#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 584 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass article \use_default_options true \maintain_unincluded_children false \language finnish \language_package default \inputencoding utf8 \fontencoding auto \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf false \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Section Symmetries \begin_inset CommandInset label LatexCommand label name "sec:Symmetries" \end_inset \end_layout \begin_layout Standard If the system has nontrivial point group symmetries, group theory gives additional understanding of the system properties, and can be used to reduce the computational costs. \end_layout \begin_layout Standard As an example, if our system has a \begin_inset Formula $D_{2h}$ \end_inset symmetry and our truncated \begin_inset Formula $\left(I-T\trops\right)$ \end_inset matrix has size \begin_inset Formula $N\times N$ \end_inset , \begin_inset Note Note status open \begin_layout Plain Layout nepoužívám \begin_inset Formula $N$ \end_inset už v jiném kontextu? \end_layout \end_inset it can be block-diagonalized into eight blocks of size about \begin_inset Formula $N/8\times N/8$ \end_inset , each of which can be LU-factorised separately (this is due to the fact that \begin_inset Formula $D_{2h}$ \end_inset has eight different one-dimensional irreducible representations). This can reduce both memory and time requirements to solve the scattering problem \begin_inset CommandInset ref LatexCommand eqref reference "eq:Multiple-scattering problem block form" plural "false" caps "false" noprefix "false" \end_inset by a factor of 64. \end_layout \begin_layout Standard In periodic systems (problems \begin_inset CommandInset ref LatexCommand eqref reference "eq:Multiple-scattering problem unit cell block form" plural "false" caps "false" noprefix "false" \end_inset , \begin_inset CommandInset ref LatexCommand eqref reference "eq:lattice mode equation" plural "false" caps "false" noprefix "false" \end_inset ) due to small number of particles per unit cell, the costliest part is usually the evaluation of the lattice sums in the \begin_inset Formula $W\left(\omega,\vect k\right)$ \end_inset matrix, not the linear algebra. However, the lattice modes can be searched for in each irrep separately, and the irrep dimension gives a priori information about mode degeneracy. \end_layout \begin_layout Subsection Finite systems \end_layout \begin_layout Standard \begin_inset Note Note status open \begin_layout Plain Layout TODO Zkontrolovat všechny vzorečky zde!!! \end_layout \end_inset In order to use the point group symmetries, we first need to know how they affect our basis functions, i.e. the VSWFs. \end_layout \begin_layout Standard Let \begin_inset Formula $g$ \end_inset be a member of orthogonal group \begin_inset Formula $O(3)$ \end_inset , i.e. a 3D point rotation or reflection operation that transforms vectors in \begin_inset Formula $\reals^{3}$ \end_inset with an orthogonal matrix \begin_inset Formula $R_{g}$ \end_inset : \begin_inset Formula \[ \vect r\mapsto R_{g}\vect r. \] \end_inset Spherical harmonics \begin_inset Formula $\ush lm$ \end_inset , being a basis the \begin_inset Formula $l$ \end_inset -dimensional representation of \begin_inset Formula $O(3)$ \end_inset , transform as \begin_inset CommandInset citation LatexCommand cite after "???" key "dresselhaus_group_2008" literal "false" \end_inset \begin_inset Formula \[ \ush lm\left(R_{g}\uvec r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\ush l{m'}\left(\uvec r\right) \] \end_inset where \begin_inset Formula $D_{m,m'}^{l}\left(g\right)$ \end_inset denotes the elements of the \emph on Wigner matrix \emph default representing the operation \begin_inset Formula $g$ \end_inset . By their definition, vector spherical harmonics \begin_inset Formula $\vsh 2lm,\vsh 3lm$ \end_inset transform in the same way, \begin_inset Formula \begin{align*} \vsh 2lm\left(R_{g}\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 2l{m'}\left(\uvec r\right),\\ \vsh 3lm\left(R_{g}\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 3l{m'}\left(\uvec r\right), \end{align*} \end_inset but the remaining set \begin_inset Formula $\vsh 1lm$ \end_inset transforms differently due to their pseudovector nature stemming from the cross product in their definition: \begin_inset Formula \[ \vsh 3lm\left(R_{g}\uvec