#!/usr/bin/env python3 import math from qpms.argproc import ArgParser figscale=2 ap = ArgParser(['rectlattice2d_finite', 'single_particle', 'single_lMax', 'single_omega']) ap.add_argument("-k", '--wavevector', nargs=2, type=float, required=True, help='"Bloch" vector, modulating phase of the driving', metavar=('KX', 'KY'), default=(0., 0.)) # ap.add_argument("--kpi", action='store_true', help="Indicates that the k vector is given in natural units instead of SI, i.e. the arguments given by -k shall be automatically multiplied by pi / period (given by -p argument)") ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)') ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)") ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path") ap.add_argument("-g", "--save-gradually", action='store_true', help="saves the partial result after computing each irrep") #ap.add_argument("--irrep", type=str, default="none", help="Irrep subspace (irrep index from 0 to 7, irrep label, or 'none' for no irrep decomposition") a=ap.parse_args() import logging logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO) Nx, Ny = a.size px, py = a.period particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9)) if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9) defaultprefix = "cd_%s_p%gnmx%gnm_%dx%d_m%s_n%g_k_%g_%g_f%geV_L%d" % ( particlestr, px*1e9, py*1e9, Nx, Ny, str(a.material), a.refractive_index, a.wavevector[0], a.wavevector[1], a.eV, a.lMax,) logging.info("Default file prefix: %s" % defaultprefix) import numpy as np import qpms from qpms.cybspec import BaseSpec from qpms.cytmatrices import CTMatrix, TMatrixGenerator from qpms.qpms_c import Particle from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude from qpms.cycommon import DebugFlags, dbgmsg_enable from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar from qpms.symmetries import point_group_info eh = eV/hbar dbgmsg_enable(DebugFlags.INTEGRATION) #Particle positions orig_x = (np.arange(Nx/2) + (0 if (Nx % 2) else .5)) * px orig_y = (np.arange(Ny/2) + (0 if (Ny % 2) else .5)) * py orig_xy = np.stack(np.meshgrid(orig_x, orig_y), axis = -1) omega = ap.omega bspec = BaseSpec(lMax = a.lMax) medium = EpsMuGenerator(ap.background_epsmu) particles= [Particle(orig_xy[i], ap.tmgen, bspec) for i in np.ndindex(orig_xy.shape[:-1])] sym = FinitePointGroup(point_group_info['D2h']) ss, ssw = ScatteringSystem.create(particles=particles, medium=medium, omega=omega, sym=sym) wavenumber = ap.background_epsmu.k(omega) # Currently, ScatteringSystem does not "remember" frequency nor wavenumber outfile_tmp = defaultprefix + ".tmp" if a.output is None else a.output + ".tmp" nelem = len(bspec) phases = np.exp(1j*np.dot(ss.positions[:,:2], np.array(a.wavevector))) driving_full = np.zeros((nelem, ss.fecv_size),dtype=complex) for y in range(nelem): driving_full[y,y::nelem] = phases scattered_full = np.zeros((nelem, ss.fecv_size),dtype=complex) scattered_ir = [None for iri in range(ss.nirreps)] for iri in range(ss.nirreps): logging.info("processing irrep %d/%d" % (iri, ss.nirreps)) LU = None # to trigger garbage collection before the next call translation_matrix = None LU = ssw.scatter_solver(iri) logging.info("LU solver created") #translation_matrix = ss.translation_matrix_packed(wavenumber, iri, BesselType.REGULAR) + np.eye(ss.saecv_sizes[iri]) #logging.info("auxillary translation matrix created") scattered_ir[iri] = np.empty((nelem, ss.saecv_sizes[iri]), dtype=complex) scattered_ir_unpacked = np.empty((nelem, ss.fecv_size), dtype=complex) for y in range(nelem): ã = driving_full[y] Tã = ssw.apply_Tmatrices_full(ã) Tãi = ss.pack_vector(Tã, iri) ãi = ss.pack_vector(ã, iri) fi = LU(Tãi) scattered_ir[iri][y] = fi scattered_ir_unpacked[y] = ss.unpack_vector(fi, iri) scattered_full[y] += scattered_ir_unpacked[y] if a.save_gradually: iriout = outfile_tmp + ".