#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 584 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass article \use_default_options true \maintain_unincluded_children false \language english \language_package default \inputencoding utf8 \fontencoding auto \font_roman "default" "TeX Gyre Pagella" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf true \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \float_placement class \float_alignment class \paperfontsize default \spacing single \use_hyperref true \pdf_author "Marek Nečada" \pdf_bookmarks true \pdf_bookmarksnumbered false \pdf_bookmarksopen false \pdf_bookmarksopenlevel 1 \pdf_breaklinks false \pdf_pdfborder false \pdf_colorlinks false \pdf_backref false \pdf_pdfusetitle true \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Section Finite systems \begin_inset CommandInset label LatexCommand label name "sec:Finite" \end_inset \end_layout \begin_layout Standard The basic idea of MSTMM is quite simple: the driving electromagnetic field incident onto a scatterer is expanded into a vector spherical wavefunction (VSWF) basis in which the single scattering problem is solved, and the scattered field is then re-expanded into VSWFs centered at the other scatterers. Repeating the same procedure with all (pairs of) scatterers yields a set of linear equations, solution of which gives the coefficients of the scattered field in the VSWF bases. Once these coefficients have been found, one can evaluate various quantities related to the scattering (such as cross sections or the scattered fields) quite easily. \end_layout \begin_layout Standard The expressions appearing in the re-expansions are fairly complicated, and the implementation of MSTMM is extremely error-prone also due to the various conventions used in the literature. Therefore although we do not re-derive from scratch the expressions that can be found elsewhere in literature, for reader's reference we always state them explicitly in our convention. \end_layout \begin_layout Subsection Single-particle scattering \end_layout \begin_layout Standard In order to define the basic concepts, let us first consider the case of electromagnetic (EM) radiation scattered by a single particle. We assume that the scatterer lies inside a closed ball \begin_inset Formula $\closedball{R^{<}}{\vect 0}$ \end_inset of radius \begin_inset Formula $R^{<}$ \end_inset and center in the origin of the coordinate system (which can be chosen that way; the natural choice of \begin_inset Formula $\closedball{R^{<}}{\vect 0}$ \end_inset is the circumscribed ball of the scatterer) and that there exists a larger open cocentric ball \begin_inset Formula $\openball{R^{>}}{\vect 0}$ \end_inset , such that the (non-empty) spherical shell \begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}=\openball{R^{>}}{\vect 0}\setminus\closedball{R^{<}}{\vect 0}$ \end_inset is filled with a homogeneous isotropic medium with relative electric permittivi ty \begin_inset Formula $\epsilon(\vect r,\omega)=\epsbg(\omega)$ \end_inset and magnetic permeability \begin_inset Formula $\mu(\vect r,\omega)=\mubg(\omega)$ \end_inset , and that the whole system is linear, i.e. the material properties of neither the medium nor the scatterer depend on field intensities. Under these assumptions, the EM fields \begin_inset Formula $\vect{\Psi}=\vect E,\vect H$ \end_inset in \begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$ \end_inset must satisfy the homogeneous vector Helmholtz equation together with the transversality condition \begin_inset Formula \begin{equation} \left(\nabla^{2}+\kappa^{2}\right)\Psi\left(\vect r,\vect{\omega}\right)=0,\quad\nabla\cdot\vect{\Psi}\left(\vect r,\vect{\omega}\right)=0\label{eq:Helmholtz eq} \end{equation} \end_inset \begin_inset Note Note status open \begin_layout Plain Layout frequency-space Maxwell's equations \begin_inset Formula \begin{align*} \nabla\times\vect E\left(\vect r,\omega\right)-i\kappa\eta_{0}\eta\vect H\left(\vect r,\omega\right) & =0,\\ \eta_{0}\eta\nabla\times\vect H\left(\vect r,\omega\right)+ik\vect E\left(\vect r,\omega\right) & =0. \end{align*} \end_inset \end_layout \end_inset \begin_inset Note Note status open \begin_layout Plain Layout todo define \begin_inset Formula $\Psi$ \end_inset , mention transversality \end_layout \end_inset with wave number \begin_inset Foot status open \begin_layout Plain Layout Throughout this text, we use the letter \begin_inset Formula $\kappa$ \end_inset for wave number in order to avoid confusion with Bloch vector \begin_inset Formula $\vect k$ \end_inset and its magnitude, introduced in Section \begin_inset CommandInset ref LatexCommand ref reference "sec:Infinite" plural "false" caps "false" noprefix "false" \end_inset . \end_layout \end_inset \begin_inset Formula $\kappa=\kappa\left(\omega\right)=\omega\sqrt{\mubg(\omega)\epsbg(\omega)}/c_{0}$ \end_inset , as can be derived from Maxwell's equations \begin_inset CommandInset citation LatexCommand cite key "jackson_classical_1998" literal "false" \end_inset . \begin_inset Note Note status open \begin_layout Plain Layout TODO ref to the chapter. \end_layout \end_inset \end_layout \begin_layout Subsubsection Spherical waves \end_layout \begin_layout Standard Equation \begin_inset CommandInset ref LatexCommand ref reference "eq:Helmholtz eq" plural "false" caps "false" noprefix "false" \end_inset can be solved by separation of variables in spherical coordinates to give the solutions – the \emph on regular \emph default and \emph on outgoing \emph default vector spherical wavefunctions (VSWFs) \begin_inset Formula $\vswfrtlm{\tau}lm\left(\kappa\vect r\right)$ \end_inset and \begin_inset Formula $\vswfouttlm{\tau}lm\left(\kappa\vect r\right)$ \end_inset , respectively, defined as follows: \begin_inset Formula \begin{align} \vswfrtlm 1lm\left(\kappa\vect r\right) & =j_{l}\left(\kappa r\right)\vsh 1lm\left(\uvec r\right),\nonumber \\ \vswfrtlm 2lm\left(\kappa\vect r\right) & =\frac{1}{\kappa r}\frac{\ud\left(\kappa rj_{l}\left(\kappa r\right)\right)}{\ud\left(\kappa r\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(\kappa r\right)}{\kappa r}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF regular} \end{align} \end_inset \begin_inset Formula \begin{align} \vswfouttlm 1lm\left(\kappa\vect r\right) & =h_{l}^{\left(1\right)}\left(\kappa r\right)\vsh 1lm\left(\uvec r\right),\nonumber \\ \vswfouttlm 2lm\left(\kappa\vect r\right) & =\frac{1}{kr}\frac{\ud\left(\kappa rh_{l}^{\left(1\right)}\left(\kappa r\right)\right)}{\ud\left(\kappa r\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(\kappa r\right)}{\kappa r}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF outgoing}\\ & \tau=1,2;\quad l=1,2,3,\dots;\quad m=-l,-l+1,\dots,+l,\nonumber \end{align} \end_inset where \begin_inset Formula $\vect r=r\uvec r=r\left(\sin\theta\left(\uvec x\cos\phi+\uvec y\sin\phi\right)+\uvec z\cos\theta\right)$ \end_inset ; \begin_inset Formula $j_{l}\left(x\right),h_{l}^{\left(1\right)}\left(x\right)=j_{l}\left(x\right)+iy_{l}\left(x\right)$ \end_inset are the regular spherical Bessel function and spherical Hankel function of the first kind \begin_inset Foot status open \begin_layout Plain Layout The interpretation of \begin_inset Formula $\vswfouttlm{\tau}lm\left(\kappa\vect r\right)$ \end_inset containing spherical Hankel functions of the first kind as \emph on outgoing \emph default waves at positive frequencies is associated with a specific choice of sign in the exponent of time-frequency transformation, \begin_inset Formula $\psi\left(t\right)=\left(2\pi\right)^{-\pi/2}\int\psi\left(\omega\right)e^{-i\omega t}\,\ud\omega$ \end_inset . This matters especially when considering materials with gain or loss: in this convention, lossy materials will have refractive index (and wavenumber \begin_inset Formula $\kappa$ \end_inset , at a given positive frequency) with \emph on positive \emph default imaginary part, and gainy materials will have it negative and, for example, Drude-Lorenz model of a lossy medium will have poles in the lower complex half-plane. \end_layout \end_inset , respectively, as in \begin_inset CommandInset citation LatexCommand cite after "§10.47" key "NIST:DLMF" literal "false" \end_inset , and \begin_inset Formula $\vsh{\tau}lm$ \end_inset are the \emph on vector spherical harmonics \emph default \begin_inset Formula \begin{align} \vsh 1lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\times\left(\vect r\ush lm\left(\uvec r\right)\right)=\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\ush lm\left(\uvec r\right)\times\vect r,\nonumber \\ \vsh 2lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}r\nabla\ush lm\left(\uvec r\right),\nonumber \\ \vsh 3lm\left(\uvec r\right) & =\uvec r\ush lm\left(\uvec r\right).