/*! \file lattices.h * \brief Lattice point generators and lattice vector analysis / transformation. * */ #ifndef LATTICES_H #define LATTICES_H #include #include #include #include #include #ifndef M_SQRT3 #define M_SQRT3 1.7320508075688772935274463415058724 #endif #ifndef M_SQRT3_2 #define M_SQRT3_2 (M_SQRT3/2) #endif #ifndef M_1_SQRT3 #define M_1_SQRT3 0.57735026918962576450914878050195746 #endif /* IMPORTANT TODO * ============== * * The current content of this part (and the implementation) is extremely ugly. * When I have some time, I have to rewrite this in the style of lattices2d.py * */ typedef enum LatticeDimensionality { LAT1D = 1, LAT2D = 2, LAT3D = 4, SPACE1D = 8, SPACE2D = 16, SPACE3D = 32, LAT_1D_IN_3D = 33, LAT_2D_IN_3D = 34, LAT_3D_IN_3D = 40, // special coordinate arrangements (indicating possible optimisations) LAT_ZONLY = 64, LAT_XYONLY = 128, LAT_1D_IN_3D_ZONLY = 97, // LAT1D | SPACE3D | 64 LAT_2D_IN_3D_XYONLY = 162 // LAT2D | SPACE3D | 128 } LatticeDimensionality; inline static bool LatticeDimensionality_checkflags( LatticeDimensionality a, LatticeDimensionality flags_a_has_to_contain) { return ((a & flags_a_has_to_contain) == flags_a_has_to_contain); } // fuck, I already had had suitable type #include "vectors.h" typedef cart2_t point2d; static inline point2d point2d_fromxy(const double x, const double y) { point2d p; p.x = x; p.y = y; return p; } /// Lattice basis reduction. /** This is currenty a bit naïve implementation of * Lenstra-Lenstra-Lovász algorithm. * * The reduction happens in-place, i.e. the basis vectors in \a b are * replaced with the reduced basis. */ int qpms_reduce_lattice_basis(double *b, ///< Array of dimension [bsize][ndim]. const size_t bsize, ///< Number of the basis vectors (dimensionality of the lattice). const size_t ndim, ///< Dimension of the space into which the lattice is embedded. /// Lovász condition parameter \f$ \delta \f$. /** Polynomial time complexity guaranteed for \f$\delta \in (1/4,1)\f$. */ double delta ); /// Generic lattice point generator type. /** * A bit of OOP-in-C brainfuck here. * * The basic principle of operation is following: * Instead of a list (array) of points, an initialized PGen object * is passed to a function that does something over a set of points. * Each time PGen-type object is "called" (more specifically, one of * the "methods" specified in the PGenClassInfo structure in @ref c, * it returns PGenReturnData * which contains a point in given coordinates (depending on the generator * class) and some metadata. * * After the last generated point, the generator frees all internal memory * and returns PGenSphReturnData with PGEN_NOTDONE flag unset (the rest * shall be considered invalid data). * The caller can also decide not to use the rest and end getting the points * even when the PGEN_NOTDONE was set in the last returned data. * In such case, the caller shall call PGen_destroy() manually. * * Methods * ------- * * The standard wrapper "methods" to generate a single point in a given * coordinate system are * * * PGen_next_z(), * * PGen_next_cart2(), * * PGen_next_cart3(), * * PGen_next_pol(), * * PGen_next_sph(). * * Memory management policy * ------------------------ * * The basic PGen structure shall be allocated on stack (it's only two pointers), * everything internal goes on heap. */ typedef struct PGen { /// Pointer to the "class" metadata defining the behaviour of the generator. const struct PGenClassInfo * /*const*/ c; /// Pointer to internal state data; shall be NULL if invalid (destroyed); void *stateData; } PGen; typedef enum PGenPointFlags { /** The most important flag: when this is not set, the * interation ended – other data returned should be * considered nonsense and at this point, the generator * should have de-allocated all internal memory. */ PGEN_NOTDONE = 2, /** Set if the r-coordinate is not different than in the * previous generated point (so radial parts of the * calculation have to be redone). * Optional. */ PGEN_OLD_R = 1, /** Set if the r-coordinate has not changed between the * first and the last point generated in the current * call. * Only for the bulk generator methods. * Optional. */ PGEN_SINGLE_R = 16, PGEN_AT_Z = 4, ///< Set if the point(s) lie(s) at the z-axis (theta is either 0 or M_PI). PGEN_AT_XY = 8, ///< Set if the point(s) lie(s) in the xy-plane (theta is M_PI2). PGEN_METHOD_UNAVAILABLE = 2048, ///< Set if no suitable method exists (no point generated). PGEN_DONE = 0, ///< Convenience identifier, not an actual flag. PGEN_COORDS_CART1 = QPMS_COORDS_CART1, PGEN_COORDS_CART2 = QPMS_COORDS_CART2, PGEN_COORDS_CART3 = QPMS_COORDS_CART3, PGEN_COORDS_POL = QPMS_COORDS_POL, PGEN_COORDS_SPH = QPMS_COORDS_SPH, PGEN_COORDS_BITRANGE = QPMS_COORDS_BITRANGE, } PGenPointFlags; /// Metadata generated by the fetch*() methods from PGenClassInfo typedef struct PGenReturnDataBulk { /// Flags describing the returned data. PGenPointFlags flags; size_t generated; ///< Number of points really generated } PGenReturnDataBulk; /// Generic PGen return type that might contain point represented in any of the supported coordinate systems. typedef struct PGenReturnData { PGenPointFlags flags; ///< Metadata, must contain valid coordinate system defining flags. anycoord_point_t point; ///< Generated point in a coordinate system defined by flags. } PGenReturnData; /// PGen single-point return data type (1D). typedef struct PGenZReturnData { PGenPointFlags flags; ///< Medatata. double point_z; ///< Generated point on a real axis. } PGenZReturnData; /// PGen single-point return data type (2D, polar coordinates). typedef struct PGenPolReturnData { PGenPointFlags flags; ///< Metadata. pol_t point_pol; ///< Generated point in polar coordinates. } PGenPolReturnData; /// PGen single-point return data type (3D, spherical coordinates). typedef struct PGenSphReturnData { PGenPointFlags flags; ///< Metadata. sph_t point_sph; ///< Generated point in spherical coordinates. } PGenSphReturnData; /// PGen single-point return data type (2D, cartesian coordinates). typedef struct PGenCart2ReturnData { PGenPointFlags flags; ///< Metadata. cart2_t point_cart2; ///< Generated point in cartesian coordinates. } PGenCart2ReturnData; /// PGen single-point return data type (3D, cartesian coordinates). typedef struct PGenCart3ReturnData { PGenPointFlags flags; ///< Metadata. cart3_t point_cart3; ///< Generated point in cartesian coordinates. } PGenCart3ReturnData; // convenience constants for use in the extractor implementations static const PGenZReturnData PGenZDoneVal = {PGEN_DONE, 0}; static const PGenPolReturnData PGenPolDoneVal = {PGEN_DONE, {0,0}}; static const PGenSphReturnData PGenSphDoneVal = {PGEN_DONE, {0,0,0}}; static const PGenCart2ReturnData PGenCart2DoneVal = {PGEN_DONE, {0,0}}; static const PGenCart3ReturnData PGenCart3DoneVal = {PGEN_DONE, {0,0,0}}; /// PGen class metadata. /** * This structure determines the behaviour of the PGen * instance pointing to it. * * For generating a single point, use the next() method. * For generating up to N points in a single call, use the * fetch() method. * * It is strongly recommended that at least the native-coordinate * fetch method and the native-coordinate next method are implemented. * * Usually, each generator uses internally one "native" coordinate * system (in lattice generators, this will typically be nD * cartesian coordinates) in which the next() method gives its result. * * One does not have to explicitly implement every single method. * * TODO doc about the default transformations etc. */ typedef struct PGenClassInfo { // static PGenSph info char * const name; // mainly for debugging purposes int dimensionality; // lower-dimensional can be converted to higher-D, not vice versa; bit redundant with the following, whatever. /// Info about the generator native coordinate system. PGenPointFlags native_point_flags; /// Generate a single point in the native coordinates. PGenReturnData (*next)(struct PGen *); /// Generate a single 1D point. PGenZReturnData (*next_z)(struct PGen *); /// Generate a single 2D point in polar coordinates. PGenPolReturnData (*next_pol)(struct PGen *); /// Generate a single 3D point in spherical coordinates. PGenSphReturnData (*next_sph)(struct PGen *); /// Generate a single 2D point in cartesian coordinates. PGenCart2ReturnData (*next_cart2)(struct PGen *); /// Generate a single 3D point in cartesian coordinates. PGenCart3ReturnData (*next_cart3)(struct PGen *); /// Generate up to \a n points in the native coordinates. PGenReturnDataBulk (*fetch)(struct PGen *, size_t, anycoord_point_t *); /// Generate up to \a n 1D points. PGenReturnDataBulk (*fetch_z)(struct PGen *, size_t, double *); /// Generate up to \a n 2D points in polar coordinates. PGenReturnDataBulk (*fetch_pol)(struct PGen *, size_t, pol_t *); /// Generate up to \a n 3D points in spherical coordinates. PGenReturnDataBulk (*fetch_sph)(struct PGen *, size_t, sph_t *); /// Generate up to \a n 2D points in cartesian coordinates. PGenReturnDataBulk (*fetch_cart2)(struct PGen *, size_t, cart2_t *); /// Generate up to \a n 3D points in cartesian coordinates. PGenReturnDataBulk (*fetch_cart3)(struct PGen *, size_t, cart3_t *); /// Destructor. /** To be called by next() at iteration end, or by the caller * if ending the generation prematurely */ void (*destructor)(struct PGen *); } PGenClassInfo; /// Generate a point with any of the next-methods. static inline PGenReturnData PGen_next_nf(struct PGen *g) { if (g->c->next) return g->c->next(g); else { PGenReturnData r; if (g->c->next_z) { PGenZReturnData res = g->c->next_z(g); r.flags = res.flags; r.point.z = res.point_z; } else if (g->c->next_pol) { PGenPolReturnData res = g->c->next_pol(g); r.flags = res.flags; r.point.pol = res.point_pol; } else if (g->c->next_cart2) { PGenCart2ReturnData res = g->c->next_cart2(g); r.flags = res.flags; r.point.cart2 = res.point_cart2; } else if (g->c->next_sph) { PGenSphReturnData res = g->c->next_sph(g); r.flags = res.flags; r.point.sph = res.point_sph; } else if (g->c->next_cart3) { PGenCart3ReturnData res = g->c->next_cart3(g); r.flags = res.flags; r.point.cart3 = res.point_cart3; } else r.flags = PGEN_METHOD_UNAVAILABLE; return r; } } /// Generate multiple points with PGen in any coordinate system. // Ultimate ugliness static inline PGenReturnDataBulk PGen_fetch_any(struct PGen *g, size_t nmemb, anycoord_point_t *target) { if (g->c->fetch) return g->c->fetch(g, nmemb, target); else if (g->c->fetch_cart3) { cart3_t *t2 = (cart3_t*) ((char *) target + nmemb * (sizeof(anycoord_point_t)-sizeof(cart3_t))); PGenReturnDataBulk res = g->c->fetch_cart3(g, nmemb, t2); for (size_t i = 0; i < nmemb; ++i) target[i].cart3 = t2[i]; return res; } else if (g->c->fetch_sph) { sph_t *t2 = (sph_t*) ((char *) target + nmemb * (sizeof(anycoord_point_t)-sizeof(sph_t))); PGenReturnDataBulk res = g->c->fetch_sph(g, nmemb, t2); for (size_t i = 0; i < nmemb; ++i) target[i].sph = t2[i]; return res; } else if (g->c->fetch_cart2) { cart2_t *t2 = (cart2_t*) ((char *) target + nmemb * (sizeof(anycoord_point_t)-sizeof(cart2_t))); PGenReturnDataBulk res = g->c->fetch_cart2(g, nmemb, t2); for (size_t i = 0; i < nmemb; ++i) target[i].cart2 = t2[i]; return res; } else if (g->c->fetch_pol) { pol_t *t2 = (pol_t*) ((char *) target + nmemb * (sizeof(anycoord_point_t)-sizeof(pol_t))); PGenReturnDataBulk res = g->c->fetch_pol(g, nmemb, t2); for (size_t i = 0; i < nmemb; ++i) target[i].pol = t2[i]; return res; } else if (g->c->fetch_z) { double *t2 = (double*) ((char *) target + nmemb * (sizeof(anycoord_point_t)-sizeof(double))); PGenReturnDataBulk res = g->c->fetch_z(g, nmemb, t2); for (size_t i = 0; i < nmemb; ++i) target[i].z = t2[i]; return res; } else { // This is ridiculously inefficient PGenReturnDataBulk res = {PGEN_NOTDONE, 0}; for (res.generated = 0; res.generated < nmemb; ++res.generated) { PGenReturnData res1 = PGen_next_nf(g); QPMS_ENSURE(!(res1.flags & PGEN_METHOD_UNAVAILABLE), "No method found to generate points. The PGenClassInfo" " %s is apparently broken.", g->c->name); if (res1.flags & PGEN_NOTDONE) { target[res.generated] = res1.point; // The coordinate system generated by next() must be consistent: assert(!res.generated || ((res1.flags & PGEN_COORDS_BITRANGE) == (res.flags & PGEN_COORDS_BITRANGE))); res.flags |= res1.flags & PGEN_COORDS_BITRANGE; } else { res.flags &= ~PGEN_NOTDONE; break; } } // Do not guarantee anything for; low priority TODO res.flags &= ~(PGEN_OLD_R & PGEN_SINGLE_R); return res; } } /// Generate a point with any of the next-methods or fetch-methods. static inline PGenReturnData PGen_next(struct PGen *g) { PGenReturnData res = PGen_next_nf(g); if (!(res.flags & PGEN_METHOD_UNAVAILABLE)) return res; else { // Slow if implementation is stupid, but short! PGenReturnDataBulk resb = PGen_fetch_any(g, 1, &res.point); if (resb.generated) // the | PGEN_NOTDONE may not be needed, but my brain melted res.flags = resb.flags | PGEN_NOTDONE; else res.flags = PGEN_DONE; return res; } } /// Generate multiple points in spherical coordinates. static inline PGenReturnDataBulk PGen_fetch_sph(struct PGen *g, size_t nmemb, sph_t *target) { if (g->c->fetch_sph) return g->c->fetch_sph(g, nmemb, target); else { anycoord_point_t *tmp; QPMS_CRASHING_MALLOC(tmp, sizeof(anycoord_point_t) * nmemb); PGenReturnDataBulk res = PGen_fetch_any(g, nmemb, tmp); anycoord_arr2something(target, QPMS_COORDS_SPH, tmp, res.flags, res.generated); free(tmp); res.flags = (res.flags & ~QPMS_COORDS_BITRANGE) | QPMS_COORDS_SPH; return res; } } /// Generate multiple points in 3D cartesian coordinates. static inline PGenReturnDataBulk PGen_fetch_cart3(struct PGen *g, size_t nmemb, cart3_t *target) { if (g->c->fetch_cart3) return g->c->fetch_cart3(g, nmemb, target); else { anycoord_point_t *tmp; QPMS_CRASHING_MALLOC(tmp, sizeof(anycoord_point_t) * nmemb); PGenReturnDataBulk res = PGen_fetch_any(g, nmemb, tmp); anycoord_arr2something(target, QPMS_COORDS_CART3, tmp, res.flags, res.generated); free(tmp); res.flags = (res.flags & ~QPMS_COORDS_BITRANGE) | QPMS_COORDS_CART3; return res; } } /// Generate multiple points in polar coordinates. static inline PGenReturnDataBulk PGen_fetch_pol(struct PGen *g, size_t nmemb, pol_t *target) { if (g->c->fetch_pol) return g->c->fetch_pol(g, nmemb, target); else { anycoord_point_t *tmp; QPMS_CRASHING_MALLOC(tmp, sizeof(anycoord_point_t) * nmemb); PGenReturnDataBulk res = PGen_fetch_any(g, nmemb, tmp); anycoord_arr2something(target, QPMS_COORDS_POL, tmp, res.flags, res.generated); free(tmp); res.flags = (res.flags & ~QPMS_COORDS_BITRANGE) | QPMS_COORDS_POL; return res; } } /// Generate multiple points in 2D cartesian coordinates. static inline PGenReturnDataBulk PGen_fetch_cart2(struct PGen *g, size_t nmemb, cart2_t *target) { if (g->c->fetch_cart2) return g->c->fetch_cart2(g, nmemb, target); else { anycoord_point_t *tmp; QPMS_CRASHING_MALLOC(tmp, sizeof(anycoord_point_t) * nmemb); PGenReturnDataBulk res = PGen_fetch_any(g, nmemb, tmp); anycoord_arr2something(target, QPMS_COORDS_CART2, tmp, res.flags, res.generated); free(tmp); res.flags = (res.flags & ~QPMS_COORDS_BITRANGE) | QPMS_COORDS_CART2; return res; } } /// Generate multiple points in 1D cartesian coordinates. static inline PGenReturnDataBulk PGen_fetch_z(struct PGen *g, size_t nmemb, double *target) { if (g->c->fetch_z) return g->c->fetch_z(g, nmemb, target); else { anycoord_point_t *tmp; QPMS_CRASHING_MALLOC(tmp, sizeof(anycoord_point_t) * nmemb); PGenReturnDataBulk res = PGen_fetch_any(g, nmemb, tmp); anycoord_arr2something(target, QPMS_COORDS_CART1, tmp, res.flags, res.generated); free(tmp); res.flags = (res.flags & ~QPMS_COORDS_BITRANGE) | QPMS_COORDS_CART1; return res; } } /// Deallocate and invalidate a PGen point generator. static inline void PGen_destroy(PGen *g) { g->c->destructor(g); assert(g->stateData == NULL); // this should be done by the destructor } /// Generate a point in a 1D real space. static inline PGenZReturnData PGen_next_z(PGen *g) { if (g->c->next_z) return g->c->next_z(g); else { // Super-slow generic fallback. PGenReturnData res = PGen_next(g); if (res.flags & PGEN_NOTDONE) { PGenZReturnData r; r.point_z = anycoord2cart1(res.point, res.flags); r.flags = (res.flags & ~QPMS_COORDS_BITRANGE) | QPMS_COORDS_CART1; return r; } else return PGenZDoneVal; } } /// Generate a point in a 3D real space (spherical coordinates). static inline PGenSphReturnData PGen_next_sph(PGen *g) { if (g->c->next_sph) return g->c->next_sph(g); else { // Super-slow generic fallback. PGenReturnData res = PGen_next(g); if (res.flags & PGEN_NOTDONE) { PGenSphReturnData r; r.point_sph = anycoord2sph(res.point, res.flags); r.flags = (res.flags & ~QPMS_COORDS_BITRANGE) | QPMS_COORDS_SPH; return r; } else