\vect K\right)\label{eq:Ewald in 3D long-range part 3D} \end{equation} \end_inset regardless of chosen coordinate axes. Here \begin_inset Formula $\mathcal{A}$ \end_inset is the unit cell volume (or length/area in the following 1D/2D lattice cases). \end_layout \begin_layout Paragraph Case \begin_inset Formula $d=2$ \end_inset \end_layout \begin_layout Standard Reasonable explicit forms assume that the lattice lies inside the \begin_inset Formula $xy$ \end_inset -plane \begin_inset Formula $\left(\theta=\pi/2\right)$ \end_inset . \begin_inset Foot status open \begin_layout Plain Layout If a different coordinate system for \begin_inset Formula $\sigma_{l,m}\left(\vect k,\vect s\right)$ \end_inset is needed, one can always perform the lattice summation in the coordinate system described here, and rotate the result a posteriori using Wigner matrices, according to \begin_inset CommandInset ref LatexCommand eqref reference "eq:Wigner matrices" plural "false" caps "false" noprefix "false" \end_inset . \end_layout \end_inset The component of \begin_inset Formula $\vect s$ \end_inset normal to the lattice is then parallel to the \begin_inset Formula $z$ \end_inset axis, \begin_inset Formula $\vect s=\vect s_{\parallel}+\vect s_{\perp}=\vect s_{\parallel}+s_{\perp}\uvec z$ \end_inset . With these assumptions \begin_inset Note Note status open \begin_layout Plain Layout FP: check sign of \begin_inset Formula $\vect k$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{multline} \sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)=-\frac{i^{l+1}}{\kappa^{2}\mathcal{A}}\pi^{3/2}2\left(\left(l-m\right)/2\right)!\left(\left(l+m\right)/2\right)!\times\\ \times\sum_{\vect K\in\Lambda^{*}}\underbrace{e^{i\vect K\cdot\vect s}}_{\text{nemá tu být \ensuremath{\vect{k\cdot s}?}}}\ush lm\left(\vect k+\vect K\right)\sum_{j=0}^{l-\left|m\right|}\left(-1\right)^{j}\left(\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)\right)^{2j+1}\Delta_{j}\left(\frac{\kappa^{2}\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)^{2}}{4\eta^{2}},-i\kappa\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)s_{\perp}\right)\times\\ \times\sum_{\substack{s\\ j\le s\le\min\left(2j,l-\left|m\right|\right)\\ l-n+\left|m\right|\,\mathrm{even} } }\frac{1}{\left(2j-s\right)!\left(s-j\right)!}\frac{\left(-\kappa s_{\perp}\right)^{2j-s}\left(\left|\vect k+\vect K\right|/\kappa\right)^{l-s}}{\left(\frac{1}{2}\left(l-m-s\right)\right)!\left(\frac{1}{2}\left(l+m-s\right)\right)!}\label{eq:Ewald in 3D long-range part 1D 2D} \end{multline} \end_inset \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula \begin{multline} \sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)=-\frac{i^{l+1}}{\kappa^{d}\mathcal{A}}\pi^{2+\left(3-d\right)/2}2\left(\left(l-m\right)/2\right)!\left(\left(l+m\right)/2\right)!\times\\ \times\sum_{\vect K\in\Lambda^{*}}\underbrace{e^{i\vect K\cdot\vect s}}_{\text{nemá tu být \ensuremath{\vect{k\cdot s}?}}}\ush lm\left(\vect k+\vect K\right)\sum_{j=0}^{\left[\left(l-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\left|\vect k+\vect K\right|/\kappa\right)^{l-2j}\Gamma\left(\frac{d-1}{2}-j,\frac{\kappa^{2}\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)^{2}}{4\eta^{2}}\right)}{j!\left(\frac{1}{2}\left(l-m\right)-j\right)!\left(\frac{1}{2}\left(l+m\right)-j\right)!}\times\\ \times\left(\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)\right)^{2j+3-d}\label{eq:Ewald in 3D long-range part 1D 2D-1} \end{multline} \end_inset \end_layout \end_inset where \begin_inset Formula \begin{equation} \gamma\left(z\right)=\left(z^{2}-1\right)^{\frac{1}{2}},\label{eq:lilgamma} \end{equation} \end_inset \begin_inset Formula \begin{equation} \Delta_{j}\left(x,z\right)=\int_{x}^{\infty}t^{\frac{-1}{2}-n}\exp\left(-t+\frac{z^{2}}{4t}\right)\ud t.