\label{eq:vector spherical harmonics definition} \end{align} \end_inset In our convention, the (scalar) spherical harmonics \begin_inset Formula $\ush lm$ \end_inset are identical to those in \begin_inset CommandInset citation LatexCommand cite after "14.30.1" key "NIST:DLMF" literal "false" \end_inset , i.e. \begin_inset Formula \[ \ush lm\left(\uvec r\right)=\left(\frac{\left(l-m\right)!\left(2l+1\right)}{4\pi\left(l+m\right)!}\right)^{\frac{1}{2}}e^{im\phi}\dlmfFer lm\left(\cos\theta\right) \] \end_inset where \begin_inset Formula $ $ \end_inset importantly, the Ferrers functions \begin_inset Formula $\dlmfFer lm$ \end_inset defined as in \begin_inset CommandInset citation LatexCommand cite after "§14.3(i)" key "NIST:DLMF" literal "false" \end_inset do already contain the Condon-Shortley phase \begin_inset Formula $\left(-1\right)^{m}$ \end_inset . \begin_inset Note Note status open \begin_layout Plain Layout TODO názornější definice. \end_layout \end_inset For later use, we also introduce \begin_inset Quotes eld \end_inset dual \begin_inset Quotes erd \end_inset spherical harmonics \begin_inset Formula $\ushD lm$ \end_inset defined by duality relation with the \begin_inset Quotes eld \end_inset usual \begin_inset Quotes erd \end_inset spherical harmonics \begin_inset Formula \begin{equation} \iint\ushD{l'}{m'}\left(\uvec r\right)\ush lm\left(\uvec r\right)\,\ud\Omega=\delta_{\tau'\tau}\delta_{l'l}\delta_{m'm}\label{eq:dual spherical harmonics} \end{equation} \end_inset and corresponding dual vector spherical harmonics \begin_inset Formula \begin{equation} \iint\vshD{\tau'}{l'}{m'}\left(\uvec r\right)\cdot\vsh{\tau}lm\left(\uvec r\right)\,\ud\Omega=\delta_{\tau'\tau}\delta_{l'l}\delta_{m'm}\label{eq:dual vsh} \end{equation} \end_inset (complex conjugation not implied in the dot product here). In our convention, we have \begin_inset Formula \begin{align*} \ush lm\left(\uvec r\right) & =\left(\ush lm\left(\uvec r\right)\right)^{*}=\left(-1\right)^{m}\ush l{-m}\left(\uvec r\right).\\ \vshD{\tau}lm\left(\uvec r\right) & =\left(\vsh{\tau}lm\left(\uvec r\right)\right)^{*}=\left(-1\right)^{m}\vsh{\tau}l{-m}\left(\uvec r\right). \end{align*} \end_inset \end_layout \begin_layout Standard The convention for VSWFs used here is the same as in \begin_inset CommandInset citation LatexCommand cite key "kristensson_spherical_2014" literal "false" \end_inset ; over other conventions used elsewhere in literature, it has several fundamenta l advantages – most importantly, the translation operators introduced later in eq. \begin_inset CommandInset ref LatexCommand eqref reference "eq:reqular vswf coefficient vector translation" plural "false" caps "false" noprefix "false" \end_inset are unitary, and it gives the simplest possible expressions for power transport and cross sections without additional \begin_inset Formula $l,m$ \end_inset -dependent factors (for that reason, we also call our VSWFs as \emph on power-normalised \emph default ). Power-normalisation and unitary translation operators are possible to achieve also with real spherical harmonics – such a convention is used in \begin_inset CommandInset citation LatexCommand cite key "kristensson_scattering_2016" literal "false" \end_inset . \end_layout \begin_layout Standard \begin_inset Note Note status open \begin_layout Plain Layout Its solutions (TODO under which conditions? What vector space do the SVWFs actually span? Check Comment 9.2 and Appendix f.9.1 in Kristensson) \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Note Note status open \begin_layout Plain Layout TODO small note about cartesian multipoles, anapoles etc. (There should be some comparing paper that the Russians at META 2018 mentioned.) \end_layout \end_inset \end_layout \begin_layout Subsubsection T-matrix definition \end_layout \begin_layout Standard The regular VSWFs \begin_inset Formula $\vswfrtlm{\tau}lm\left(k\vect r\right)$ \end_inset would constitute a basis for solutions of the Helmholtz equation \begin_inset CommandInset ref LatexCommand eqref reference "eq:Helmholtz eq" plural "false" caps "false" noprefix "false" \end_inset inside a ball \begin_inset Formula $\openball{R^{>}}{\vect 0}$ \end_inset with radius \begin_inset Formula $R^{>}$ \end_inset and center in the origin, were it filled with homogeneous isotropic medium; however, if the equation is not guaranteed to hold inside a smaller ball \begin_inset Formula $\closedball{R^{<}}{\vect 0}$ \end_inset around the origin (typically due to presence of a scatterer), one has to add the outgoing VSWFs \begin_inset Formula $\vswfouttlm{\tau}lm\left(\kappa\vect r\right)$ \end_inset to have a complete basis of the solutions in the volume \begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}=\openball{R^{>}}{\vect 0}\setminus\closedball{R^{<}}{\vect 0}$ \end_inset . \begin_inset Note Note status open \begin_layout Plain Layout Vnitřní koule uzavřená? Jak se řekne mezikulí anglicky? \end_layout \end_inset \end_layout \begin_layout Standard The single-particle scattering problem at frequency \begin_inset Formula $\omega$ \end_inset can be posed as follows: Let a scatterer be enclosed inside the ball \begin_inset Formula $\closedball{R^{<}}{\vect 0}$ \end_inset and let the whole volume \begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$ \end_inset be filled with a homogeneous isotropic medium with wave number \begin_inset Formula $\kappa\left(\omega\right)$ \end_inset . Inside \begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$ \end_inset , the electric field can be expanded as \begin_inset Note Note status open \begin_layout Plain Layout doplnit frekvence a polohy \end_layout \end_inset \begin_inset Formula \begin{equation} \vect E\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoefftlm{\tau}lm\vswfrtlm{\tau}lm\left(\kappa\vect r\right)+\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\left(\kappa\vect r\right)\right).