%d" % iri np.savez(iriout, iri=iri, meta=vars(a), omega=omega, wavenumber=wavenumber, nelem=nelem, wavevector=np.array(a.wavevector), phases=phases, positions = ss.positions[:,:2], scattered_ir_packed = scattered_ir[iri], scattered_ir_full = scattered_ir_unpacked, ) logging.info("partial results saved to %s"%iriout) outfile = defaultprefix + ".npz" if a.output is None else a.output np.savez(outfile, meta=vars(a), omega=omega, wavenumber=wavenumber, nelem=nelem, wavevector=np.array(a.wavevector), phases=phases, positions = ss.positions[:,:2], scattered_ir_packed = scattered_ir, scattered_full = scattered_full, ) logging.info("Saved to %s" % outfile) if a.plot or (a.plot_out is not None): positions = ss.positions xpositions = np.unique(positions[:,0]) assert(len(xpositions) == Nx) ypositions = np.unique(positions[:,1]) assert(len(ypositions == Ny)) # particle positions as integer indices posmap = np.empty((positions.shape[0],2), dtype=int) for i, pos in enumerate(positions): posmap[i,0] = np.searchsorted(xpositions, positions[i,0]) posmap[i,1] = np.searchsorted(ypositions, positions[i,1]) def fullvec2grid(fullvec): arr = np.empty((Nx,Ny,nelem), dtype=complex) for pi, offset in enumerate(ss.fullvec_poffsets): ix, iy = posmap[pi] arr[ix, iy] = fullvec[offset:offset+nelem] return arr import matplotlib matplotlib.use('pdf') from matplotlib import pyplot as plt, cm t, l, m = bspec.tlm() phasecm = cm.twilight fig, axes = plt.subplots(nelem, 6, figsize=(figscale*6, figscale*nelem)) axes[0,0].set_title("abs / E,1,−1") axes[0,1].set_title("arg / E,1,−1") axes[0,2].set_title("abs / E,1,0") axes[0,3].set_title("arg / E,1,0") axes[0,4].set_title("abs / E,1,+1") axes[0,5].set_title("arg / E,1,+1") for y in range(nelem): axes[y,0].set_ylabel("%s,%d,%+d"%('E' if t[y]==2 else 'M', l[y], m[y],)) fulvec = scattered_full[y] vecgrid = fullvec2grid(fulvec) lemax = np.amax(abs(vecgrid)) if(np.amax(abs(vecgrid[...,0])) > lemax*1e-5): axes[y,0].imshow(abs(vecgrid[...,0]), vmin=0) axes[y,0].text(0.5, 0.5, '%g' % np.amax(abs(vecgrid[...,0])), horizontalalignment='center', verticalalignment='center', transform=axes[y,0].transAxes) axes[y,1].imshow(np.angle(vecgrid[...,0]), vmin=-np.pi, vmax=np.pi, cmap=phasecm) else: axes[y,0].tick_params(bottom=False, left=False, labelbottom=False, labelleft=False) axes[y,1].tick_params(bottom=False, left=False, labelbottom=False, labelleft=False) if(np.amax(abs(vecgrid[...,1])) > lemax*1e-5): axes[y,2].imshow(abs(vecgrid[...,1]), vmin=0) axes[y,2].text(0.5, 0.5, '%g' % np.amax(abs(vecgrid[...,1])), horizontalalignment='center', verticalalignment='center', transform=axes[y,2].transAxes) axes[y,3].imshow(np.angle(vecgrid[...,1]), vmin=-np.pi, vmax=np.pi, cmap=phasecm) else: axes[y,2].tick_params(bottom=False, left=False, labelbottom=False, labelleft=False) axes[y,3].tick_params(bottom=False, left=False, labelbottom=False, labelleft=False) if(np.amax(abs(vecgrid[...,2])) > lemax*1e-5): axes[y,4].imshow(abs(vecgrid[...,2]), vmin=0) axes[y,4].text(0.5, 0.5, '%g' % np.amax(abs(vecgrid[...,2])), horizontalalignment='center', verticalalignment='center', transform=axes[y,4].transAxes) axes[y,5].imshow(np.angle(vecgrid[...,2]), vmin=-np.pi, vmax=np.pi, cmap=phasecm) else: axes[y,4].tick_params(bottom=False, left=False, labelbottom=False, labelleft=False) axes[y,5].tick_params(bottom=False, left=False, labelbottom=False, labelleft=False) plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out fig.savefig(plotfile) exit(0)