\label{eq:Delta_j} \end{equation} \end_inset If the normal component \begin_inset Formula $s_{\bot}$ \end_inset is zero, in the last sum in eq. \begin_inset CommandInset ref LatexCommand eqref reference "eq:Ewald in 3D long-range part 1D 2D" plural "false" caps "false" noprefix "false" \end_inset only one term ( \begin_inset Formula $s=2j$ \end_inset ) will remain if \begin_inset Formula $l-\left|m\right|$ \end_inset is even; for \begin_inset Formula $l-\left|m\right|$ \end_inset odd, the sum will vanish completely. Moreover, \begin_inset Formula $\Delta_{j}\left(x,0\right)=\Gamma\left(1/2-j,x\right)$ \end_inset . If \begin_inset Formula $s_{\bot}\ne0$ \end_inset , the integral \begin_inset Formula $\Delta_{j}\left(x,z\right)$ \end_inset can be evaluated e.g. using the Taylor series \lang finnish \begin_inset Formula \[ \Delta_{j}\left(x,z\right)=\sum_{k=0}^{\infty}\Gamma\left(\frac{1}{2}-j-k,x\right)\frac{\left(z/2\right)^{2k}}{k!} \] \end_inset which has infinite radius of convergence and is the first choice for small \begin_inset Formula $z$ \end_inset \lang english . Kambe \begin_inset CommandInset citation LatexCommand cite key "kambe_theory_1968" literal "false" \end_inset mentions a recurrence formula that can be obtained integrating \begin_inset CommandInset ref LatexCommand eqref reference "eq:Delta_j" plural "false" caps "false" noprefix "false" \end_inset by parts (note that the signs are wrong in \begin_inset CommandInset citation LatexCommand cite key "kambe_theory_1968" literal "false" \end_inset ) \begin_inset Formula \begin{equation} \Delta_{j+1}\left(x,z\right)=\frac{4}{z^{2}}\left(\left(\frac{1}{2}-j\right)\Delta_{j}\left(x,z\right)-\Delta_{j-1}\left(x,z\right)+x^{\frac{1}{2}-j}e^{-x+\frac{z^{2}}{4x}}\right)\label{eq:Delta_j recurrent} \end{equation} \end_inset with the first two terms \begin_inset Formula \begin{align*} \Delta_{0}\left(x,z\right) & =\frac{\sqrt{\pi}}{2}e^{-x^{2}+\frac{z^{2}}{4x}}\left(w\left(-\frac{z}{2\sqrt{x}}+i\sqrt{x}\right)+w\left(\frac{z}{2\sqrt{x}}+i\sqrt{x}\right)\right),\\ \Delta_{1}\left(x,z\right) & =i\frac{\sqrt{\pi}}{z}e^{-x^{2}+\frac{z^{2}}{4x}}\left(w\left(-\frac{z}{2\sqrt{x}}+i\sqrt{x}\right)-w\left(\frac{z}{2\sqrt{x}}+i\sqrt{x}\right)\right), \end{align*} \end_inset where \begin_inset Formula $w\left(z\right)=e^{-z^{2}}\left(1+2i\pi^{-1/2}\int_{0}^{z}e^{t^{2}}\ud t\right)$ \end_inset is the Faddeeva function. However, the recurrence formula \begin_inset CommandInset ref LatexCommand eqref reference "eq:Delta_j recurrent" plural "false" caps "false" noprefix "false" \end_inset is unsuitable for numerical evaluation if \begin_inset Formula $z$ \end_inset is small or \begin_inset Formula $j$ \end_inset is large due to its numerical instability. \end_layout \begin_layout Standard \begin_inset Note Note status open \begin_layout Plain Layout and if the normal component \begin_inset Formula $s_{\perp}$ \end_inset is zero, \begin_inset Formula \begin{multline} \sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)=-\frac{i^{l+1}}{\kappa^{d}\mathcal{A}}\pi^{2+\left(3-d\right)/2}2\left(\left(l-m\right)/2\right)!\left(\left(l+m\right)/2\right)!\times\\ \times\sum_{\vect K\in\Lambda^{*}}\underbrace{e^{i\vect K\cdot\vect s}}_{\text{nemá tu být \ensuremath{\vect{k\cdot s}?}}}\ush lm\left(\vect k+\vect K\right)\sum_{j=0}^{\left[\left(l-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\left|\vect k+\vect K\right|/\kappa\right)^{l-2j}\Gamma\left(\frac{d-1}{2}-j,\frac{\kappa^{2}\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)^{2}}{4\eta^{2}}\right)}{j!\left(\frac{1}{2}\left(l-m\right)-j\right)!\left(\frac{1}{2}\left(l+m\right)-j\right)!