\label{eq:E field expansion} \end{equation} \end_inset If there were no scatterer and \begin_inset Formula $\closedball{R^{<}}{\vect 0}$ \end_inset were filled with the same homogeneous medium, the part with the outgoing VSWFs would vanish and only the part \begin_inset Formula $\vect E_{\mathrm{inc}}=\sum_{\tau lm}\rcoefftlm{\tau}lm\vswfrtlm{\tau}lm$ \end_inset due to sources outside \begin_inset Formula $\openball{R^{>}}{\vect 0}$ \end_inset would remain. Let us assume that the \begin_inset Quotes eld \end_inset driving field \begin_inset Quotes erd \end_inset is given, so that presence of the scatterer does not affect \begin_inset Formula $\vect E_{\mathrm{inc}}$ \end_inset and is fully manifested in the latter part, \begin_inset Formula $\vect E_{\mathrm{scat}}=\sum_{\tau lm}\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm$ \end_inset . We also assume that the scatterer is made of optically linear materials and hence reacts to the incident field in a linear manner. This gives a linearity constraint between the expansion coefficients \begin_inset Formula \begin{equation} \outcoefftlm{\tau}lm=\sum_{\tau'l'm'}T_{\tau lm}^{\tau'l'm'}\rcoefftlm{\tau'}{l'}{m'}\label{eq:T-matrix definition} \end{equation} \end_inset where the \begin_inset Formula $T_{\tau lm}^{\tau'l'm'}=T_{\tau lm}^{\tau'l'm'}\left(\omega\right)$ \end_inset are the elements of the \emph on transition matrix, \emph default a.k.a. \begin_inset Formula $T$ \end_inset -matrix. It completely describes the scattering properties of a linear scatterer, so with the knowledge of the \begin_inset Formula $T$ \end_inset -matrix we can solve the single-particle scattering problem simply by substituti ng appropriate expansion coefficients \begin_inset Formula $\rcoefftlm{\tau'}{l'}{m'}$ \end_inset of the driving field into \begin_inset CommandInset ref LatexCommand eqref reference "eq:T-matrix definition" plural "false" caps "false" noprefix "false" \end_inset . The outgoing VSWF expansion coefficients \begin_inset Formula $\outcoefftlm{\tau}lm$ \end_inset are the effective induced electric ( \begin_inset Formula $\tau=2$ \end_inset ) and magnetic ( \begin_inset Formula $\tau=1$ \end_inset ) multipole polarisation amplitudes of the scatterer, and this is why we sometimes refer to the corresponding VSWFs as to the electric and magnetic VSWFs, respectively. \begin_inset Note Note status open \begin_layout Plain Layout TODO mention the pseudovector character of magnetic VSWFs. \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Note Note status open \begin_layout Plain Layout TOOD H-field expansion here? \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Formula $T$ \end_inset -matrices of particles with certain simple geometries (most famously spherical) can be obtained analytically \begin_inset CommandInset citation LatexCommand cite key "kristensson_scattering_2016,mie_beitrage_1908" literal "false" \end_inset ; for particles with smooth surfaces one can find them numerically using the \emph on null-field method \emph default \begin_inset CommandInset citation LatexCommand cite key "waterman_new_1969,waterman_symmetry_1971,kristensson_scattering_2016" literal "false" \end_inset which works well in the most typical cases, but for less common parameter ranges (such as concave shapes, extreme values of aspect ratios or relative refractive index) they might suffer from serious numerical instabilities \begin_inset CommandInset citation LatexCommand cite after "Sect. 5.8.4" key "mishchenko_scattering_2002" literal "false" \end_inset . In general, simulating scattering of a regular spherical wave \begin_inset Formula $\vswfrtlm{\tau}lm$ \end_inset and projecting the scattered fields (or induced currents, depending on the method) onto the outgoing VSWFs \begin_inset Formula $\vswfouttlm{\tau'}{l'}{m'}$ \end_inset . In practice, one can compute only a finite number of elements with a cut-off value \begin_inset Formula $L$ \end_inset on the multipole degree, \begin_inset Formula $l,l'\le L$ \end_inset , see below. \end_layout \begin_layout Standard For the numerical evaluation of \begin_inset Formula $T$ \end_inset -matrices for simple axially symmetric scatterers in QPMS, we typically use the null-field equations, and for more complicated scatterers we use the \family typewriter scuff-tmatrix \family default tool from the free software SCUFF-EM suite \begin_inset CommandInset citation LatexCommand cite key "reid_efficient_2015,SCUFF2" literal "false" \end_inset . Note that older versions of SCUFF-EM contained a bug that rendered almost all \begin_inset Formula $T$ \end_inset -matrix results wrong; we found and fixed the bug and from upstream version xxx \begin_inset Marginal status open \begin_layout Plain Layout Not yet merged to upstream. \end_layout \end_inset onwards, it should behave correctly. \end_layout \begin_layout Subsubsection T-matrix compactness, cutoff validity \end_layout \begin_layout Standard The magnitude of the \begin_inset Formula $T$ \end_inset -matrix elements depends heavily on the scatterer's size compared to the wavelength. Typically, \begin_inset Foot status open \begin_layout Plain Layout It has been proven that the \begin_inset Formula $T$ \end_inset -matrix of a bounded scatterer is a compact operator for \emph on acoustic \emph default scattering problems \begin_inset CommandInset citation LatexCommand cite key "ganesh_convergence_2012" literal "false" \end_inset . While we conjecture that this holds also for bounded electromagnetic scatterers , we are not aware of a definitive proof. \end_layout \end_inset from certain multipole degree onwards, \begin_inset Formula $l,l'>L$ \end_inset , the elements of the \begin_inset Formula $T$ \end_inset -matrix are negligible, so truncating the \begin_inset Formula $T$ \end_inset -matrix at finite multipole degree \begin_inset Formula $L$ \end_inset gives a good approximation of the actual infinite-dimensional operator. If the incident field is well-behaved, i.e. the expansion coefficients \begin_inset Formula $\rcoefftlm{\tau'}{l'}{m'}$ \end_inset do not take excessive values for \begin_inset Formula $l'>L$ \end_inset , the scattered field expansion coefficients \begin_inset Formula $\outcoefftlm{\tau}lm$ \end_inset with \begin_inset Formula $l>L$ \end_inset will also be negligible. \end_layout \begin_layout Standard A rule of thumb to choose the \begin_inset Formula $L$ \end_inset with desired \begin_inset Formula $T$ \end_inset -matrix element accuracy \begin_inset Formula $\delta$ \end_inset can be obtained from the spherical Bessel function expansion around zero \begin_inset CommandInset citation LatexCommand cite after "10.52.1" key "NIST:DLMF" literal "false" \end_inset by requiring that \begin_inset Formula $\delta\gg\left(nR\right)^{L}/\left(2L+1\right)!!$ \end_inset , where \begin_inset Formula $R$ \end_inset is the scatterer radius and \begin_inset Formula $n$ \end_inset its (maximum) refractive index. \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula \begin{align*} \left(2n+1\right)!! & =\frac{\left(2n+1\right)!}{2^{n}n!},\\ \delta\gtrsim & \frac{R^{L}}{\left(2L+1\right)!!}=\frac{\left(2R\right)^{L}L!}{\left(2L+1\right)!} \end{align*} \end_inset Stirling \begin_inset Formula $n!\approx\sqrt{2\pi n}\left(n/e\right)^{n}$ \end_inset so \begin_inset Newline newline \end_inset \begin_inset Formula \begin{align*} \delta & \gtrsim\left(2R\right)^{L}\frac{\sqrt{2\pi L}\left(\frac{L}{e}\right)^{L}}{\sqrt{2\pi\left(2L+1\right)}\left(\frac{2L+1}{e}\right)^{2L+1}}\\ \delta & \gtrsim\left(2R\right)^{L}\frac{\sqrt{L}\left(\frac{L}{e}\right)^{L}}{\sqrt{2L+1}\left(\frac{2L+1}{e}\right)^{2L+1}}\\ \log\delta & \gtrsim L\log2+L\log R+\frac{1}{2}\log L-\frac{1}{2}\log\left(2L+1\right)+L\log L-L\log e-\left(2L+1\right)\log\left(2L+1\right)+\left(2L+1\right)\log e\\ \log\delta & \gtrsim L\log2+L\log R+\left(L+\frac{1}{2}\right)\log L-\left(2L+\frac{3}{2}\right)\log\left(2L+1\right)+\left(L+1\right)\\ & >L\log2+L\log R+\left(L+\frac{1}{2}\right)\log L-\left(2L+\frac{3}{2}\right)\log\left(2L\right)+\left(L+1\right)\\ & =L\log2+L\log R-\left(L+1\right)\log L-\left(2L+\frac{3}{2}\right)\log\left(2\right)+\left(L+1\right)\\ & =L\log2+L\log R-\left(L+1\right)\log L-\left(2L+\frac{3}{2}\right)\log\left(2\right)+\left(L+1\right) \end{align*} \end_inset too complicated, watabout \begin_inset Formula \[ \delta\gtrsim\left(2R\right)^{L}\frac{L^{L+1/2}e^{L}}{\left(2L\right)^{2L}}=\frac{R^{L}e^{L}}{2^{L}}L^{L+1/2} \] \end_inset \begin_inset Formula \[ \log\delta\gtrsim L\log\frac{ReL}{2} \] \end_inset \begin_inset Formula \[ \log\delta\gtrsim L\log\frac{ReL}{2} \] \end_inset yäk \end_layout \end_inset \end_layout \begin_layout Subsubsection Power transport \end_layout \begin_layout Standard For convenience, let