/*! \file ewald.h * \brief Lattice sums of spherical waves. * * Implementation of two-dimensional lattice sum in three dimensions * according to: * - [1] C.M. Linton, I. Thompson * Journal of Computational Physics 228 (2009) 1815–1829 * - [2] C.M.Linton * SIAM Review Vol 52, No. 4, pp. 630–674 * * N.B.!!! currently, the long-range parts are calculated * not according to [1,(4.5)], but rather * according to the spherical-harmonic-normalisation-independent * formulation in my notes notes/ewald.lyx. * Both parts of lattice sums are then calculated with * the \f$ P_n^{|m|} e^{im\phi} \f$ * (N.B. or \f$ P_n^{|m|} e^{imf} (-1)^m \f$ for negative m) * substituted in place of \f$ Y_n^m \f$ * (this is quite a weird normalisation especially * for negative \f$ |m| \f$, but it is consistent * with the current implementation of the translation coefficients in * @ref translations.c; * in the long run, it might make more sense to replace it everywhere with normalised * Legendre polynomials). */ #ifndef EWALD_H #define EWALD_H #include #include #include #include #include // for inlined lilgamma #include #include "qpms_types.h" #include "lattices.h" /// Use this handler to ignore underflows of incomplete gamma. gsl_error_handler_t IgnoreUnderflowsGSLErrorHandler; /// Object holding the Ewald sum constant factors. /** * Used internally by qpms_translation_calculator_t. * Initialised by qpms_ewald3_constants_init() and freed by qpms_ewald3_constants_free(). */ typedef struct qpms_ewald3_constants_t { qpms_l_t lMax; qpms_y_t nelem_sc; /// The values of maximum \a j's in the long-range part summation, `[(l-|m|/2)]`. qpms_l_t *s1_jMaxes; /// The constant factors for the long range part of a 2D Ewald sum. complex double **s1_constfacs; // indices [y][j] where j is same as in [1, (4.5)] /* These are the actual numbers now: (in the EWALD32_CONSTANTS_AGNOSTIC version) * for m + n EVEN: * * s1_constfacs[y(m,n)][j] = * * -2 * I**(n+1) * sqrt(π) * ((n-m)/2)! * ((n+m)/2)! * (-1)**j * ----------------------------------------------------------- * j! * ((n-m)/2 - j)! * ((n+m)/2 + j)! * * for m + n ODD: * * s1_constfacs[y(m,n)][j] = 0 */ complex double *s1_constfacs_base; ///< Internal pointer holding memory for the 2D Ewald sum constant factors. // similarly for the 1D z-axis aligned case; now the indices are [n][j] (as m == 0) /// The constant factors for the long range part of a 1D Ewald sum along the \a z axis. /** If the summation points lie along a different direction, use the formula for * 2D sum with additional factor of * \f$ \sqrt{pi} \kappa \gamma(\abs{\vect{k}+\vect{K}}/\kappa) \f$. */ ///=============== NEW GENERATION GENERAL 2D-IN-3D, including z != 0 ========================= // TODO indexing mechanisms /// The constant factors for the long range part of a 2D Ewald sum. complex double **S1_constfacs; // indices [y][j] where j is same as in [1, (4.5)] /* These are the actual numbers now: (in the EWALD32_CONSTANTS_AGNOSTIC version) * for m + n EVEN: * * S1_constfacs[y(m,n)][x(j,s)] = * * -2 * I**(n+1) * sqrt(π) * ((n-m)/2)! * ((n+m)/2)! * (-1)**j / j \ * ----------------------------------------------------------- | | * j! * ((n - m - s)/2)! * ((n + m - s)/2)! \ 2j - s / * * for m + n ODD: * * S1_constfacs[y(m,n)][j] = 0 */ complex double *S1_constfacs_base; ///< Internal pointer holding memory for the 2D Ewald sum constant factors. /// The constant factors for the long range part of a 1D Ewald sum along the \a z axis. /** If the summation points lie along a different direction, use the formula for * 2D sum with additional factor of * \f$ \sqrt{pi} \kappa \gamma(\abs{\vect{k}+\vect{K}}/\kappa) \f$. */ complex double **s1_constfacs_1Dz; /* These are the actual numbers now: * s1_constfacs_1Dz[n][j] = * * -I**(n+1) (-1)**j * n! * -------------------------- * j! * 2**(2*j) * (n - 2*j)! */ complex double *s1_constfacs_1Dz_base; ///= 1) return sqrt(t*t - 1); else return -I * sqrt(1 - t*t); } // [1, (A.8)], complex version of lilgamma() static inline complex double clilgamma(complex double z) { complex double a1 = z - 1, a2 = z + 1; // ensure -pi/2 < arg(z + 1) < 3*pi/2 if (creal(a2) < 0 && cimag(a2) <= 0) a2 = -csqrt(a2); else a2 = csqrt(a2); // ensure -3*pi/2 < arg(z - 1) < pi/2 