}\times\\ \times\left(\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)\right)^{2j+3-d}\label{eq:Ewald in 3D long-range part 1D 2D z = 0} \end{multline} \end_inset \end_layout \end_inset \begin_inset Note Note status open \begin_layout Plain Layout The function \begin_inset Formula $\gamma\left(z\right)$ \end_inset used in \begin_inset CommandInset ref LatexCommand eqref reference "eq:Ewald in 3D long-range part 1D 2D z = 0" plural "false" caps "false" noprefix "false" \end_inset is defined as \begin_inset Formula \begin{equation} \gamma\left(z\right)=\left(z-1\right)^{\frac{1}{2}}\left(z+1\right)^{\frac{1}{2}},\quad-\frac{3\pi}{2}<\arg\left(z-1\right)<\frac{\pi}{2},-\frac{\pi}{2}<\arg\left(z+1\right)<\frac{3\pi}{2}.\label{eq:lilgamma_old} \end{equation} \end_inset \end_layout \end_inset \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Marginal status open \begin_layout Plain Layout FP: I have some error estimates derived in my notes. Should I include them? \end_layout \end_inset \end_layout \end_inset \end_layout \begin_layout Standard One pecularity of the two-dimensional case is the two-branchedness of the function \begin_inset Formula $\gamma\left(z\right)$ \end_inset and the incomplete \begin_inset Formula $\Gamma$ \end_inset -function \begin_inset Formula $\Gamma\left(\frac{1}{2}-j,z\right)$ \end_inset appearing in the long-range part. As a consequence, if we now explicitly label the dependence on the wavenumber, \begin_inset Formula $\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\kappa,\vect k,\vect s\right)$ \end_inset has branch points at \begin_inset Formula $\kappa=\left|\vect k+\vect K\right|$ \end_inset for every reciprocal lattice vector \begin_inset Formula $\vect K$ \end_inset . If the wavenumber \begin_inset Formula $\kappa$ \end_inset of the medium has a positive imaginary part, \begin_inset Formula $\Im\kappa>0$ \end_inset , then the translation operator elements \begin_inset Formula $\trops_{\tau lm;\tau'l'm}\left(\kappa\vect r\right)$ \end_inset decay exponentially as \begin_inset Formula $\left|\vect r\right|\to\infty$ \end_inset and the lattice sum in \begin_inset CommandInset ref LatexCommand eqref reference "eq:W definition" plural "false" caps "false" noprefix "false" \end_inset converges absolutely even in the direct space, and it is equal to the Ewald sum with the principal branches used both in \begin_inset Formula $\gamma\left(z\right)$ \end_inset and \begin_inset Formula $\Gamma\left(\frac{1}{2}-j,z\right)$ \end_inset \begin_inset CommandInset citation LatexCommand cite key "linton_lattice_2010" literal "false" \end_inset . For other values of \begin_inset Formula $\kappa$ \end_inset , we typically choose the branch in such way that \begin_inset Formula $W_{\alpha\beta}\left(\vect k\right)$ \end_inset is analytically continued even when the wavenumber's imaginary part crosses the real axis. The principal value of \begin_inset Formula $\Gamma\left(\frac{1}{2}-j,z\right)$ \end_inset has a branch cut at the negative real half-axis, which, considering the lattice sum as a function of \begin_inset Formula $\kappa$ \end_inset , translates into branch cuts starting at \begin_inset Formula $\kappa=\left|\vect k+\vect K\right|$ \end_inset and continuing in straight lines towards \begin_inset Formula $+\infty$ \end_inset . Therefore, in the quadrant \begin_inset Formula $\Re z<0,\Im z\ge0$ \end_inset we use the continuation of the principal value from \begin_inset Formula $\Re z<0,\Im z<0$ \end_inset instead of the principal branch \begin_inset CommandInset citation LatexCommand cite after "8.2.9" key "NIST:DLMF" literal "false" \end_inset , moving the branch cut in the \begin_inset Formula $z$ \end_inset variable to the positive imaginary half-axis. This moves the branch cuts w.r.t. \begin_inset Formula $\kappa$ \end_inset away from the real axis, as illustrated in Fig. \begin_inset space \space{} \end_inset \begin_inset CommandInset ref LatexCommand ref reference "fig:ewald branch cuts" plural "false" caps "false" noprefix "false" \end_inset . \begin_inset Note Note status open \begin_layout Plain Layout Detailed physical interpretation of the remaining branch cuts is an open question. \end_layout \end_inset \begin_inset Note Note status open \begin_layout Plain Layout Generally, a good choice for \begin_inset Formula $\eta$ \end_inset is TODO; in order to achieve accuracy TODO, one has to evaluate the terms on TODO lattice points. \end_layout \end_inset \begin_inset Note Note status open \begin_layout Plain Layout (I HAVE SOME DERIVATIONS OF THE ESTIMATES IN MY NOTES; SHOULD I INCLUDE THEM?) \end_layout \end_inset \end_layout \begin_layout Paragraph Case \begin_inset Formula $d=1$ \end_inset \end_layout \begin_layout Standard For one-dimensional chains, the easiest choice is to align the lattice with the \begin_inset Formula $z$ \end_inset axis. \end_layout \begin_layout Subsubsection Choice of Ewald parameter and high-frequency breakdown \end_layout \begin_layout Standard The Ewald parameter \begin_inset Formula $\eta$ \end_inset determines the pace of convergence of both parts. The larger \begin_inset Formula $\eta$ \end_inset is, the faster \begin_inset Formula $\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)$ \end_inset converges but the slower \begin_inset Formula $\sigma_{l,m}^{\left(L,\eta\right)}\left(\vect k,\vect s\right)$ \end_inset converges. Therefore (based on the lattice geometry) it has to be adjusted in a way that a reasonable amount of terms needs to be evaluated numerically from both \begin_inset Formula $\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)$ \end_inset and \begin_inset Formula $\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)$ \end_inset . For one-dimensional, square, and cubic lattices, the optimal choice for small frequencies (wavenumbers) is \begin_inset Formula $\eta=\sqrt{\pi}/p$ \end_inset where \begin_inset Formula $p$ \end_inset is the direct lattice period \begin_inset CommandInset citation LatexCommand cite key "linton_lattice_2010" literal "false" \end_inset . \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Marginal status open \begin_layout Plain Layout Whatabout different geometries? \end_layout \end_inset \end_layout \end_inset However, in floating point arithmetics, the magnitude of the summands must be taken into account as well in order to maintain accuracy. There is a particular problem with the \begin_inset Quotes eld \end_inset central \begin_inset Quotes erd \end_inset reciprocal lattice points in the long-range sums for which the real part of \begin_inset Formula $\left|\vect k+\vect K\right|^{2}-\kappa^{2}$ \end_inset is negative: the incomplete \begin_inset Formula $\Gamma$ \end_inset function present in the sum (either explicitly or in the expansions of \family roman \series medium \shape up \size normal \emph off \nospellcheck off \bar no \strikeout off \xout off \uuline off \uwave off \noun off \color none \begin_inset Formula $\Delta_{j}$ \end_inset ) \family default \series default \shape default \size default \emph default \nospellcheck default \bar default \strikeout default \xout default \uuline default \uwave default \noun default \color inherit grows exponentially with respect to the negative second argument, with asymptotic behaviour \begin_inset Formula $\Gamma\left(a,z\right)\sim e^{-z}z^{a-1}$ \end_inset . Therefore for higher frequencies, the parameter \begin_inset Formula $\eta$ \end_inset needs to be adjusted in a way that keeps the value of \begin_inset Formula $\Gamma\left(a,\frac{\left|\vect k+\vect K\right|^{2}-\kappa^{2}}{4\eta^{2}}\right)$ \end_inset within reasonable bounds. \begin_inset Note Note status open \begin_layout Plain Layout Setting a target maximum magnitude for \begin_inset Formula $M$ \end_inset , so that \begin_inset Formula $\left|\Gamma\left(a,-\left|z\right|\right)\right|\lesssim M$ \end_inset , using the asymptotic estimate \begin_inset Formula $\Gamma\left(a,-\left|z\right|\right)\sim e^{-\left|z\right|}\left|z\right|^{a-1}$ \end_inset , we get \begin_inset Formula \begin{align*} e^{-\left|z\right|}\left|z\right|^{a-1} & \lesssim