#!/usr/bin/env python3 from qpms.argproc import ArgParser, annotate_pdf_metadata import math pi = math.pi ap = ArgParser(['rectlattice2d_finite', 'single_particle', 'single_lMax', 'omega_seq_real_ng', 'planewave']) ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)') ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)") ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path") ap.add_argument("-g", "--save-gradually", action='store_true', help="saves the partial result after computing each irrep") a=ap.parse_args() import logging logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO) import numpy as np import qpms from qpms.qpms_p import cart2sph, sph2cart, sph_loccart2cart, sph_loccart_basis from qpms.cybspec import BaseSpec from qpms.cytmatrices import CTMatrix, TMatrixGenerator from qpms.qpms_c import Particle from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude from qpms.cycommon import DebugFlags, dbgmsg_enable from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar from qpms.symmetries import point_group_info eh = eV/hbar dbgmsg_enable(DebugFlags.INTEGRATION) Nx, Ny = a.size px, py = a.period particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9)) if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9) defaultprefix = "%s_p%gnmx%gnm_%dx%d_m%s_bg%s_φ%gπ_θ(%g_%g)π_ψ%gπ_χ%gπ_f%s_L%d" % ( particlestr, px*1e9, py*1e9, Nx, Ny, str(a.material), str(a.background), a.phi/pi, np.amin(a.theta)/pi, np.amax(a.theta)/pi, a.psi/pi, a.chi/pi, ap.omega_descr, a.lMax, ) logging.info("Default file prefix: %s" % defaultprefix) #Particle positions orig_x = (np.arange(Nx/2) + (0 if (Nx % 2) else .5)) * px orig_y = (np.arange(Ny/2) + (0 if (Ny % 2) else .5)) * py orig_xy = np.stack(np.meshgrid(orig_x, orig_y), axis = -1) bspec = BaseSpec(lMax = a.lMax) particles= [Particle(orig_xy[i], ap.tmgen, bspec=bspec) for i in np.ndindex(orig_xy.shape[:-1])] sym = FinitePointGroup(point_group_info['D2h']) ss, ssw = ScatteringSystem.create(particles, ap.background_emg, ap.allomegas[0], sym=sym) ## Plane wave data a.theta = np.atleast_1d(np.array(a.theta)) dir_sph_list = np.stack((np.broadcast_to(1, a.theta.shape), a.theta, np.broadcast_to(a.phi, a.theta.shape)), axis=-1) sψ, cψ = math.sin(a.psi), math.cos(a.psi) sχ, cχ = math.sin(a.chi), math.cos(a.chi) E_sph = (0., cψ*cχ + 1j*sψ*sχ, sψ*cχ + 1j*cψ*sχ) dir_cart_list = sph2cart(dir_sph_list) E_cart_list = sph_loccart2cart(E_sph, dir_sph_list) nfreq = len(ap.allomegas) ndir = a.theta.shape[0] k_cart_arr = np.empty((nfreq, ndir, 3), dtype=float) wavenumbers = np.empty((nfreq,), dtype=float) σ_ext_arr_ir = np.empty((nfreq, ndir, ss.nirreps), dtype=float) σ_scat_arr_ir = np.empty((nfreq, ndir, ss.nirreps), dtype=float) outfile_tmp = defaultprefix + ".tmp" if a.output is None else a.output + ".tmp" for i, omega in enumerate(ap.allomegas): logging.info("Processing frequency %g eV" % (omega / eV,)) if i != 0: ssw = ss(omega) if ssw.wavenumber.imag != 0: warnings.warn("The background medium wavenumber has non-zero imaginary part. Don't expect emaningful