if (creal(a1) < 0 && cimag(a1) >= 0) a1 = -csqrt(a1); else a1 = csqrt(a1); return a1 * a2; } /// Incomplete Gamma function as a series. /** DLMF 8.7.3 (latter expression) for complex second argument. * * The principal value is calculated. On the negative real axis * (where the function has branch cut), the sign of the imaginary * part is what matters (even if it is zero). Therefore one * can have * `cx_gamma_inc_series_e(a, z1) != cx_gamma_inc_series_e(a, z2)` * even if `z1 == z2`, because `-0 == 0` according to IEEE 754. * The side of the branch cut can be determined using `signbit(creal(z))`. */ int cx_gamma_inc_series_e(double a, complex double z, qpms_csf_result * result); /// Incomplete Gamma function as continued fractions. /** * The principal value is calculated. On the negative real axis * (where the function has branch cut), the sign of the imaginary * part is what matters (even if it is zero). Therefore one * can have * `cx_gamma_inc_CF_e(a, z1) != cx_gamma_inc_CF_e(a, z2)` * even if `z1 == z2`, because `-0 == 0` according to IEEE 754. * The side of the branch cut can be determined using `signbit(creal(z))`. */ int cx_gamma_inc_CF_e(double a, complex double z, qpms_csf_result * result); /// Incomplete gamma for complex second argument. /** * If x is (almost) real, it just uses gsl_sf_gamma_inc_e(). * * On the negative real axis * (where the function has branch cut), the sign of the imaginary * part is what matters (even if it is zero). Therefore one * can have * `complex_gamma_inc_e(a, z1, m) != complex_gamma_inc_e(a, z2, m)` * even if `z1 == z2`, because `-0 == 0` according to IEEE 754. * The side of the branch cut can be determined using `signbit(creal(z))`. * * Another than principal branch can be selected using non-zero \a m * argument. */ int complex_gamma_inc_e(double a, complex double x, /// Branch index. /** If zero, the principal value is calculated. * Other branches might be chosen using non-zero \a m. * In such case, the returned value corresponds to \f[ * \Gamma(a,ze^{2\pi mi})=e^{2\pi mia} \Gamma(a,z) * + (1-e^{2\pi mia}) \Gamma(a). * \f] * * If \a a is non-positive integer, the limiting value should * be used, but this is not yet implemented! */ int m, qpms_csf_result *result); /// Exponential integral for complex second argument. /** If x is (almost) positive real, it just uses gsl_sf_expint_En_e(). */ int complex_expint_n_e(int n, complex double x, qpms_csf_result *result); /// Hypergeometric 2F2, used to calculate some errors. int hyperg_2F2_series(double a, double b, double c, double d, double x, gsl_sf_result *result); #if 0 // The integral from (4.6); maybe should be static and not here. int ewald32_sr_integral(double r, double k, double n, double eta, double *result, double *err, gsl_integration_workspace *workspace); #endif /// The Delta_n factor from [Kambe II], Appendix 3, used in 2D-in-3D long range sum. /** \f[ \Delta_n = \int_n^\infty t^{-1/2 - n} \exp(-t + z^2/(4t))\ud t \f] * * \bug The current choice of method, based purely on the value of \a z, might be * unsuitable especially for big values of \a maxn. * */ void ewald3_2_sigma_long_Delta(complex double *target, double *target_err, int maxn, complex double x, int xbranch, complex double z); /// The Delta_n factor from [Kambe II], Appendix 3, used in 2D-in-3D long range sum. /** This function always uses Kambe's (corrected) recurrent formula. * For production, use ewald3_2_sigma_long_Delta() instead. */ void ewald3_2_sigma_long_Delta_recurrent(complex double *target, double *target_err, int maxn, complex double x, int xbranch, complex double z, _Bool bigimz); /// The Delta_n factor from [Kambe II], Appendix 3, used in 2D-in-3D long range sum. /** This function always uses Taylor expansion in \a z. * For production, use ewald3_2_sigma_long_Delta() instead. * * \bug The error estimate seems to be wrong (too small) at least in some cases: try * parameters maxn = 40, z = 0.5, x = -3. This might be related to the exponential growth * of the error. */ void ewald3_2_sigma_long_Delta_series(complex double *target, double *target_err, int maxn, complex double x, int xbranch, complex double z); // General functions acc. to [2], sec. 4.6 – currently valid for 2D and 1D