r\right)=\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vsh 3l{m'}\left(\uvec r\right), \] \end_inset where \begin_inset Formula $\widetilde{D_{m,m'}^{l}}\left(g\right)=D_{m,m'}^{l}\left(g\right)$ \end_inset if \begin_inset Formula $g$ \end_inset is a proper rotation, but for spatial inversion operation \begin_inset Formula $i:\vect r\mapsto-\vect r$ \end_inset we have \begin_inset Formula $\widetilde{D_{m,m'}^{l}}\left(i\right)=\left(-1\right)^{l+m}D_{m,m'}^{l}\left(i\right)$ \end_inset . The transformation behaviour of vector spherical harmonics directly propagates to the spherical vector waves, cf. \begin_inset CommandInset ref LatexCommand eqref reference "eq:VSWF regular" plural "false" caps "false" noprefix "false" \end_inset , \begin_inset CommandInset ref LatexCommand eqref reference "eq:VSWF outgoing" plural "false" caps "false" noprefix "false" \end_inset : \begin_inset Formula \begin{align*} \vswfouttlm 1lm\left(R_{g}\vect r\right) & =\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vswfouttlm 1l{m'}\left(\vect r\right),\\ \vswfouttlm 2lm\left(R_{g}\vect r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vswfouttlm 2l{m'}\left(\vect r\right), \end{align*} \end_inset (and analogously for the regular waves \begin_inset Formula $\vswfrtlm{\tau}lm$ \end_inset ). \begin_inset Note Note status open \begin_layout Plain Layout TODO víc obdivu. \end_layout \end_inset For convenience, we introduce the symbol \begin_inset Formula $D_{m,m'}^{\tau l}$ \end_inset that describes the transformation of both types ( \begin_inset Quotes eld \end_inset magnetic \begin_inset Quotes erd \end_inset and \begin_inset Quotes eld \end_inset electric \begin_inset Quotes erd \end_inset ) of waves at once: \begin_inset Formula \[ \vswfouttlm{\tau}lm\left(R_{g}\vect r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\vect r\right). \] \end_inset Using these, we can express the VSWF expansion \begin_inset CommandInset ref LatexCommand eqref reference "eq:E field expansion" plural "false" caps "false" noprefix "false" \end_inset of the electric field around origin in a rotated/reflected system, \begin_inset Formula \[ \vect E\left(\omega,R_{g}\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}lm\left(k\vect r\right)+D_{m,m'}^{\tau l}\left(g\right)\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\left(k\vect r\right)\right), \] \end_inset which, together with the \begin_inset Formula $T$ \end_inset -matrix definition, \begin_inset CommandInset ref LatexCommand eqref reference "eq:T-matrix definition" plural "false" caps "false" noprefix "false" \end_inset can be used to obtain a \begin_inset Formula $T$ \end_inset -matrix of a rotated or mirror-reflected particle. Let \begin_inset Formula $T$ \end_inset be the \begin_inset Formula $T$ \end_inset -matrix of an original particle; the \begin_inset Formula $T$ \end_inset -matrix of a particle physically transformed by operation \begin_inset Formula $g\in O(3)$ \end_inset is then \begin_inset Note Note status open \begin_layout Plain Layout check sides \end_layout \end_inset \begin_inset Formula \begin{equation} T'_{\tau lm;\tau'l'm'}=\sum_{\mu=-l}^{l}\sum_{\mu'=-l'}^{l'}\left(D_{\mu,m}^{\tau l}\left(g\right)\right)^{*}T_{\tau l\mu;\tau'l'm'}D_{m',\mu'}^{\tau l}\left(g\right).\label{eq:T-matrix of a transformed particle} \end{equation} \end_inset If the particle is symmetric (so that \begin_inset Formula $g$ \end_inset produces a particle indistinguishable from the original one), the \begin_inset Formula $T$ \end_inset -matrix must remain invariant under the transformation \begin_inset CommandInset ref LatexCommand eqref reference "eq:T-matrix of a transformed particle" plural "false" caps "false" noprefix "false" \end_inset , \begin_inset Formula $T'_{\tau lm;\tau'l'm'}=T{}_{\tau lm;\tau'l'm'}$ \end_inset . Explicit forms of these invariance properties for the most imporant point group symmetries can be found in \begin_inset CommandInset citation LatexCommand cite key "schulz_point-group_1999" literal "false" \end_inset . \end_layout \begin_layout Standard With these point group transformation properties in hand, we can proceed to rotating (or mirror-reflecting) the whole many-particle system. \end_layout \begin_layout Subsection Periodic systems \end_layout \begin_layout Standard \lang english A general overview of utilizing group theory to find lattice modes at high-symme try points of