#!/usr/bin/env python3 import math from qpms.argproc import ArgParser, sfloat, annotate_pdf_metadata ap = ArgParser(['background', 'lattice2d', 'multi_particle', 'omega_seq']) ap.add_argument("-k", nargs=2, type=sfloat, required=True, help='k vector', metavar=('K_X', 'K_Y')) ap.add_argument("--kpi", action='store_true', help="Indicates that the k vector is given in natural units instead of SI, i.e. the arguments given by -k shall be automatically multiplied by pi / period (given by -p argument)") ap.add_argument("-g", "--little-group", type=str, default="trivial_g", help="Little group for subspace irrep classification", action="store") ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)') ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)") ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path") ap.add_argument("-s", "--singular_values", type=int, default=10, help="Number of singular values to plot") a=ap.parse_args() import logging logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO) #Important! The particles are supposed to be of D2h/D4h symmetry # thegroup = 'D4h' if px == py and not a.D2 else 'D2h' a1 = ap.direct_basis[0] a2 = ap.direct_basis[1] particlestr = "svdinterval" # TODO particle string specifier or some hash, do this in argproc.py defaultprefix = "%s_basis%gnm_%gnm__%gnm_%gnm_f(%g..%g..%g)eV_k%g_%g" % ( particlestr, a1[0]*1e9, a1[1]*1e9, a2[0]*1e9, a2[1]*1e9, *(a.eV_seq), ap.k[0], ap.k[1]) logging.info("Default file prefix: %s" % defaultprefix) import numpy as np import qpms import warnings from qpms.cybspec import BaseSpec from qpms.cytmatrices import CTMatrix, TMatrixGenerator from qpms.qpms_c import Particle, pgsl_ignore_error, empty_lattice_modes_xy from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude from qpms.cycommon import DebugFlags, dbgmsg_enable from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar from qpms.symmetries import point_group_info eh = eV/hbar # not used; TODO: irrep_labels = {"B2''":"$B_2''$", "B2'":"$B_2'$", "A1''":"$A_1''$", "A1'":"$A_1'$", "A2''":"$A_2''$", "B1''":"$B_1''$", "A2'":"$A_2'$", "B1'":"$B_1'$", "E'":"$E'$", "E''":"$E''$",} dbgmsg_enable(DebugFlags.INTEGRATION) omegas = ap.omegas logging.info("%d frequencies from %g to %g eV" % (len(omegas), omegas[0]/eh, omegas[-1]/eh)) particles = ap.get_particles() ss, ssw = ScatteringSystem.create(particles, ap.background_emg, omegas[0], latticebasis=ap.direct_basis) k = np.array([ap.k[0], ap.k[1], 0]) # Auxillary finite scattering system for irrep decomposition, quite a hack ss1, ssw1 = ScatteringSystem.create(particles, ap.background_emg, omegas[0],sym=FinitePointGroup(point_group_info[ap.little_group])) wavenumbers = np.empty(omegas.shape) SVs = [None] * ss1.nirreps for iri in range(ss1.nirreps): SVs[iri] = np.empty(omegas.shape+(ss1.saecv_sizes[iri],)) for i, omega in enumerate(omegas): ssw = ss(omega) wavenumbers[i] = ssw.wavenumber.real if ssw.wavenumber.imag: warnings.warn("Non-zero imaginary wavenumber encountered") with pgsl_ignore_error(15): # avoid gsl crashing on underflow; maybe not needed ImTW = ssw.modeproblem_matrix_full(k) for iri in range(ss1.nirreps): ImTW_packed = ss1.pack_matrix(ImTW, iri) SVs[iri][i] = np.linalg.svd(ImTW_packed, compute_uv = False) outfile = defaultprefix + ".npz" if a.output is None else a.output np.savez(outfile, meta={**vars(a), 'qpms_version' : qpms.__version__()}, omegas=omegas, wavenumbers=wavenumbers, SVs=np.concatenate(SVs, axis=-1), irrep_names=ss1.irrep_names, irrep_sizes=ss1.saecv_sizes, unitcell_area=ss.unitcell_volume ) logging.info("Saved to %s" % outfile) if a.plot or (a.plot_out is not None): import matplotlib matplotlib.use('pdf') from matplotlib import pyplot as plt from matplotlib.backends.backend_pdf import PdfPages fig = plt.figure() ax = fig.add_subplot(111) cc = plt.rcParams['axes.prop_cycle']() for iri in range(ss1.nirreps): cargs = next(cc) nlines = min(a.singular_values, ss1.saecv_sizes[iri]) for i in range(nlines): ax.plot(omegas/eh, SVs[iri][:,-1-i], label= None if i else irrep_labels.get(ss1.irrep_names[iri], ss1.irrep_names[iri]), **cargs) ax.set_ylim([0,1.1]) if hasattr(ap, "background_epsmu"): xlim = ax.get_xlim() omegas_empty = empty_lattice_modes_xy(ap.background_epsmu, ap.reciprocal_basis2pi, k, omegas[-1]) for om in omegas_empty: if om/eh > xlim[0] and om/eh < xlim[1]: ax.axvline(om/eh, ls=':') ax.set_xlabel('$\hbar \omega / \mathrm{eV}$') ax.set_ylabel('Singular values') ax.legend() plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out with PdfPages(plotfile) as pdf: pdf.savefig(fig) annotate_pdf_metadata(pdf, scriptname='lat2d_realfreqsvd.py') exit(0)