#LyX 2.1 created this file. For more info see http://www.lyx.org/ \lyxformat 474 \begin_document \begin_header \textclass article \use_default_options true \maintain_unincluded_children false \language finnish \language_package default \inputencoding auto \fontencoding global \font_roman TeX Gyre Pagella \font_sans default \font_typewriter default \font_math auto \font_default_family default \use_non_tex_fonts true \font_sc false \font_osf true \font_sf_scale 100 \font_tt_scale 100 \graphics default \default_output_format pdf4 \output_sync 0 \bibtex_command default \index_command default \paperfontsize 10 \spacing single \use_hyperref true \pdf_title "Sähköpajan päiväkirja" \pdf_author "Marek Nečada" \pdf_bookmarks true \pdf_bookmarksnumbered false \pdf_bookmarksopen false \pdf_bookmarksopenlevel 1 \pdf_breaklinks false \pdf_pdfborder false \pdf_colorlinks false \pdf_backref false \pdf_pdfusetitle true \papersize a3paper \use_geometry true \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \index Index \shortcut idx \color #008000 \end_index \leftmargin 1cm \topmargin 5mm \rightmargin 1cm \bottommargin 1cm \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \quotes_language swedish \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Standard \lang english \begin_inset FormulaMacro \newcommand{\uoft}[1]{\mathfrak{F}#1} \end_inset \begin_inset FormulaMacro \newcommand{\uaft}[1]{\mathfrak{\mathbb{F}}#1} \end_inset \begin_inset FormulaMacro \newcommand{\usht}[2]{\mathbb{S}_{#1}#2} \end_inset \begin_inset FormulaMacro \newcommand{\bsht}[2]{\mathrm{S}_{#1}#2} \end_inset \begin_inset FormulaMacro \newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2} \end_inset \begin_inset FormulaMacro \newcommand{\vect}[1]{\mathbf{#1}} \end_inset \begin_inset FormulaMacro \newcommand{\ud}{\mathrm{d}} \end_inset \begin_inset FormulaMacro \newcommand{\basis}[1]{\mathfrak{#1}} \end_inset \begin_inset FormulaMacro \newcommand{\dc}[1]{Ш_{#1}} \end_inset \begin_inset FormulaMacro \newcommand{\rec}[1]{#1^{-1}} \end_inset \begin_inset FormulaMacro \newcommand{\recb}[1]{#1^{\widehat{-1}}} \end_inset \begin_inset FormulaMacro \newcommand{\ints}{\mathbb{Z}} \end_inset \begin_inset FormulaMacro \newcommand{\nats}{\mathbb{N}} \end_inset \begin_inset FormulaMacro \newcommand{\reals}{\mathbb{R}} \end_inset \begin_inset FormulaMacro \newcommand{\ush}[2]{Y_{#1,#2}} \end_inset \begin_inset FormulaMacro \newcommand{\hgfr}{\mathbf{F}} \end_inset \begin_inset FormulaMacro \newcommand{\ph}{\mathrm{ph}} \end_inset \begin_inset FormulaMacro \newcommand{\kor}[1]{\underline{#1}} \end_inset \begin_inset FormulaMacro \newcommand{\koru}[1]{\overline{#1}} \end_inset \begin_inset FormulaMacro \newcommand{\hgf}{F} \end_inset Let \end_layout \begin_layout Paragraph \lang english Large k \end_layout \begin_layout Standard \lang english \begin_inset Formula \begin{eqnarray*} \mbox{OK}\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\hgfr\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)\\ \mbox{OK(D15.8.2)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}(\\ & & \pi\frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{Γ\left(\frac{3-q+n}{2}\right)\text{Γ}\left(1+n-\frac{2-q+n}{2}\right)}\hgfr\left(\begin{array}{c} \frac{2-q+n}{2},\frac{2-q+n}{2}-\left(1+n\right)+1\\ 1/2 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)\\ & - & \pi\frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(1+n-\frac{3-q+n}{2}\right)}\hgfr\left(\begin{array}{c} \frac{3-q+n}{2},\frac{3-q+n}{2}-\left(1+n\right)+1\\ 3/2 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right))\\ \mbox{OK20} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\pi(\\ & & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)}\hgfr\left(\begin{array}{c} \frac{2-q+n}{2},\frac{2-q-n}{2}\\ 1/2 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)\\ & - & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)}\hgfr\left(\begin{array}{c} \frac{3-q+n}{2},\frac{3-q-n}{2}\\ 3/2 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right))\\ \mbox{(D15.2.2)OK3a,b} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\pi\sum_{s=0}^{\infty}(\\ & & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{1}{2}+s\right)s!