the Brillouin zone can be found e.g. in \begin_inset CommandInset citation LatexCommand cite after "chapters 10–11" key "dresselhaus_group_2008" literal "true" \end_inset ; here we use the same notation. \end_layout \begin_layout Standard \lang english We analyse the symmetries of the system in the same VSWF representation as used in the \begin_inset Formula $T$ \end_inset -matrix formalism introduced above. We are interested in the modes at the \begin_inset Formula $\Kp$ \end_inset -point of the hexagonal lattice, which has the \begin_inset Formula $D_{3h}$ \end_inset point symmetry. The six irreducible representations (irreps) of the \begin_inset Formula $D_{3h}$ \end_inset group are known and are available in the literature in their explicit forms. In order to find and classify the modes, we need to find a decomposition of the lattice mode representation \begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}=\Gamma^{\mathrm{equiv.}}\otimes\Gamma_{\mathrm{vec.}}$ \end_inset into the irreps of \begin_inset Formula $D_{3h}$ \end_inset . The equivalence representation \begin_inset Formula $\Gamma^{\mathrm{equiv.}}$ \end_inset is the \begin_inset Formula $E'$ \end_inset representation as can be deduced from \begin_inset CommandInset citation LatexCommand cite after "eq. (11.19)" key "dresselhaus_group_2008" literal "true" \end_inset , eq. (11.19) and the character table for \begin_inset Formula $D_{3h}$ \end_inset . \begin_inset Formula $\Gamma_{\mathrm{vec.}}$ \end_inset operates on a space spanned by the VSWFs around each nanoparticle in the unit cell (the effects of point group operations on VSWFs are described in \begin_inset CommandInset citation LatexCommand cite key "schulz_point-group_1999" literal "true" \end_inset ). This space can be then decomposed into invariant subspaces of the \begin_inset Formula $D_{3h}$ \end_inset using the projectors \begin_inset Formula $\hat{P}_{ab}^{\left(\Gamma\right)}$ \end_inset defined by \begin_inset CommandInset citation LatexCommand cite after "eq. (4.28)" key "dresselhaus_group_2008" literal "true" \end_inset . This way, we obtain a symmetry adapted basis \begin_inset Formula $\left\{ \vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}\right\} $ \end_inset as linear combinations of VSWFs \begin_inset Formula $\vswfs lm{p,t}$ \end_inset around the constituting nanoparticles (labeled \begin_inset Formula $p$ \end_inset ), \begin_inset Formula \[ \vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}=\sum_{l,m,p,t}U_{\Gamma,r,i}^{p,t,l,m}\vswfs lm{p,t}, \] \end_inset where \begin_inset Formula $\Gamma$ \end_inset stands for one of the six different irreps of \begin_inset Formula $D_{3h}$ \end_inset , \begin_inset Formula $r$ \end_inset labels the different realisations of the same irrep, and the last index \begin_inset Formula $i$ \end_inset going from 1 to \begin_inset Formula $d_{\Gamma}$ \end_inset (the dimensionality of \begin_inset Formula $\Gamma$ \end_inset ) labels the different partners of the same given irrep. The number of how many times is each irrep contained in \begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}$ \end_inset (i.e. the range of index \begin_inset Formula $r$ \end_inset for given \begin_inset Formula $\Gamma$ \end_inset ) depends on the multipole degree cutoff \begin_inset Formula $l_{\mathrm{max}}$ \end_inset . \end_layout \begin_layout Standard \lang english Each mode at the \begin_inset Formula $\Kp$ \end_inset -point shall lie in the irreducible spaces of only one of the six possible irreps and it can be shown via \begin_inset CommandInset citation LatexCommand cite after "eq. (2.51)" key "dresselhaus_group_2008" literal "true" \end_inset that, at the \begin_inset Formula $\Kp$ \end_inset -point, the matrix \begin_inset Formula $M\left(\omega,\vect k\right)$ \end_inset defined above takes a block-diagonal form in the symmetry-adapted basis, \begin_inset Formula \[ M\left(\omega,\vect K\right)_{\Gamma,r,i;\Gamma',r',j}^{\mathrm{s.a.b.}}=\frac{\delta_{\Gamma\Gamma'}\delta_{ij}}{d_{\Gamma}}\sum_{q}M\left(\omega,\vect K\right)_{\Gamma,r,q;\Gamma',r',q}^{\mathrm{s.a.b.}}. \] \end_inset This enables us to decompose the matrix according to the irreps and to solve the singular value problem in each irrep separately, as done in Fig. \begin_inset CommandInset ref LatexCommand ref reference "smfig:dispersions" \end_inset (a). \end_layout \end_body \end_document