MathJax.Hub.Config({ TeX: { Macros: { // Abs: ['\\left\\lvert #2 \\right\\rvert_{\\text{#1}}', 2, ""] // optional arg. example // from https://stackoverflow.com/questions/24628668/how-to-define-custom-macros-in-mathjax vect: ["{\\mathbf{#1}}",1], abs: ["{\\left|{#1}\\right|}",1], ud: "{\\mathrm{d}}", pr: ["{\\left({#1}\\right)}", 1], // parentheses to save typing uvec: ["{\\mathbf{\\hat{#1}}}", 1], vsh: "{\\mathbf{A}}", // vector spherical harmonic, general vshD: "\\mathbf{A}^\\dagger", // dual vector spherical harmonic, general vshrad: "{\\mathbf{A}_3}", // vector spherical harmonic radial, general vshrot: "{\\mathbf{A}_1}", // vector spherical harmonic "rotational", general vshgrad: "{\\mathbf{A}_2}", // vector spherical harmonic "gradiental", general vshradD: "{\\mathbf{A}_3}^\\dagger}", // dual vector spherical harmonic radial, general vshrotD: "{\\mathbf{A}_1^\\dagger}", // dual vector spherical harmonic "rotational", general vshgradD: "{\\mathbf{A}_2^\\dagger}", // dual vector spherical harmonic "gradiental", general wfe: "{\\mathbf{N}}", // Electric wave general wfm: "{\\mathbf{M}}", // Magnetic wave general sphbes: "{z}", // General spherical Bessel fun rawLeg: ["{\\mathfrak{P}_{#1}^{#2}}", 2], // "Canonical" associated Legendre polynomial without C.S. phase rawFer: ["\\rawLeg{#1}{#2}", 2], // "Canonical" associated Legendre polynomial without C.S. phase dlmfLeg: ["{P_{#1}^{#2}}", 2], // Associated Legendre function as in DLMF (14.3.6) dlmfFer: ["{\\mathsf{P}_{#1}^{#2}}", 2], // Ferrers Function as in DLMF (14.3.1) dlmfYc: ["{Y_{{#1},{#2}}}", 2], // Complex spherical harmonics as in DLMF (14.30.1) dlmfYrUnnorm: ["{Y_{#1}^{#2}}", 2], // Real spherical harmonics as in DLMF (14.30.2) Fer: ["{{P_{\\mathrm{#1}}}_{#2}^{#3}}", 3, ""], // Legendre / Ferrers function spharm: ["{{Y_{\\mathrm{#1}}}_{#2}^{#3}}", 3, ""], // Spherical harmonics spharmR: ["{{Y_{\\mathrm{#1}}}_{\\mathrm{#1}{#2}{#3}}", 4, ""], // Spherical harmonics csphase: "\\mathsf{C_{CS}}", // Condon-Shortley phase tropSrr: ["{{S^\\mathrm{#1}}\\pr{{#2} \\leftarrow {#3}}}", 3, ""], // Translation operator singular tropRrr: ["{{R^\\mathrm{#1}}\\pr{{#2} \\leftarrow {#3}}}", 3, ""], // Translation operator regular // Kristensson's VSWFs, complex version (2014 notes) wfkc: "{\\vect{y}}", // any wave wfkcreg: "{\\vect{v}}", // regular wave wfkcout: "{\\vect{u}}", // outgoing wave wckcreg: "{a}", // regular wave coeff wckcout: "{f}", // outgoing wave coeff // Kristensson's VSWFs, real version (2014 book) wfkr: "{\\vect{y}_{\\mathrm{r}}}", // any wave wfkrreg: "{\\vect{v}_{\\mathrm{r}}}", // regular wave wfkrout: "{\\vect{u}_{\\mathrm{r}}}", // outgoing wave wckrreg: "{a}", // regular wave coeff wckrout: "{f}", // outgoing wave coeff // Taylor's VSWFs wfmt: "{\\widetilde{\\vect{M}}}", wfet: "{\\widetilde{\\vect{N}}}", wfmtreg: "{\\widetilde{\\vect{M}}^{(1)}}", // regular magnetic wave wfetreg: "{\\widetilde{\\vect{N}}^{(1)}}", // regular electric wave wfmtout: "{\\widetilde{\\vect{M}}^{(3)}}", // outgoing magnetic wave wfetout: "{\\widetilde{\\vect{N}}^{(3)}}", // outgoing electric wave wcmtreg: "{q}", // regular magnetic wave coeff wcetreg: "{p}", // regular electric wave coeff wcmtout: "{b}", // outgoing magnetic wave coeff wcetout: "{a}", // outgoing electric wave coeff // Reid's VSWFs wfr: "\\mathbf{\\mathcal{W}}", wfrreg: "\\mathbf{\\mathcal{W}}^{\\mathrm{reg}}", // regular wave wfrout: "\\mathbf{\\mathcal{W}}^{\\mathrm{out}}", // outgoing wave wcrreg: "C^\\mathrm{inc}", // regular wave coeff wcrout: "C^\\mathrm{scat}", // outgoing wave coeff } } });