}\left(-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)^{s}\\ & - & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)}\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}+s\right)s!}\left(-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)^{s})\\ \mbox{OK4a} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{k^{n}}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\kor{\left(\sigma c-ik_{0}\right)^{2-q+n}}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}(\\ & & \frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}k^{-2+q\kor{-n}-2s}\left(\sigma c-ik_{0}\right)^{\kor{2-q+n}+2s}\\ & - & \frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}k^{-3+q\kor{-n}-2s}\left(\sigma c-ik_{0}\right)^{\kor{3-q+n}+2s})\\ \mbox{OK4b} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}(\\ & & \frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\kor{k^{-2+q-2s}}\kor{\left(\sigma c-ik_{0}\right)^{2s}}\\ & - & \frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\kor{k^{-3+q-2s}}\kor{\left(\sigma c-ik_{0}\right)^{1+2s}})\\ \mbox{OK4c} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=\kor 0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\\ & & \times\left(\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\ \mbox{OK4d} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right) \end{eqnarray*} \end_inset the fact that the partial sum \begin_inset Formula $\sum_{s=0}^{\left\lceil \kappa/2\right\rceil -1}\ldots$ \end_inset is zero is shown in the old messy notes (or TODO later here) \end_layout \begin_layout Standard \lang english Using DLMF 5.5.5, which says \begin_inset Formula $Γ(2z)=\pi^{-1/2}2^{2z-1}\text{Γ}(z)\text{Γ}(z+\frac{1}{2})$ \end_inset we have \begin_inset Formula \[ \text{Γ}\left(2-q+n\right)=\frac{2^{1-q+n}}{\sqrt{\pi}}\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{3-q+n}{2}\right), \] \end_inset so \begin_inset Formula \begin{eqnarray*} \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{\text{Γ}\left(2-q+n\right)}}{\kor{2^{n}}k_{0}^{q}}\kor{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{3-q+n}{2}\right)}\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{2-q+n}{2}\right)}\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\ & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\koru{2^{1-q}}}{k_{0}^{q}}\koru{\sqrt{\pi}}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\kor{\koru{\text{Γ}\left(\frac{2-q+n}{2}\right)}\left(\frac{2-q+n}{2}\right)_{s}}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\kor{\koru{\text{Γ}\left(\frac{3-q+n}{2}\right)}\left(\frac{3-q+n}{2}\right)_{s}}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\ & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right) \end{eqnarray*} \end_inset Assuming that \begin_inset Formula $\left\lceil \frac{\kappa}{2}\right\rceil $ \end_inset is large enough so that all the divergent terms are cancelled, either the left or the right part will become finite sums due to the \begin_inset Quotes sld \end_inset extra \begin_inset Quotes srd \end_inset Pochhammer \begin_inset Formula $\left(\frac{3-q-n}{2}\right)_{s}$ \end_inset or \begin_inset Formula $\left(\frac{2-q-n}{2}\right)_{s}$ \end_inset . \end_layout \begin_layout Standard \lang english According to Mathematica, the right sum with \begin_inset Formula $s$ \end_inset going from 0 \begin_inset Formula \begin{equation} \frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\label{eq:right sum} \end{equation} \end_inset can be written as (mathematica output) \begin_inset Note Note status collapsed \begin_layout Plain Layout \lang english (2^(2 - q)*k^(-3 + q)*((-I)*k0 + c*sig)*Gamma[(3 + n - q)/2]*Hypergeometric2F1[3 /2 - n/2 - q/2, 3/2 + n/2 - q/2, 3/2, (k0 + I*c*sig)^2/k^2])/(k0^q*Gamma[(-1 + n + q)/2]) \end_layout \end_inset \begin_inset Formula \[ \frac{2^{2-q}k^{-3+q}\left(-ik_{0}+c\sigma\right)\text{Γ}\left(\frac{3+n-q}{2}\right)\hgf\left(\begin{array}{c} \frac{3-n-q}{2},\frac{3+n-q}{2}\\ 3/2 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)}{k_{0}^{q;}\Gamma\left(\frac{-1+n+q}{2}\right)} \] \end_inset \end_layout \begin_layout Standard \lang english Similarly, the left sum \begin_inset Formula \begin{equation} \frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\right)\label{eq:left sum} \end{equation} \end_inset gives (mathematica output) \begin_inset Note Note status collapsed \begin_layout Plain Layout \lang english (2^(1 - q)*k^(-2 + q)*Gamma[(2 + n - q)/2]*Hypergeometric2F1[1 - n/2 - q/2, 1 + n/2 - q/2, 1/2, (k0 + I*c*sig)^2/k^2])/(k0^q*Gamma[(n + q)/2]) \end_layout \end_inset and is equal to \begin_inset Formula \[ \frac{2^{1-q}k^{-2+q}\Gamma\left(\frac{2+n-q}{2}\right)\hgf\left(\begin{array}{c} \frac{2-n-q}{2},\frac{2+n-q}{2}\\ 1/2 \end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)}{k_{0}^{q;}\Gamma\left(\frac{n+q}{2}\right)} \] \end_inset . \end_layout \begin_layout Subparagraph \lang english Special case \begin_inset Formula $q=2,n=0$ \end_inset \end_layout \begin_layout Standard \lang english If \begin_inset Formula $\kappa\ge2$ \end_inset , the left part will drop and \begin_inset Formula \begin{eqnarray*} \mbox{OKSq2n0b}\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(-\frac{\text{Γ}\left(\frac{1}{2}+s\right)\text{Γ}\left(\frac{1}{2}+s\right)}{\text{Γ}\left(\frac{1}{2}\right)\kor{\text{Γ}\left(\frac{3}{2}+s\right)}s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\ & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(-\frac{\kor{\text{Γ}\left(\frac{1}{2}+s\right)}\text{Γ}\left(\frac{1}{2}+s\right)}{\text{Γ}\left(\frac{1}{2}\right)\koru{\kor{\text{Γ}\left(\frac{1}{2}+s\right)}\left(\frac{1}{2}+s\right)}s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\ & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}}\sum_{s=\kor{\left\lceil \frac{\kappa}{2}\right\rceil }}^{\infty}\left(-1\right)^{s}k^{-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(-\frac{\text{Γ}\left(\frac{1}{2}+s\right)}{\text{Γ}\left(\frac{1}{2}\right)\left(\frac{1}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\ \mbox{(explain!)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}}\sum_{s=\koru 0}^{\infty}\left(-1\right)^{s}k^{-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(-\frac{\text{Γ}\left(\frac{1}{2}+s\right)}{\kor{\text{Γ}\left(\frac{1}{2}\right)}\left(\frac{1}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\ & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}\sqrt{\pi}}\frac{\left(\sigma c-ik_{0}\right)}{k}\kor{\sum_{s=0}^{\infty}\left(-1\right)^{s}\left(\frac{\sigma c-ik_{0}}{k}\right)^{2s}\frac{\text{Γ}\left(\frac{1}{2}+s\right)}{\left(\frac{1}{2}+s\right)s!