results for cross sections.") wavenumber = ssw.wavenumber.real wavenumbers[i] = wavenumber k_sph_list = np.array(dir_sph_list, copy=True) k_sph_list[:,0] = wavenumber k_cart_arr[i] = sph2cart(k_sph_list) for iri in range(ss.nirreps): logging.info("processing irrep %d/%d" % (iri, ss.nirreps)) LU = None # to trigger garbage collection before the next call translation_matrix = None LU = ssw.scatter_solver(iri) logging.info("LU solver created") translation_matrix = ssw.translation_matrix_packed(iri, BesselType.REGULAR) + np.eye(ss.saecv_sizes[iri]) logging.info("auxillary translation matrix created") for j in range(ndir): k_cart = k_cart_arr[i,j] # the following two could be calculated only once, but probably not a big deal ã = ss.planewave_full(k_cart=k_cart_arr[i,j], E_cart=E_cart_list[j]) Tã = ssw.apply_Tmatrices_full(ã) Tãi = ss.pack_vector(Tã, iri) ãi = ss.pack_vector(ã, iri) fi = LU(Tãi) σ_ext_arr_ir[i, j, iri] = -np.vdot(ãi, fi).real/wavenumber**2 σ_scat_arr_ir[i, j, iri] = np.vdot(fi,np.dot(translation_matrix, fi)).real/wavenumber**2 if a.save_gradually: iriout = outfile_tmp + ".%d.%d" % (i, iri) np.savez(iriout, omegai=i, iri=iri, meta={**vars(a), 'qpms_version' : qpms.__version__()}, omega=omega, k_sph=k_sph_list, k_cart = k_cart_arr, E_cart=E_cart_list, E_sph=np.array(E_sph), wavenumber=wavenumber, σ_ext_list_ir=σ_ext_arr_ir[i,:,iri], σ_scat_list_ir=σ_scat_list_ir[i,:,iri]) logging.info("partial results saved to %s"%iriout) σ_abs_arr_ir = σ_ext_arr_ir - σ_scat_arr_ir σ_abs_arr = np.sum(σ_abs_arr_ir, axis=-1) σ_scat_arr = np.sum(σ_scat_arr_ir, axis=-1) σ_ext_arr = np.sum(σ_ext_arr_ir, axis=-1) outfile = defaultprefix + ".npz" if a.output is None else a.output np.savez(outfile, meta={**vars(a), 'qpms_version' : qpms.__version__()}, k_sph=k_sph_list, k_cart = k_cart_arr, E_cart=E_cart_list, E_sph=np.array(E_sph), σ_ext=σ_ext_arr,σ_abs=σ_abs_arr,σ_scat=σ_scat_arr, σ_ext_ir=σ_ext_arr_ir,σ_abs_ir=σ_abs_arr_ir,σ_scat_ir=σ_scat_arr_ir, omega=ap.allomegas, wavenumbers=wavenumbers ) logging.info("Saved to %s" % outfile) if a.plot or (a.plot_out is not None): import matplotlib from matplotlib.backends.backend_pdf import PdfPages matplotlib.use('pdf') from matplotlib import pyplot as plt from scipy.interpolate import griddata plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out with PdfPages(plotfile) as pdf: ipm = 'nearest' sintheta = np.sin(a.theta) if False: #len(ap.omega_ranges) != 0: # angle plot --------------------------------- fig = plt.figure(figsize=(210/25.4, 297/25.4)) vmax = max(np.amax(σ_ext_arr), np.amax(σ_scat_arr), np.amax(σ_abs_arr)) vmin = min(np.amin(σ_ext_arr), np.amin(σ_scat_arr), np.amin(σ_abs_arr)) ax = fig.add_subplot(311) ax.pcolormesh(a.theta, ap.allomegas/eh, σ_ext_arr, vmin=vmin, vmax=vmax) ax.set_xlabel('$\\theta$') ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$') ax.set_title('$\\sigma_\\mathrm{ext}$') ax = fig.add_subplot(312) ax.pcolormesh(a.theta, ap.allomegas/eh, σ_scat_arr, vmin=vmin, vmax=vmax) ax.set_xlabel('$\\theta$') ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$') ax.set_title('$\\sigma_\\mathrm{scat}$') ax = fig.add_subplot(313) im = ax.pcolormesh(a.theta, ap.allomegas/eh, σ_abs_arr, vmin=vmin, vmax=vmax) ax.set_xlabel('$\\theta$') ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$') ax.set_title('$\\sigma_\\mathrm{abs}$') fig.subplots_adjust(right=0.8) fig.colorbar(im, cax = fig.add_axes([0.85, 0.15, 0.05, 0.7])) pdf.savefig(fig) plt.close(fig) if len(ap.omega_ranges) != 0: # "k-space" plot ----------------------------- domega = np.amin(np.diff(ap.allomegas)) dsintheta = np.amin(abs(np.diff(sintheta))) dk = dsintheta * wavenumbers[0] # target image grid grid_y, grid_x = np.mgrid[ap.allomegas[0] : ap.allomegas[-1] : domega, np.amin(sintheta) * wavenumbers[-1] : np.amax(sintheta) * wavenumbers[-1] : dk] imextent = (np.amin(sintheta) * wavenumbers[-1] / 1e6, np.amax(sintheta) * wavenumbers[-1] / 1e6, ap.allomegas[0] / eh, ap.allomegas[-1] / eh) # source coordinates for griddata ktheta = sintheta[None, :] * wavenumbers[:, None] omegapoints = np.broadcast_to(ap.allomegas[:, None], ktheta.shape) points = np.stack( (ktheta.flatten(), omegapoints.flatten()), axis = -1) fig = plt.figure(figsize=(210/25.4, 297/25.4)) vmax = np.amax(σ_ext_arr) ax = fig.add_subplot(311) grid_z = griddata(points, σ_ext_arr.flatten(), (grid_x, grid_y), method = ipm) ax.imshow(grid_z, extent = imextent, origin = 'lower', vmin = 0, vmax = vmax, aspect = 'auto', interpolation='none') ax.set_xlabel('$k_\\theta / \\mathrm{\\mu m^{-1}}$') ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$') ax.set_title('$\\sigma_\\mathrm{ext}$') ax = fig.add_subplot(312) grid_z = griddata(points, σ_scat_arr.flatten(), (grid_x, grid_y), method = ipm) ax.imshow(grid_z, extent = imextent, origin = 'lower', vmin = 0, vmax = vmax, aspect = 'auto', interpolation='none') ax.set_xlabel('$k_\\theta / \\mathrm{\\mu m^{-1}}$') ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$') ax.set_title('$\\sigma_\\mathrm{scat}$') ax = fig.add_subplot(313) grid_z = griddata(points, σ_abs_arr.flatten(), (grid_x, grid_y), method = ipm) im = ax.imshow(grid_z, extent = imextent, origin = 'lower', vmin = 0, vmax = vmax, aspect = 'auto', interpolation='none') ax.set_xlabel('$k_\\theta / \\mathrm{\\mu m^{-1}}$') ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$') ax.set_title('$\\sigma_\\mathrm{abs}$') fig.subplots_adjust(right=0.8) fig.colorbar(im, cax = fig.add_axes([0.85, 0.15, 0.05, 0.7])) pdf.savefig(fig) plt.close(fig) for omega in ap.omega_singles: i = np.searchsorted(ap.allomegas, omega) fig = plt.figure() fig.suptitle("%g eV" % (omega / eh)) ax = fig.add_subplot(111) sintheta = np.sin(a.theta) ax.plot(sintheta, σ_ext_arr[i]*1e12,label='$\sigma_\mathrm{ext}$') ax.plot(sintheta, σ_scat_arr[i]*1e12, label='$\sigma_\mathrm{scat}$') ax.plot(sintheta, σ_abs_arr[i]*1e12, label='$\sigma_\mathrm{abs}$') ax.legend() ax.set_xlabel('$\sin\\theta$') ax.set_ylabel('$\sigma/\mathrm{\mu m^2}$') pdf.savefig(fig) plt.close(fig) annotate_pdf_metadata(pdf, scriptname="finiterectlat-scatter.py") exit(0)