us introduce a short-hand matrix notation for the expansion coefficients and related quantities, so that we do not need to write the indices explicitly; so for example, eq. \begin_inset CommandInset ref LatexCommand eqref reference "eq:T-matrix definition" plural "false" caps "false" noprefix "false" \end_inset would be written as \begin_inset Formula $\outcoeffp{}=T\rcoeffp{}$ \end_inset , where \begin_inset Formula $\rcoeffp{},\outcoeffp{}$ \end_inset are column vectors with the expansion coefficients. Transposed and complex-conjugated matrices are labeled with the \begin_inset Formula $\dagger$ \end_inset superscript. \end_layout \begin_layout Standard With this notation, we state an important result about power transport, derivation of which can be found in \begin_inset CommandInset citation LatexCommand cite after "sect. 7.3" key "kristensson_scattering_2016" literal "true" \end_inset . Let the field in \begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$ \end_inset have expansion as in \begin_inset CommandInset ref LatexCommand eqref reference "eq:E field expansion" plural "false" caps "false" noprefix "false" \end_inset . Then the net power transported from \begin_inset Formula $\openball{R^{<}}{\vect 0}$ \end_inset to \begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$ \end_inset by electromagnetic radiation is \begin_inset Formula \begin{equation} P=\frac{1}{2\kappa^{2}\eta_{0}\eta}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)=\frac{1}{2\kappa^{2}\eta_{0}\eta}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{},\label{eq:Power transport} \end{equation} \end_inset where \begin_inset Formula $\eta_{0}=\sqrt{\mu_{0}/\varepsilon_{0}}$ \end_inset and \begin_inset Formula $\eta=\sqrt{\mu/\varepsilon}$ \end_inset are wave impedance of vacuum and relative wave impedance of the medium in \begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$ \end_inset , respectively. \family roman \series medium \shape up \size normal \emph off \nospellcheck off \bar no \strikeout off \xout off \uuline off \uwave off \noun off \color none \begin_inset Formula $P$ \end_inset is well-defined only when \begin_inset Formula $\kappa^{2}\eta$ \end_inset is real. \family default \series default \shape default \size default \emph default \nospellcheck default \bar default \strikeout default \xout default \uuline default \uwave default \noun default \color inherit In realistic scattering setups, power is transferred by radiation into \begin_inset Formula $\openball{R^{<}}{\vect 0}$ \end_inset and absorbed by the enclosed scatterer, so \begin_inset Formula $P$ \end_inset is negative and its magnitude equals to power absorbed by the scatterer. In other words, the hermitian operator \begin_inset Formula $\Pi=\Tp{}^{\dagger}\Tp{}+\left(\Tp{}^{\dagger}+\Tp{}\right)/2$ \end_inset must be negative (semi-)definite for a particle without gain. This provides a simple but very useful sanity check on the numerically obtained \begin_inset Formula $T$ \end_inset -matrices: non-negligible positive eigenvalues of \begin_inset Formula $\Pi$ \end_inset indicate either too drastic multipole truncation or another problem with the \begin_inset Formula $T$ \end_inset -matrix. \end_layout \begin_layout Subsubsection Plane wave expansion \end_layout \begin_layout Standard In many scattering problems considered in practice, the driving field is at least approximately a plane wave. A transversal ( \begin_inset Formula $\uvec k\cdot\vect E_{0}=0$ \end_inset ) plane wave propagating in direction \begin_inset Formula $\uvec k$ \end_inset with (complex) amplitude \begin_inset Formula $\vect E_{0}$ \end_inset can be expanded into regular VSWFs \begin_inset CommandInset citation LatexCommand cite after "7.7.1" key "kristensson_scattering_2016" literal "false" \end_inset as \begin_inset Formula \[ \vect E_{\mathrm{PW}}\left(\vect r,\omega\right)=\vect E_{0}e^{i\kappa\uvec k\cdot\vect r}=\sum_{\tau,l,m}\rcoeffptlm{}{\tau}lm\left(\uvec k,\vect E_{0}\right)\vswfrtlm{\tau}lm\left(\kappa\vect r\right), \] \end_inset where the expansion coefficients are obtained from the scalar products of the amplitude and corresponding dual vector spherical harmonics \begin_inset Formula \begin{eqnarray} \rcoeffptlm{}1lm\left(\uvec k,\vect E_{0}\right) & = & 4\pi i^{l}\vshD 1lm\left(\uvec k\right)\cdot\vect E_{0},\nonumber \\ \rcoeffptlm{}2lm\left(\uvec k,\vect E_{0}\right) & = & -4\pi i^{l+1}\vshD 2lm\left(\uvec k\right)\cdot\vect E_{0}.\label{eq:plane wave expansion} \end{eqnarray} \end_inset \end_layout \begin_layout Subsubsection Cross-sections (single-particle) \end_layout \begin_layout Standard With the \begin_inset Formula $T$ \end_inset -matrix and expansion coefficients of plane waves in hand, we can state the expressions for cross-sections of a single scatterer. Assuming a non-lossy background medium, extinction, scattering and absorption cross sections of a single scatterer irradiated by a plane wave propagating in direction \begin_inset Formula $\uvec k$ \end_inset and (complex) amplitude \begin_inset Formula $\vect E_{0}$ \end_inset are \begin_inset CommandInset citation LatexCommand cite after "sect. 7.8.2" key "kristensson_scattering_2016" literal "true" \end_inset \begin_inset Formula \begin{eqnarray} \sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)=-\frac{1}{2\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}+\Tp{}^{\dagger}\right)\rcoeffp{},\label{eq:extincion CS single}\\ \sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left\Vert \outcoeffp{}\right\Vert ^{2}=\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}\right)\rcoeffp{},\label{eq:scattering CS single}\\ \sigma_{\mathrm{abs}}\left(\uvec k\right) & = & \sigma_{\mathrm{ext}}\left(\uvec k\right)-\sigma_{\mathrm{scat}}\left(\uvec k\right)=-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)\nonumber \\ & & =-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{},\label{eq:absorption CS single} \end{eqnarray} \end_inset where \begin_inset Formula $\rcoeffp{}=\rcoeffp{}\left(\vect k,\vect E_{0}\right)$ \end_inset is the vector of plane wave expansion coefficients as in \begin_inset CommandInset ref LatexCommand eqref reference "eq:plane wave expansion" \end_inset . \end_layout \begin_layout Subsection Multiple scattering \begin_inset CommandInset label LatexCommand label name "subsec:Multiple-scattering" \end_inset \end_layout \begin_layout Standard If the system consists of multiple scatterers, the EM fields around each one can be expanded in analogous way. Let \begin_inset Formula $\mathcal{P}$ \end_inset be an index set labeling the scatterers. We enclose each scatterer in a closed ball \begin_inset Formula $\closedball{R_{p}}{\vect r_{p}}$ \end_inset such that the balls do not touch, \begin_inset Formula $\closedball{R_{p}}{\vect r_{p}}\cap\closedball{R_{q}}{\vect r_{q}}=\emptyset;p,q\in\mathcal{P}$ \end_inset , so there is a non-empty spherical shell \begin_inset Note Note status open \begin_layout Plain Layout jaksetometuje? \end_layout \end_inset \begin_inset Formula $\mezikuli{R_{p}}{R_{p}^{>}}{\vect r_{p}}$ \end_inset around each one that contains only the background medium without any scatterers ; we assume that all the relevant volume outside \begin_inset Formula $\bigcap_{p\in\mathcal{P}}\closedball{R_{p}}{\vect r_{p}}$ \end_inset is filled with the same background medium. Then the EM field inside each \begin_inset Formula $\mezikuli{R_{p}}{R_{p}^{>}}{\vect r_{p}}$ \end_inset can be expanded in a way similar to \begin_inset CommandInset ref LatexCommand eqref reference "eq:E field expansion" plural "false" caps "false" noprefix "false" \end_inset , using VSWFs with origins shifted to the centre of the volume: \begin_inset Formula \begin{align} \vect E\left(\omega,\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoeffptlm p{\tau}lm\vswfrtlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{p}\right)\right)+\outcoeffptlm p{\tau}lm\vswfouttlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{p}\right)\right)\right),\label{eq:E field expansion multiparticle}\\ & \vect r\in\mezikuli{R_{p}}{R_{p}^{>}}{\vect r_{p}}.