}}\\ & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}\sqrt{\pi}}\frac{\left(\sigma c-ik_{0}\right)}{k}\frac{2\sqrt{\pi}\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)}{\frac{\sigma c-ik_{0}}{k}}\\ \mbox{OKSq2n0f} & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{1}{k_{0}^{2}}\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right) \end{eqnarray*} \end_inset where we used (TODO ref) \begin_inset Formula \[ \sum_{s=0}^{\infty}\frac{\text{Γ}\left(\frac{1}{2}+s\right)}{\left(\frac{1}{2}+s\right)s!}\left(-x\right)^{s}=\frac{2\sqrt{\pi}\sinh^{-1}\sqrt{x}}{\sqrt{x}} \] \end_inset The final result has asymptotic behaviour of ... for \begin_inset Formula $k\to\infty$ \end_inset . \end_layout \begin_layout Subparagraph Special case \begin_inset Formula $q=3,n=1$ \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{eqnarray*} \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\ & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-2}}{k_{0}^{3}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{1-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right) \end{eqnarray*} \end_inset Let's hope that the left term (sum) in the big round brackets is zero for \begin_inset Formula $\kappa\ge3$ \end_inset (verified numerically, see file xxx; and BTW numerics show that it is zero also when \begin_inset Formula $k<k_{0}$ \end_inset and \begin_inset Formula $\kappa\ge3$ \end_inset ), and therefore \begin_inset Formula \begin{eqnarray*} \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\frac{\kor{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\\ & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\frac{\koru{\text{Γ}\left(\frac{3-q+n}{2}+s\right)}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\\ \pht 1{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-2}}{k_{0}^{3}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}\kor{k^{1-2s}}\left(\sigma c-ik_{0}\right)^{2s}\frac{\text{Γ}\left(\frac{1}{2}+s\right)\left(-\frac{1}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\\ & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-2}\koru k}{k_{0}^{3}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}\koru{\left(\frac{\sigma c-ik_{0}}{k}\right)^{2s}}\frac{\text{Γ}\left(\frac{1}{2}+s\right)\left(-\frac{1}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k} \end{eqnarray*} \end_inset and Mathematica tells us that \begin_inset Formula \begin{eqnarray*} \sum_{s=0}^{\infty}\frac{\text{Γ}\left(\frac{1}{2}+s\right)\left(-\frac{1}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}x^{s} & = & 2\frac{\sqrt{x\left(1-x\right)}\sin^{-1}\sqrt{x}}{\sqrt{\pi}\sqrt{x}}\\ \sum_{s=0}^{\infty}\frac{\text{Γ}\left(\frac{1}{2}+s\right)\left(-\frac{1}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}(-1)^{s}y^{2s} & = & 2\frac{y\sqrt{1+y^{2}}+\sinh^{-1}y}{\sqrt{\pi}y} \end{eqnarray*} \end_inset so \begin_inset Formula \begin{eqnarray*} \pht 1{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{2^{-2}}k}{k_{0}^{3}}\kor{\sqrt{\pi}\left(\frac{\sigma c-ik_{0}}{k}\right)}\kor 2\frac{\left(\frac{\sigma c-ik_{0}}{k}\right)\sqrt{1+\left(\frac{\sigma c-ik_{0}}{k}\right)^{2}}+\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)}{\kor{\sqrt{\pi}\left(\frac{\sigma c-ik_{0}}{k}\right)}}\\ (Hq3n1) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k}{2k_{0}^{3}}\left(\left(\frac{\sigma c-ik_{0}}{k}\right)\sqrt{1+\left(\frac{\sigma c-ik_{0}}{k}\right)^{2}}+\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)\right) \end{eqnarray*} \end_inset \series bold což je prej blbě (zjisti proč – blbě opsáno nebo nesprávná větev logaritmu?); \series default správný výsledek je (mathematica kód: \begin_inset Note Note status collapsed \begin_layout Plain Layout - Sum[(-1)^sig Binomial[kap, sig] (((-I)*k0 + c*sig)*(k0*Sqrt[1 - (k0 + I*c*sig)^2/k^2] + I*c*sig*Sqrt[1 - (k0 + I*c*sig)^2/k^2] + k*ArcSin[(k0 + I*c*sig)/k]))/(2*k0^3*(k0 + I*c*sig)) , {sig, 0, kap}] \end_layout \end_inset nebo FullSimplify \begin_inset Note Note status collapsed \begin_layout Plain Layout (((-I)*k0 + c*sig)*Sqrt[(k^2 - (k0 + I*c*sig)^2)/k^2] - I*k*ArcSin[(k0 + I*c*sig)/k])/(2*k0^3) \end_layout \end_inset ; snad jsem to tentokrát neopsal blbě) \begin_inset Formula \begin{eqnarray*} \pht 1{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\left(-ik_{0}+c\sigma\right)\left(k_{0}\sqrt{1+\left(\frac{\sigma c-ik_{0}}{k}\right)^{2}}+ic\sigma\sqrt{1+\left(\frac{\sigma c-ik_{0}}{k}\right)^{2}}+k\sin^{-1}\left(\frac{k_{0}+ic\sigma}{k}\right)\right)}{2k_{0}^{3}\left(k_{0}+ic\sigma\right)}\\ \mbox{(f.simpl.)} & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\left(-ik_{0}+c\sigma\right)\sqrt{1-\left(\frac{k_{0}+ic\sigma}{k}\right)^{2}}-ik\sin^{-1}\left(\frac{k_{0}+ic\sigma}{k}\right)}{2k_{0}^{3}} \end{eqnarray*} \end_inset \end_layout \begin_layout Subparagraph Special case \begin_inset Formula $q=3,n=0$ \end_inset \end_layout \begin_layout Standard Mathematica řiká po fullsimplify zhruba toto \begin_inset Note Note status open \begin_layout Plain Layout Sum[((-1)^(1 + sig)*(k*Sqrt[(k^2 - (k0 + I*c*sig)^2)/k^2] + (k0 + I*c*sig)*ArcSi n[(k0 + I*c*sig)/k])*Binomial[kap, sig])/k0^3, {sig, 0, kap}] \end_layout \end_inset \begin_inset Formula \begin{eqnarray*} \pht 0{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k\sqrt{1-\left(\frac{k_{0}+ic\sigma}{k}\right)^{2}}+\left(k_{0}+ic\sigma\right)\sin^{-1}\left(\frac{k_{0}+ic\sigma}{k}\right)}{k_{0}^{3}} \end{eqnarray*} \end_inset \begin_inset Formula $\kappa\ge2$ \end_inset \end_layout \begin_layout Paragraph Small k \end_layout \begin_layout Standard \lang english \begin_inset Formula \begin{eqnarray*} \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\hgfr\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)\\ \mbox{(D15.2.2)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\kor{Γ\left(2-q+n\right)}}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\sum_{s=0}^{\infty}\frac{\kor{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{3-q+n}{2}\right)_{s}}}{Γ(1+n+s)s!}\left(\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{s},\quad\left|\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right|<1 \end{eqnarray*} \end_inset Again we use \begin_inset Formula \[ \text{Γ}\left(2-q+n\right)=\frac{2^{1-q+n}}{\sqrt{\pi}}\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{3-q+n}{2}\right), \] \end_inset so \begin_inset Formula \begin{eqnarray*} \pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \koru{\frac{2^{1-q\kor{+n}}}{\sqrt{\pi}}}\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}}{\kor{2^{n}}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\sum_{s=0}^{\infty}\frac{\koru{\text{Γ}\left(\frac{2-q+n}{2}+s\right)\text{Γ}\left(\frac{3-q+n}{2}+s\right)}}{\text{Γ}(1+n+s)s!}\left(\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{s}\\ \mbox{OKShort} & = & \frac{2^{1-q}}{\sqrt{\pi}}\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\kor{\sum_{s=0}^{\infty}\frac{\text{Γ}\left(\frac{2-q+n}{2}+s\right)\text{Γ}\left(\frac{3-q+n}{2}+s\right)}{\text{Γ}(1+n+s)s!}\left(\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{s}}\\ \mbox{(D15.2.1)} & = & \frac{2^{1-q}}{\sqrt{\pi}}\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\koru{\frac{\text{Γ}\left(1+n\right)}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{3-q+n}{2}\right)}\kor{\hgf\left(\begin{array}{c} \frac{2-q+n}{2},\frac{3-q+n}{2}\\ 1+n \end{array};\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)}} \end{eqnarray*} \end_inset \end_layout \end_body \end_document