((k^2*(-3 + Sqrt[1 + k^2/(c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2)/(k^3*Sqrt[1 + k^2/(c - I*k0)^2]) - (6*(k^2*(-3 + Sqrt[1 + k^2/(2*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2))/(k^3*Sqrt[1 + k^2/(2*c - I*k0)^2]) + (15*(k^2*(-3 + Sqrt[1 + k^2/(3*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2))/(k^3*Sqrt[1 + k^2/(3*c - I*k0)^2]) - (20*(k^2*(-3 + Sqrt[1 + k^2/(4*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2))/(k^3*Sqrt[1 + k^2/(4*c - I*k0)^2]) + (15*(k^2*(-3 + Sqrt[1 + k^2/(5*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2))/(k^3*Sqrt[1 + k^2/(5*c - I*k0)^2]) - (6*(k^2*(-3 + Sqrt[1 + k^2/(6*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^2))/(k^3*Sqrt[1 + k^2/(6*c - I*k0)^2]) + (k^2*(-3 + Sqrt[1 + k^2/(7*c - I*k0)^2]) + 4*(-1 + Sqrt[1 + k^2/(7*c - I*k0)^2])*(7*c - I*k0)^2)/(k^3*Sqrt[1 + k^2/(7*c - I*k0)^2]))/k0
SeriesData[k, Infinity, {((2835*I)*c^6)/k - (11340*c^7)/(k*k0), 0, (51975*(140*c^9 - (99*I)*c^8*k0 - 24*c^7*k0^2 + (2*I)*c^6*k0^3))/(4*k*k0)}, 7, 11, 1]