#LyX 2.1 created this file. For more info see http://www.lyx.org/ \lyxformat 474 \begin_document \begin_header \textclass article \use_default_options true \maintain_unincluded_children false \language finnish \language_package default \inputencoding auto \fontencoding global \font_roman TeX Gyre Pagella \font_sans default \font_typewriter default \font_math auto \font_default_family default \use_non_tex_fonts true \font_sc false \font_osf true \font_sf_scale 100 \font_tt_scale 100 \graphics default \default_output_format pdf4 \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref true \pdf_title "Sähköpajan päiväkirja" \pdf_author "Marek Nečada" \pdf_bookmarks true \pdf_bookmarksnumbered false \pdf_bookmarksopen false \pdf_bookmarksopenlevel 1 \pdf_breaklinks false \pdf_pdfborder false \pdf_colorlinks false \pdf_backref false \pdf_pdfusetitle true \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \quotes_language swedish \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Title Symmetry-adapted basis functions for honeycomb lattice at \begin_inset Formula $K$ \end_inset -point \end_layout \begin_layout Section Generation theorem \end_layout \begin_layout Standard Let \begin_inset Formula $\mathbf{G}$ \end_inset be a group and \begin_inset Formula $\Gamma^{i}\left\{ R\to\mathbf{D}^{i}\left(R\right)\right\} $ \end_inset some \begin_inset Formula $d_{i}$ \end_inset -dimensional rep of \begin_inset Formula $\mathbf{G}$ \end_inset . Let the group ring (corresponding to the given rep indexed by \begin_inset Formula $i$ \end_inset ) elements be defined as [Bradley&Cracknell (2.2.2)] \begin_inset Formula \[ W_{ts}^{i}=\frac{d_{i}}{\left|\mathbf{G}\right|}\sum_{R\in\mathbf{G}}\mathbf{D}^{i}\left(R\right)_{ts}^{*}R. \] \end_inset \end_layout \begin_layout Standard From [Bradley&Cracknell, theorem 2.2.1]: \end_layout \begin_layout Standard If \begin_inset Formula $\phi$ \end_inset is an arbitrary function of \begin_inset Formula $V$ \end_inset (a linear space in which the realisation of the group operation act) such that \begin_inset Formula $W_{ss}^{i}\phi\ne0$ \end_inset ( \begin_inset Formula $s$ \end_inset is fixed and is a number in the range 1 to \begin_inset Formula $d_{i}$ \end_inset ; \begin_inset Formula $i$ \end_inset is idx of the rep) then the funs \begin_inset Formula $W_{ts}^{i}\phi=\phi_{t}^{i}$ \end_inset , \begin_inset Formula $t=1$ \end_inset to \begin_inset Formula $d_{i}$ \end_inset , form a basis for the rep \begin_inset Formula $\Gamma^{i}$ \end_inset . \end_layout \begin_layout Section Particle-centered transformations \end_layout \begin_layout Standard Now let's see what are the point group actions on SVWF in the origin [Schulz]: \end_layout \begin_layout Standard \begin_inset Tabular \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $Z$ \end_inset -axis rotation by \begin_inset Formula $2\pi/N$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $C_{N}M_{l}^{m}=e^{\pm?i2\pi m/N}M_{l}^{m}$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $C_{N}N_{l}^{m}=e^{\pm?i2\pi m/N}N_{l}^{m}$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Horizontal (xy) reflection \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $\sigma_{h}M_{l}^{m}=\left(-1\right)^{m+l+1}M_{l}^{m}$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $\sigma_{h}N_{l}^{m}=\left(-1\right)^{m+l}N_{l}^{m}$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Vertical (yz) reflection \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $\sigma_{yz}M_{l}^{m}=-M_{l}^{-m}$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $\sigma_{yz}N_{l}^{m}=N_{l}^{-m}$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Vertical (xz) reflection \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $\sigma_{xz}M_{l}^{m}=\left(-1\right)^{m+1}M_{l}^{-m}$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $\sigma_{xz}N_{l}^{m}=\left(-1\right)^{m}N_{l}^{-m}$ \end_inset \end_layout \end_inset \end_inset \end_layout \begin_layout Section Transformations in a lattice \end_layout \begin_layout Standard \end_layout \end_body \end_document