M,\\ -\left|z\right|\left(a-1\right)\log\left|z\right| & \lesssim\log M. \end{align*} \end_inset \end_layout \end_inset If we assume that \begin_inset Formula $\vect k$ \end_inset lies in the first Brillouin zone, the minimum real part of the second argument of the \begin_inset Formula $\Gamma$ \end_inset function will be \begin_inset Formula $\left(\left|\vect k\right|^{2}-\kappa^{2}\right)/4\eta^{2}$ \end_inset , so setting \begin_inset Formula $\eta\ge\sqrt{\left|\kappa\right|^{2}-\left|\vect k\right|^{2}}/2\log M$ \end_inset eliminates the exponential growth in the incomplete \begin_inset Formula $\Gamma$ \end_inset function, where the constant \begin_inset Formula $M$ \end_inset is chosen to represent the (rough) maximum tolerated magnitude of the summand with regard to target accuracy. \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula \[ -\frac{\left|\left|\vect k\right|^{2}-\kappa^{2}\right|}{4\eta^{2}}\left(a-1\right)2\log\frac{\left|\left|\vect k\right|^{2}-\kappa^{2}\right|^{\frac{1}{2}}}{2\eta}\lesssim\log M \] \end_inset \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Note Note status open \begin_layout Subsection Physical interpretation of wavenumber with negative imaginary part; screening \begin_inset CommandInset label LatexCommand label name "subsec:Physical-interpretation-of" \end_inset \end_layout \begin_layout Plain Layout left out for the time being \end_layout \end_inset \end_layout \begin_layout Subsection Scattering cross sections and field intensities in periodic system \end_layout \begin_layout Standard Once the scattering \begin_inset CommandInset ref LatexCommand eqref reference "eq:Multiple-scattering problem unit cell block form" plural "false" caps "false" noprefix "false" \end_inset or mode problem \begin_inset CommandInset ref LatexCommand eqref reference "eq:lattice mode equation" plural "false" caps "false" noprefix "false" \end_inset is solved, one can evaluate some useful related quantities, such as scattering cross sections (coefficients) or field intensities. \end_layout \begin_layout Standard For plane wave scattering on 2D lattices, one can directly use the formulae \begin_inset CommandInset ref LatexCommand eqref reference "eq:extincion CS multi" plural "false" caps "false" noprefix "false" \end_inset , \begin_inset CommandInset ref LatexCommand eqref reference "eq:absorption CS multi alternative" plural "false" caps "false" noprefix "false" \end_inset , taking the sums over scatterers inside one unit cell, to get the extinction and absorption cross sections per unit cell. From these, quantities such as absorption, extinction coefficients are obtained using suitable normalisation by unit cell size, depending on lattice dimensionality. \end_layout \begin_layout Standard Ewald summation can be used for evaluating scattered field intensities outside scatterers' circumscribing spheres: this requires expressing VSWF cartesian components in terms of scalar spherical wavefunctions defined in \begin_inset CommandInset ref LatexCommand eqref reference "eq:scalar spherical wavefunctions" plural "false" caps "false" noprefix "false" \end_inset . Fortunately, these can be obtained easily from the expressions for the translation operator: \begin_inset Formula \begin{align} \vswfrtlm{\tau}lm\left(\kappa\vect r\right) & =\sum_{m'=-1}^{1}\tropr_{\tau lm;21m'}\left(\kappa\vect r\right)\vswfrtlm 21{m'}\left(0\right),\nonumber \\ \vswfouttlm{\tau}lm\left(\kappa\vect r\right) & =\sum_{m'=-1}^{1}\trops_{\tau lm;21m'}\left(\kappa\vect r\right)\vswfrtlm 21{m'}\left(0\right),\label{eq:VSWFs expressed as translated dipole waves} \end{align} \end_inset which follows from eqs. \begin_inset CommandInset ref LatexCommand eqref reference "eq:regular vswf translation" plural "false" caps "false" noprefix "false" \end_inset , \begin_inset CommandInset ref LatexCommand eqref