lattices in 3D space /// The Ewald sum "self-interaction" term that appears in the lattice sums with zero (direct-space) Bravais lattice displacement. int ewald3_sigma0(complex double *result, ///< Pointer to save the result (single complex double). double *err, ///< Pointer to save the result error estimate (single double). const qpms_ewald3_constants_t *c, ///< Constant factors structure initialised by qpms_ewald3_constants_init(). double eta, ///< Ewald parameter. complex double wavenumber ///< Wavenumber of the background medium. ); /// Short-range part of outgoing scalar spherical wavefunctions' lattice sum \f$ \sigma_{l,m}^\mathrm{S}(\vect k,\vect s)\f$. int ewald3_sigma_short( complex double *target_sigmasr_y, ///< Target array for \f$ \sigma_{l,m}^\mathrm{S} \f$, must be `c->nelem_sc` long. double *target_sigmasr_y_err, ///< Target array for error estimates, must be `c->nelem_sc` long or `NULL`. const qpms_ewald3_constants_t *c, ///< Constant factors structure initialised by qpms_ewald3_constants_init(). double eta, ///< Ewald parameter. complex double wavenumber, ///< Wavenumber of the background medium. /// Lattice dimensionality. /** Ignored apart from asserts and possible optimisations, as the SR formula stays the same. */ LatticeDimensionality latdim, /// Lattice point generator for the direct Bravais lattice. /** There is a possibility that the whole PGen is not consumed * (this might happen if the summand start to be consistently smaller * than the (partial) sums * DBL_EPSILON. * In such case, it is the responsibility of the caller to deallocate * the generator. */ PGen *pgen_R, /// Indicates whether pgen_R already generates shifted points. /** If false, the behaviour corresponds to the old ewald32_sigma_short_points_and_shift(), * so the function assumes that the generated points correspond to the unshifted Bravais lattice, * and adds particle_shift to the generated points before calculations. * If true, it assumes that they are already shifted (if calculating interaction between * different particles in the unit cell). */ bool pgen_generates_shifted_points, /// Wave vector \f$\vect k\f$. cart3_t k, /// Lattice offset \f$\vect s\f$ wrt. the Bravais lattice. cart3_t particle_shift ); /// Long-range part of outgoing scalar spherical wavefunctions' lattice sum \f$ \sigma_{l,m}^\mathrm{L}(\vect k,\vect s)\f$. int ewald3_sigma_long( // calls ewald3_21_sigma_long or ewald3_3_sigma_long, depending on latdim complex double *target_sigmalr_y, ///< Target array for \f$ \sigma_{l,m}^\mathrm{L} \f$, must be `c->nelem_sc` long. double *target_sigmalr_y_err, ///< Target array for error estimates, must be `c->nelem_sc` long or `NULL`. const qpms_ewald3_constants_t *c, ///< Constant factors structure initialised by qpms_ewald3_constants_init(). double eta, ///< Ewald parameter. complex double wavenumber, ///< Wavenumber of the background medium. double unitcell_volume, ///< Volume of the (direct lattice) unit cell (with dimension corresponding to the lattice dimensionality). /// Lattice dimensionality. LatticeDimensionality latdim, /// Lattice point generator for the reciprocal lattice. /** There is a possibility that the whole PGen is not consumed * (this might happen if the summand start to be consistently smaller * than the (partial) sums * DBL_EPSILON. * In such case, it is the responsibility of the caller to deallocate * the generator. */ PGen *pgen_K, /// Indicates whether pgen_K already generates shifted points. /** If false, the behaviour corresponds to the old ewald32_sigma_long_points_and_shift(), * so the function assumes that the generated points correspond to the unshifted reciprocal Bravais lattice, * and adds beta to the generated points before calculations. * If true, it assumes that they are already shifted. */ bool pgen_generates_shifted_points, /// Wave vector \f$\vect k\f$. cart3_t k, /// Lattice offset \f$\vect s\f$ wrt. the Bravais lattice. cart3_t particle_shift ); // If nonzero, adds an additional factor \f$ i^{nl} \f$ to the Ewald sum result (for debugging). extern int ewald_factor_ipow_l; // If nonzero, adds an additional factor \f$ i^{nm} \f$ to the Ewald sum result (for debubbing). extern int ewald_factor_ipow_m; #endif //EWALD_H