\nonumber \end{align} \end_inset Unlike the single scatterer case, the incident field coefficients \begin_inset Formula $\rcoeffptlm p{\tau}lm$ \end_inset here are not only due to some external driving field that the particle does not influence but they also contain the contributions of fields scattered from \emph on all other scatterers \emph default : \begin_inset Formula \begin{equation} \rcoeffp p=\rcoeffincp p+\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q\label{eq:particle total incident field coefficient a} \end{equation} \end_inset where \begin_inset Formula $\rcoeffincp p$ \end_inset represents the part due to the external driving that the scatterers can not influence, and \begin_inset Formula $\tropsp pq$ \end_inset is a \emph on translation operator \emph default defined below in Sec. \begin_inset CommandInset ref LatexCommand ref reference "subsec:Translation-operator" plural "false" caps "false" noprefix "false" \end_inset , that contains the re-expansion coefficients of the outgoing waves in origin \begin_inset Formula $\vect r_{q}$ \end_inset into regular waves in origin \begin_inset Formula $\vect r_{p}$ \end_inset . For each scatterer, we also have its \begin_inset Formula $T$ \end_inset -matrix relation as in \begin_inset CommandInset ref LatexCommand eqref reference "eq:T-matrix definition" plural "false" caps "false" noprefix "false" \end_inset , \begin_inset Formula \[ \outcoeffp q=T_{q}\rcoeffp q. \] \end_inset Together with \begin_inset CommandInset ref LatexCommand eqref reference "eq:particle total incident field coefficient a" plural "false" caps "false" noprefix "false" \end_inset , this gives rise to a set of linear equations \begin_inset Formula \begin{equation} \outcoeffp p-T_{p}\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q=T_{p}\rcoeffincp p,\quad p\in\mathcal{P}\label{eq:Multiple-scattering problem} \end{equation} \end_inset which defines the multiple-scattering problem. If all the \begin_inset Formula $p,q$ \end_inset -indexed vectors and matrices (note that without truncation, they are infinite-d imensional) are arranged into blocks of even larger vectors and matrices, this can be written in a short-hand form \begin_inset Formula \begin{equation} \left(I-T\trops\right)\outcoeff=T\rcoeffinc\label{eq:Multiple-scattering problem block form} \end{equation} \end_inset where \begin_inset Formula $I$ \end_inset is the identity matrix, \begin_inset Formula $T$ \end_inset is a block-diagonal matrix containing all the individual \begin_inset Formula $T$ \end_inset -matrices, and \begin_inset Formula $\trops$ \end_inset contains the individual \begin_inset Formula $\tropsp pq$ \end_inset matrices as the off-diagonal blocks, whereas the diagonal blocks are set to zeros. \end_layout \begin_layout Standard In practice, the multiple-scattering problem is solved in its truncated form, in which all the \begin_inset Formula $l$ \end_inset -indices related to a given scatterer \begin_inset Formula $p$ \end_inset are truncated as \begin_inset Formula $l\le L_{p}$ \end_inset , leaving only \begin_inset Formula $N_{p}=2L_{p}\left(L_{p}+2\right)$ \end_inset different \begin_inset Formula $\tau lm$ \end_inset -multi-indices left. The truncation degree can vary for different scatterers (e.g. \begin_inset space \space{} \end_inset due to different physical sizes), so the truncated block \begin_inset Formula $\left[\tropsp pq\right]_{l_{q}\le L_{q};l_{p}\le L_{q}}$ \end_inset has shape \begin_inset Formula $N_{p}\times N_{q}$ \end_inset , not necessarily square. \begin_inset Note Note status open \begin_layout Plain Layout Such truncation of the translation operator \begin_inset Formula $\tropsp pq$ \end_inset is justified by the fact on the left, TODO \end_layout \end_inset \end_layout \begin_layout Standard If no other type of truncation is done, there remain \begin_inset Formula $2L_{p}\left(L_{p}+2\right)$ \end_inset different \begin_inset Formula $\tau lm$ \end_inset -multi-indices for the \begin_inset Formula $p$ \end_inset -th scatterer, so that the truncated version of the matrix \begin_inset Formula $\left(I-T\trops\right)$ \end_inset is a square matrix with \begin_inset Formula $\left(\sum_{p\in\mathcal{P}}N_{p}\right)^{2}$ \end_inset elements in total. The truncated problem \begin_inset CommandInset ref LatexCommand eqref reference "eq:Multiple-scattering problem block form" plural "false" caps "false" noprefix "false" \end_inset can then be solved using standard numerical linear algebra methods (typically, by LU factorisation of the \begin_inset Formula $\left(I-T\trops\right)$ \end_inset matrix at a given frequency, and then solving with Gauss elimination for as many different incident \begin_inset Formula $\rcoeffinc$ \end_inset vectors as needed). \end_layout \begin_layout Standard Alternatively, the multiple scattering problem can be formulated in terms of the regular field expansion coefficients, \begin_inset Formula \begin{align*} \rcoeffp p-\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pqT_{q}\rcoeffp q & =\rcoeffincp p,\quad p\in\mathcal{P},\\ \left(I-\trops T\right)\rcoeff & =\rcoeffinc, \end{align*} \end_inset but this form is less suitable for numerical calculations due to the fact that the regular VSWF expansion coefficients on both sides of the equation are typically non-negligible even for large multipole degree \begin_inset Formula $l$ \end_inset , hence the truncation is not justified in this case. \begin_inset Note Note status open \begin_layout Plain Layout TODO less bulshit. \end_layout \end_inset \end_layout \begin_layout Subsubsection Translation operator \begin_inset CommandInset label LatexCommand label name "subsec:Translation-operator" \end_inset \end_layout \begin_layout Standard Let \begin_inset Formula $\vect r_{1},\vect r_{2}$ \end_inset be two different origins; a regular VSWF with origin \begin_inset Formula $\vect r_{1}$ \end_inset can be always expanded in terms of regular VSWFs with origin \begin_inset Formula $\vect r_{2}$ \end_inset as follows: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \vswfrtlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{1}\right)\right)=\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right),\label{eq:regular vswf translation} \end{equation} \end_inset where an explicit formula for the regular translation operator \begin_inset Formula $\tropr$ \end_inset reads in eq. \begin_inset CommandInset ref LatexCommand eqref reference "eq:translation operator" \end_inset below. For singular (outgoing) waves, the form of the expansion differs inside and outside the ball \begin_inset Formula $\closedball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\vect r_{1}}$ \end_inset : \begin_inset Formula \begin{eqnarray} \vswfouttlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{1}\right)\right) & = & \begin{cases} \sum_{\tau'l'm'}\trops_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfouttlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{2}\right)\right), & \vect r\in\openball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\vect r_{1}}\\ \sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{2}\right)\right), & \vect r\notin\closedball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\left|\vect r_{1}\right|} \end{cases},\label{eq:singular vswf translation} \end{eqnarray} \end_inset where the singular translation operator \begin_inset Formula $\trops$ \end_inset has the same form as \begin_inset Formula $\tropr$ \end_inset in \begin_inset CommandInset ref LatexCommand