reference "eq:singular vswf translation" plural "false" caps "false" noprefix "false" \end_inset and the fact that all the other regular VSWFs except for \begin_inset Formula $\vswfrtlm 21{m'}$ \end_inset vanish at origin. For the quasiperiodic scattering problem formulated in section \begin_inset CommandInset ref LatexCommand ref reference "subsec:Quasiperiodic scattering problem" plural "false" caps "false" noprefix "false" \end_inset , the total electric field scattered from all the particles at point \begin_inset Formula $\vect r$ \end_inset located outside all the particles' circumscribing sphere reads, using eqs. \begin_inset CommandInset ref LatexCommand eqref reference "eq:translation operator singular" plural "false" caps "false" noprefix "false" \end_inset , \begin_inset CommandInset ref LatexCommand eqref reference "eq:sigma lattice sums" plural "false" caps "false" noprefix "false" \end_inset , \begin_inset CommandInset ref LatexCommand eqref reference "eq:scalar spherical wavefunctions" plural "false" caps "false" noprefix "false" \end_inset , \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula \begin{align} \trops_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+\left|\tau-\tau'\right|}^{l+l'}\tropcoeff_{\tau lm;\tau'l'm'}^{\lambda}\psi_{\lambda,m-m'}\left(\vect d\right),\label{eq:translation operator singular-1} \end{align} \end_inset \begin_inset Formula \begin{equation} \sigma_{l,m}\left(\vect k,\vect s\right)=\sum_{\vect n\in\ints^{d}}\left(1-\delta_{\vect{R_{n}},\vect s}\right)e^{i\vect{\vect k}\cdot\left(\vect R_{\vect n}-\vect s\right)}\sswfoutlm lm\left(\kappa\left(\vect{R_{n}}-\vect s\right)\right),\label{eq:sigma lattice sums} \end{equation} \end_inset \begin_inset Formula \begin{align*} \vect E_{\mathrm{scat}}\left(\vect r\right) & =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect n,\alpha}{\tau}lm\vect u_{\tau lm}\left(\kappa\left(\vect r-\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\\ & =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lme^{i\vect k\cdot\vect R_{\vect n}}\sum_{m'=-1}^{1}\trops_{\tau lm;21m'}\left(\kappa\left(\vect r-\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\vswfrtlm 21{m'}\left(0\right)\\ & =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lme^{-i\vect k\cdot\vect R_{\vect n}}\sum_{m'=-1}^{1}\trops_{\tau lm;21m'}\left(\kappa\left(\vect r+\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\vswfrtlm 21{m'}\left(0\right),\text{FIXME signs}\\ & =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lme^{-i\vect k\cdot\vect R_{\vect n}}\sum_{m'=-1}^{1}\sum_{\lambda=\left|l-1\right|+\left|\tau-2\right|}^{l+1}\tropcoeff_{\tau lm;21m'}^{\lambda}\psi_{\lambda,m-m'}\left(\kappa\left(\vect r+\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\vswfrtlm 21{m'}\left(0\right)\\ & =\sum_{\alpha\in\mathcal{P}_{1}}e^{-i\vect k\cdot\left(\vect r-\vect r_{\alpha}\right)}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lm\sum_{m'=-1}^{1}\sum_{\lambda=\left|l-1\right|+\left|\tau-2\right|}^{l+1}\tropcoeff_{\tau lm;21m'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r-\vect r_{\alpha}\right) \end{align*} \end_inset \end_layout \begin_layout Plain Layout TODO fix signs and exponential phase factors \end_layout \end_inset \begin_inset Formula \begin{align*} \vect E_{\mathrm{scat}}\left(\vect r\right) & =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect n,\alpha}{\tau}lm\vect u_{\tau lm}\left(\kappa\left(\vect r-\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\\ & =\sum_{\alpha\in\mathcal{P}_{1}}e^{-i\vect k\cdot\left(\vect r-\vect r_{\alpha}\right)}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lm\sum_{m'=-1}^{1}\sum_{\lambda=\left|l-1\right|+\left|\tau-2\right|}^{l+1}\tropcoeff_{\tau lm;21m'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r-\vect r_{\alpha}\right). \end{align*} \end_inset \end_layout \end_body \end_document