eqref reference "eq:translation operator" \end_inset except the regular spherical Bessel functions \begin_inset Formula $j_{l}$ \end_inset are replaced with spherical Hankel functions \begin_inset Formula $h_{l}^{(1)}$ \end_inset . \begin_inset Note Note status open \begin_layout Plain Layout TODO note about expansion exactly on the sphere. \end_layout \end_inset \end_layout \begin_layout Standard As MSTMM deals most of the time with the \emph on expansion coefficients \emph default of fields \begin_inset Formula $\rcoeffptlm p{\tau}lm,\outcoeffptlm p{\tau}lm$ \end_inset in different origins \begin_inset Formula $\vect r_{p}$ \end_inset rather than with the VSWFs directly, let us write down how \emph on they \emph default transform under translation. Let us assume the field can be in terms of regular waves everywhere, and expand it in two different origins \begin_inset Formula $\vect r_{p},\vect r_{q}$ \end_inset , \begin_inset Formula \[ \vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\vswfrtlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{p}\right)\right)=\sum_{\tau',l',m'}\rcoeffptlm q{\tau'}{l'}{m'}\vswfrtlm{\tau}{'l'}{m'}\left(\kappa\left(\vect r-\vect r_{q}\right)\right). \] \end_inset Re-expanding the waves around \begin_inset Formula $\vect r_{p}$ \end_inset in terms of waves around \begin_inset Formula $\vect r_{q}$ \end_inset using \begin_inset CommandInset ref LatexCommand eqref reference "eq:regular vswf translation" \end_inset , \begin_inset Formula \[ \vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{q}-\vect r_{p}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{q}\right)\right) \] \end_inset and comparing to the original expansion around \begin_inset Formula $\vect r_{q}$ \end_inset , we obtain \begin_inset Formula \begin{equation} \rcoeffptlm q{\tau'}{l'}{m'}=\sum_{\tau,l,m}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{q}-\vect r_{p}\right)\right)\rcoeffptlm p{\tau}lm.\label{eq:regular vswf coefficient translation} \end{equation} \end_inset For the sake of readability, we introduce a shorthand matrix form for \begin_inset CommandInset ref LatexCommand eqref reference "eq:regular vswf coefficient translation" \end_inset \begin_inset Formula \begin{equation} \rcoeffp q=\troprp qp\rcoeffp p\label{eq:reqular vswf coefficient vector translation} \end{equation} \end_inset (note the reversed indices \begin_inset Note Note status open \begin_layout Plain Layout ; TODO redefine them in \begin_inset CommandInset ref LatexCommand eqref reference "eq:regular vswf translation" \end_inset , \begin_inset CommandInset ref LatexCommand eqref reference "eq:singular vswf translation" \end_inset ? \end_layout \end_inset ) Similarly, if we had only outgoing waves in the original expansion around \begin_inset Formula $\vect r_{p}$ \end_inset , we would get \begin_inset Formula \begin{equation} \rcoeffp q=\tropsp qp\outcoeffp p\label{eq:singular to regular vswf coefficient vector translation} \end{equation} \end_inset for the expansion inside the ball \begin_inset Formula $\openball{\left\Vert \vect r_{q}-\vect r_{p}\right\Vert }{\vect r_{p}}$ \end_inset \begin_inset Note Note status open \begin_layout Plain Layout CHECKME \end_layout \end_inset and \begin_inset Formula \begin{equation} \outcoeffp q=\troprp qp\outcoeffp p\label{eq:singular to singular vswf coefficient vector translation-1} \end{equation} \end_inset outside. \end_layout \begin_layout Standard In our convention, the regular translation operator elements can be expressed explicitly as \begin_inset Formula \begin{align} \tropr_{\tau lm;\tau l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|}^{l+l'}C_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)j_{\lambda}\left(d\right),\nonumber \\ \tropr_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}D_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)j_{\lambda}\left(d\right),\quad\tau'\ne\tau,\label{eq:translation operator} \end{align} \end_inset and analogously the elements of the singular operator \begin_inset Formula $\trops$ \end_inset , having spherical Hankel functions ( \begin_inset Formula $h_{l}^{(1)}=j_{l}+iy_{l}$ \end_inset ) in the radial part instead of the regular bessel functions, \begin_inset Formula \begin{align} \trops_{\tau lm;\tau l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|}^{l+l'}C_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)h_{\lambda}^{(1)}\left(d\right),\nonumber \\ \trops_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}D_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)h_{\lambda}^{(1)}\left(d\right),\quad\tau'\ne\tau,\label{eq:translation operator singular} \end{align} \end_inset where the constant factors in our convention read \begin_inset Marginal status open \begin_layout Plain Layout TODO check once again carefully for possible phase factors. \end_layout \end_inset \begin_inset Note Note status collapsed \begin_layout Plain Layout Original Kristensson's \begin_inset Formula $C,D's$ \end_inset from F.7: \begin_inset Formula \begin{multline*} C_{ml,m'l'}\left(\vect d\right)=\frac{\left(-1\right)^{m+m'}}{2}\sqrt{\frac{\varepsilon_{m}\varepsilon_{m'}}{4}}\sum_{\lambda=\left|l-l'\right|}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\ \times\begin{pmatrix}l & l' & \lambda\\ 0 & 0 & 0 \end{pmatrix}\begin{pmatrix}l & l' & \lambda\\ m & -m' & m'-m \end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right)\times\\ \times j_{\lambda}\left(d\right)P_{\lambda}^{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}},\\ D_{ml,m'l'}\left(\vect d\right)=\frac{\left(-1\right)^{m+m'}}{2}\sqrt{\frac{\varepsilon_{m}\varepsilon_{m'}}{4}}\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\ \times\begin{pmatrix}l & l' & \lambda-1\\ 0 & 0 & 0 \end{pmatrix}\begin{pmatrix}l & l' & \lambda\\ m & -m' & m'-m \end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}\times\\ \times j_{\lambda}\left(d\right)P_{\lambda}^{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}},\qquad\tau\ne\tau'. \end{multline*} \end_inset where I have found a \begin_inset Formula $-i$ \end_inset factor in the \begin_inset Formula $\tau\ne\tau'$ \end_inset coefficients, so I force it here: \begin_inset Formula \begin{multline*} C_{ml,m'l'}\left(\vect d\right)=\frac{\left(-1\right)^{m+m'}}{2}\sum_{\lambda=\left|l-l'\right|}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\ \times\begin{pmatrix}l & l' & \lambda\\ 0 & 0 & 0 \end{pmatrix}\begin{pmatrix}l & l' & \lambda\\ m & -m' & m'-m \end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right)\times\\ \times j_{\lambda}\left(d\right)P_{\lambda}^{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}},\\ D_{ml,m'l'}\left(\vect d\right)=-i\frac{\left(-1\right)^{m+m'}}{2}\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\ \times\begin{pmatrix}l & l' & \lambda-1\\ 0 & 0 & 0 \end{pmatrix}\begin{pmatrix}l & l' & \lambda\\ m & -m' & m'-m \end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}\times\\ \times j_{\lambda}\left(d\right)P_{\lambda}^{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}},\qquad\tau\ne\tau'. \end{multline*} \end_inset TODO check influence of the \begin_inset Formula $\varepsilon_{m}$ \end_inset s, whether they can be just removed as above. If we take our definition of spherical harmonics, \begin_inset Formula \[ \ush lm=\left(\frac{\left(l-m\right)!\left(2l+1\right)}{4\pi\left(l+m\right)!}\right)^{\frac{1}{2}}e^{im\phi}\dlmfFer lm\left(\cos\theta\right) \] \end_inset so \begin_inset Formula \[ \dlmfFer{\lambda}{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}}=\sqrt{\frac{4\pi\left(\lambda+m-m'\right)!}{\left(\lambda-m+m'\right)!\left(2\lambda+1\right)}}\ush{\lambda}{m-m'}\left(\uvec d\right) \] \end_inset and taking into account that we use the CS phase \begin_inset Formula $\dlmfFer lm\left(\cos\theta\right)=\left(-1\right)^{m}P_{l}^{m}$ \end_inset , and that \begin_inset Formula $\left(-1\right)^{m+m'}=\left(-1\right)^{m-m'}$ \end_inset we have \end_layout \begin_layout Plain Layout \begin_inset Formula \begin{multline*} C_{ml,m'l'}\left(\vect d\right)=\frac{1}{2}\sum_{\lambda=\left|l-l'\right|}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\ \times\begin{pmatrix}l & l' & \lambda\\ 0 & 0 & 0 \end{pmatrix}\begin{pmatrix}l & l' & \lambda\\ m & -m' & m'-m \end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right)\times\\ \times j_{\lambda}\left(d\right)\dlmfFer{\lambda}{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}},\\ D_{ml,m'l'}\left(\vect d\right)=-i\frac{1}{2}\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\ \times\begin{pmatrix}l & l' & \lambda-1\\ 0 & 0 & 0 \end{pmatrix}\begin{pmatrix}l & l' & \lambda\\ m & -m' & m'-m \end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}\times\\ \times j_{\lambda}\left(d\right)\dlmfFer{\lambda}{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}},\qquad\tau\ne\tau'. \end{multline*} \end_inset \begin_inset Formula \begin{multline*} C_{ml,m'l'}\left(\vect d\right)=\frac{1}{2}\sum_{\lambda=\left|l-l'\right|}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\ \times\begin{pmatrix}l & l' & \lambda\\ 0 & 0 & 0 \end{pmatrix}\begin{pmatrix}l & l' & \lambda\\ m & -m' & m'-m \end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right)\times\\ \times j_{\lambda}\left(d\right)\sqrt{\frac{4\pi\left(\lambda+m-m'\right)!}{\left(\lambda-m+m'\right)!\left(2\lambda+1\right)}}\ush{\lambda}{m-m'}\left(\uvec d\right),\\ D_{ml,m'l'}\left(\vect d\right)=-i\frac{1}{2}\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\ \times\begin{pmatrix}l & l' & \lambda-1\\ 0 & 0 & 0 \end{pmatrix}\begin{pmatrix}l & l' & \lambda\\ m & -m' & m'-m \end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}\times\\ \times j_{\lambda}\left(d\right)\sqrt{\frac{4\pi\left(\lambda+m-m'\right)!}{\left(\lambda-m+m'\right)!\left(2\lambda+1\right)}}\ush{\lambda}{m-m'}\left(\uvec d\right),\qquad\tau\ne\tau'. \end{multline*} \end_inset \begin_inset Formula \begin{multline*} C_{ml,m'l'}\left(\vect d\right)=\frac{1}{2}\sum_{\lambda=\left|l-l'\right|}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\ \times\begin{pmatrix}l & l' & \lambda\\ 0 & 0 & 0 \end{pmatrix}\begin{pmatrix}l & l' & \lambda\\ m & -m' & m'-m \end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right)\times\\ \times j_{\lambda}\left(d\right)\ush{\lambda}{m-m'}\left(\uvec d\right),\\ D_{ml,m'l'}\left(\vect d\right)=-i\frac{1}{2}\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\ \times\begin{pmatrix}l & l' & \lambda-1\\ 0 & 0 & 0 \end{pmatrix}\begin{pmatrix}l & l' & \lambda\\ m & -m' & m'-m \end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}\times\\ \times j_{\lambda}\left(d\right)\ush{\lambda}{m-m'}\left(\uvec d\right),\qquad\tau\ne\tau'. \end{multline*} \end_inset and finally \begin_inset Formula \begin{multline*} C_{ml,m'l'}\left(\vect d\right)=\sum_{\lambda=\left|l-l'\right|}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\ \times\begin{pmatrix}l & l' & \lambda\\ 0 & 0 & 0 \end{pmatrix}\begin{pmatrix}l & l' & \lambda\\ m & -m' & m'-m \end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right)\times\\ \times j_{\lambda}\left(d\right)\ush{\lambda}{m-m'}\left(\uvec d\right),\\ D_{ml,m'l'}\left(\vect d\right)=-i\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\ \times\begin{pmatrix}l & l' & \lambda-1\\ 0 & 0 & 0 \end{pmatrix}\begin{pmatrix}l & l' & \lambda\\ m & -m' & m'-m \end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}\times\\ \times j_{\lambda}\left(d\right)\ush{\lambda}{m-m'}\left(\uvec d\right),\qquad\tau\ne\tau'. \end{multline*} \end_inset \end_layout \end_inset \begin_inset Formula \begin{multline} C_{lm;l'm'}^{\lambda}=\left(-1\right)^{\frac{l'-l+\lambda}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\ \times\begin{pmatrix}l & l' & \lambda\\ 0 & 0 & 0 \end{pmatrix}\begin{pmatrix}l & l' & \lambda\\ m & -m' & m'-m \end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right),\\ D_{lm;l'm'}^{\lambda}=-i\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\ \times\begin{pmatrix}l & l' & \lambda-1\\ 0 & 0 & 0 \end{pmatrix}\begin{pmatrix}l & l' & \lambda\\ m & -m' & m'-m \end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}.\label{eq:translation operator constant factors} \end{multline} \end_inset Here \begin_inset Formula $\begin{pmatrix}l_{1} & l_{2} & l_{3}\\ m_{1} & m_{2} & m_{3} \end{pmatrix}$ \end_inset is the \begin_inset Formula $3j$ \end_inset symbol defined as in \begin_inset CommandInset citation LatexCommand cite after "§34.2" key "NIST:DLMF" literal "false" \end_inset . Importantly for practical calculations, these rather complicated coefficients need to be evaluated only once up to the highest truncation order, \begin_inset Formula $l,l'\le L$ \end_inset . \begin_inset Note Note status open \begin_layout Plain Layout TODO write more here. \end_layout \end_inset \end_layout \begin_layout Standard In our convention, the regular translation operator is unitary, \begin_inset Formula $\left(\tropr_{\tau lm;\tau'l'm'}\left(\vect d\right)\right)^{-1}=\tropr_{\tau lm;\tau'l'm'}\left(-\vect d\right)=\tropr_{\tau'l'm';\tau lm}^{*}\left(\vect d\right)$ \end_inset , \begin_inset Note Note status open \begin_layout Plain Layout todo different notation for the complex conjugation without transposition??? \end_layout \end_inset or in the per-particle matrix notation, \begin_inset Formula \begin{equation} \troprp qp^{-1}=\troprp pq=\troprp qp^{\dagger}.\label{eq:regular translation unitarity} \end{equation} \end_inset Note that truncation at finite multipole degree breaks the unitarity, \begin_inset Formula $\truncated{\troprp qp}L^{-1}\ne\truncated{\troprp pq}L=\truncated{\troprp qp^{\dagger}}L$ \end_inset , which has to be taken into consideration when evaluating quantities such as absorption or scattering cross sections. Similarly, the full regular operators can be composed \begin_inset Note Note status open \begin_layout Plain Layout better wording \end_layout \end_inset \begin_inset Formula \begin{equation} \troprp ac=\troprp ab\troprp bc\label{eq:regular translation composition} \end{equation} \end_inset but truncation breaks this, \begin_inset Formula $\truncated{\troprp ac}L\ne\truncated{\troprp ab}L\truncated{\troprp bc}L.$ \end_inset \end_layout \begin_layout Subsubsection Cross-sections (many scatterers) \end_layout \begin_layout Standard For a system of many scatterers, Kristensson \begin_inset CommandInset citation LatexCommand cite after "sect. 9.2.2" key "kristensson_scattering_2016" literal "false" \end_inset derives only the extinction cross section formula. Let us re-derive it together with the many-particle scattering and absorption cross sections. First, let us take a ball containing all the scatterers at once, \begin_inset Formula $\openball R{\vect r_{\square}}\supset\bigcup_{p\in\mathcal{P}}\closedball{R_{p}}{\vect r_{p}}$ \end_inset . Outside \begin_inset Formula $\openball R{\vect r_{\square}}$ \end_inset , we can describe the EM fields as if there was only a single scatterer, \begin_inset Formula \[ \vect E\left(\vect r\right)=\sum_{\tau,l,m}\left(\rcoeffptlm{\square}{\tau}lm\vswfrtlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{\square}\right)\right)+\outcoeffptlm{\square}{\tau}lm\vswfouttlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{\square}\right)\right)\right), \] \end_inset where \begin_inset Formula $\rcoeffp{\square},\outcoeffp{\square}$ \end_inset are the vectors of VSWF expansion coefficients of the incident and total scattered fields, respectively, at origin \begin_inset Formula $\vect r_{\square}$ \end_inset . In principle, one could evaluate \begin_inset Formula $\outcoeffp{\square}$ \end_inset using the translation operators and use the single-scatterer formulae \begin_inset CommandInset ref LatexCommand eqref reference "eq:extincion CS single" \end_inset – \begin_inset CommandInset ref LatexCommand eqref reference "eq:absorption CS single" \end_inset with \begin_inset Formula $\rcoeffp{}=\rcoeffp{\square},\outcoeffp{}=\outcoeffp{\square}$ \end_inset to obtain the cross sections. However, this is not suitable for numerical evaluation with truncation in multipole degree; hence we need to express them in terms of particle-wise expansions \begin_inset Formula $\rcoeffp p,\outcoeffp p$ \end_inset . The original incident field re-expanded around \begin_inset Formula $p$ \end_inset -th particle reads according to \begin_inset CommandInset ref LatexCommand eqref reference "eq:reqular vswf coefficient vector translation" plural "false" caps "false" noprefix "false" \end_inset \begin_inset Formula \begin{equation} \rcoeffincp p=\troprp p{\square}\rcoeffp{\square}\label{eq:a_inc local from global} \end{equation} \end_inset whereas the contributions of fields scattered from each particle expanded around the global origin \begin_inset Formula $\vect r_{\square}$ \end_inset is, according to \begin_inset CommandInset ref LatexCommand eqref reference "eq:singular to regular vswf coefficient vector translation" plural "false" caps "false" noprefix "false" \end_inset , \begin_inset Formula \begin{equation} \outcoeffp{\square}=\sum_{q\in\mathcal{P}}\troprp{\square}q\outcoeffp q.\label{eq:f global from local} \end{equation} \end_inset Using the unitarity \begin_inset CommandInset ref LatexCommand eqref reference "eq:regular translation unitarity" plural "false" caps "false" noprefix "false" \end_inset and composition \begin_inset CommandInset ref LatexCommand eqref reference "eq:regular translation composition" plural "false" caps "false" noprefix "false" \end_inset properties, one has \begin_inset Formula \begin{align} \rcoeffp{\square}^{\dagger}\outcoeffp{\square} & =\rcoeffincp p^{\dagger}\troprp p{\square}\troprp{\square}q\outcoeffp q=\rcoeffincp p^{\dagger}\sum_{q\in\mathcal{P}}\troprp pqf_{q}\nonumber \\ & =\sum_{q\in\mathcal{P}}\left(\troprp qp\rcoeffincp p\right)^{\dagger}f_{q}=\sum_{q\in\mathcal{P}}\rcoeffincp q^{\dagger}f_{q},\label{eq:atf form multiparticle} \end{align} \end_inset where only the last expression is suitable for numerical evaluation with truncated matrices, because the previous ones contain a translation operator right next to an incident field coefficient vector \begin_inset Note Note status open \begin_layout Plain Layout (see Sec. TODO) \end_layout \end_inset . Similarly, \begin_inset Formula \begin{align} \left\Vert \outcoeffp{\square}\right\Vert ^{2} & =\outcoeffp{\square}^{\dagger}\outcoeffp{\square}=\sum_{p\in\mathcal{P}}\left(\troprp{\square}p\outcoeffp p\right)^{\dagger}\sum_{q\in\mathcal{P}}\troprp{\square}q\outcoeffp q\nonumber \\ & =\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q.\label{eq:f squared form multiparticle} \end{align} \end_inset Substituting \begin_inset CommandInset ref LatexCommand eqref reference "eq:atf form multiparticle" plural "false" caps "false" noprefix "false" \end_inset , \begin_inset CommandInset ref LatexCommand eqref reference "eq:f squared form multiparticle" plural "false" caps "false" noprefix "false" \end_inset into \begin_inset CommandInset ref LatexCommand eqref reference "eq:scattering CS single" plural "false" caps "false" noprefix "false" \end_inset and \begin_inset CommandInset ref LatexCommand eqref reference "eq:absorption CS single" plural "false" caps "false" noprefix "false" \end_inset , we get the many-particle expressions for extinction, scattering and absorption cross sections suitable for numerical evaluation: \begin_inset Formula \begin{eqnarray} \sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\sum_{p\in\mathcal{P}}\rcoeffincp p^{\dagger}\outcoeffp p=-\frac{1}{2k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\sum_{p\in\mathcal{P}}\rcoeffincp p^{\dagger}\left(\Tp p+\Tp p^{\dagger}\right)\rcoeffp p,\label{eq:extincion CS multi}\\ \sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q\nonumber \\ & & =\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\rcoeffp p^{\dagger}\Tp p^{\dagger}\troprp pq\Tp q\rcoeffp q,\label{eq:scattering CS multi}\\ \sigma_{\mathrm{abs}}\left(\uvec k\right) & = & -\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}}\troprp pq\outcoeffp q\right)\right).\nonumber \\ \label{eq:absorption CS multi} \end{eqnarray} \end_inset \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula $=\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\mbox{TODO}.$ \end_inset \end_layout \end_inset An alternative approach to derive the absorption cross section is via a power transport argument. Note the direct proportionality between absorption cross section \begin_inset CommandInset ref LatexCommand eqref reference "eq:absorption CS single" plural "false" caps "false" noprefix "false" \end_inset and net radiated power for single scatterer \begin_inset CommandInset ref LatexCommand eqref reference "eq:Power transport" plural "false" caps "false" noprefix "false" \end_inset , \begin_inset Formula $\sigma_{\mathrm{abs}}=-\eta_{0}\eta P/2\left\Vert \vect E_{0}\right\Vert ^{2}$ \end_inset . In the many-particle setup (with non-lossy background medium, so that only the particles absorb), the total absorbed power is equal to the sum of absorbed powers on each particle, \begin_inset Formula $-P=\sum_{p\in\mathcal{P}}-P_{p}$ \end_inset . Using the power transport formula \begin_inset CommandInset ref LatexCommand eqref reference "eq:Power transport" plural "false" caps "false" noprefix "false" \end_inset particle-wise gives \begin_inset Formula \begin{equation} \sigma_{\mathrm{abs}}\left(\uvec k\right)=-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\left(\Re\left(\rcoeffp p^{\dagger}\outcoeffp p\right)+\left\Vert \outcoeffp p\right\Vert ^{2}\right)\label{eq:absorption CS multi alternative} \end{equation} \end_inset which seems different from \begin_inset CommandInset ref LatexCommand eqref reference "eq:absorption CS multi" plural "false" caps "false" noprefix "false" \end_inset , but using \begin_inset CommandInset ref LatexCommand eqref reference "eq:particle total incident field coefficient a" plural "false" caps "false" noprefix "false" \end_inset , we can rewrite it as \begin_inset Formula \begin{align*} \sigma_{\mathrm{abs}}\left(\uvec k\right) & =-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffp p+\outcoeffp p\right)\right)\\ & =-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q+\outcoeffp p\right)\right). \end{align*} \end_inset It is easy to show that all the terms of \begin_inset Formula $\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\tropsp pq\outcoeffp q$ \end_inset containing the singular spherical Bessel functions \begin_inset Formula $y_{l}$ \end_inset are imaginary, \begin_inset Note Note status open \begin_layout Plain Layout TODO better formulation \end_layout \end_inset so that actually \begin_inset Formula $\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\tropsp pq\outcoeffp q+\outcoeffp p^{\dagger}\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\troprp pq\outcoeffp q+\outcoeffp p^{\dagger}\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\troprp pq\outcoeffp q+\outcoeffp p^{\dagger}\troprp pp\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q,$ \end_inset proving that the expressions in \begin_inset CommandInset ref LatexCommand eqref reference "eq:absorption CS multi" plural "false" caps "false" noprefix "false" \end_inset and \begin_inset CommandInset ref LatexCommand eqref reference "eq:absorption CS multi alternative" plural "false" caps "false" noprefix "false" \end_inset are equal. \end_layout \end_body \end_document