return PGenSphDoneVal; } } /// Generate a point in a 2D real space (polar coordinates). static inline PGenPolReturnData PGen_next_pol(PGen *g) { if (g->c->next_pol) return g->c->next_pol(g); else { // Super-slow generic fallback. PGenReturnData res = PGen_next(g); if (res.flags & PGEN_NOTDONE) { PGenPolReturnData r; r.point_pol = anycoord2pol(res.point, res.flags); r.flags = (res.flags & ~QPMS_COORDS_BITRANGE) | QPMS_COORDS_POL; return r; } else return PGenPolDoneVal; } } /// Generate a point in a 3D real space (cartesian coordinates). static inline PGenCart3ReturnData PGen_next_cart3(PGen *g) { if (g->c->next_cart3) return g->c->next_cart3(g); else { // Super-slow generic fallback. PGenReturnData res = PGen_next(g); if (res.flags & PGEN_NOTDONE) { PGenCart3ReturnData r; r.point_cart3 = anycoord2cart3(res.point, res.flags); r.flags = (res.flags & ~QPMS_COORDS_BITRANGE) | QPMS_COORDS_CART3; return r; } else return PGenCart3DoneVal; } } /// Generate a point in a 2D real space (cartesian coordinates). static inline PGenCart2ReturnData PGen_next_cart2(PGen *g) { if (g->c->next_cart2) return g->c->next_cart2(g); else { // Super-slow generic fallback. PGenReturnData res = PGen_next(g); if (res.flags & PGEN_NOTDONE) { PGenCart2ReturnData r; r.point_cart2 = anycoord2cart2(res.point, res.flags); r.flags = (res.flags & ~QPMS_COORDS_BITRANGE) | QPMS_COORDS_CART2; return r; } else return PGenCart2DoneVal; } } #if 0 /// Generate up to \a n points. static inline PGenReturnDataBulk PGen_fetch(PGen *g, size_t n, anycoord_point_t *arr){ if (g->c->fetch) return g->c->fetch(g, n, arr); else abort(); } #endif static inline bool PGenSph_notDone(PGenSphReturnData data) { return data.flags & PGEN_NOTDONE ? true : false; } static inline bool PGenCart3_notDone(PGenCart3ReturnData data) { return data.flags & PGEN_NOTDONE ? true : false; } /// Standard PGen spherical coordinates -> 3d cartesian convertor. static inline PGenCart3ReturnData PGenReturnDataConv_sph_cart3(PGenSphReturnData sphdata){ PGenCart3ReturnData c3data; c3data.flags = sphdata.flags; c3data.point_cart3 = sph2cart(sphdata.point_sph); return c3data; } /// Standard PGen 3d cartesian -> spherical coordinates convertor. static inline PGenSphReturnData PGenReturnDataConv_cart3_sph(PGenCart3ReturnData c){ PGenSphReturnData s; s.flags = c.flags; s.point_sph = cart2sph(c.point_cart3); return s; } /* * Some basic lattice generators implementing the abstract interface above (implemented in latticegens.c). */ /// 2D point generator that simply iterates over an existing array of Point2d. extern const PGenClassInfo PGen_FromPoint2DArray; // TODO Do I even need this to be declared here? /// PGen_FromPoint2DArray constructor. PGen PGen_FromPoints2DArray_new(const point2d *points, size_t len); /// 1D equidistant point generator. extern const PGenClassInfo PGen_1D; typedef enum PGen_1D_incrementDirection{ //PGEN_1D_POSITIVE_INC, // not implemented //PGEN_1D_NEGATIVE_INC, // not implemented PGEN_1D_INC_FROM_ORIGIN, PGEN_1D_INC_TOWARDS_ORIGIN } PGen_1D_incrementDirection; /// PGen_1D point generator constructor. PGen PGen_1D_new_minMaxR(double period, ///< Distance between points. double offset, ///< Lattice offset from zero. double minR, ///< Lower bound of |z| of the generated points. bool inc_minR, ///< Include also |z| == minR (if applicable). double maxR, ///< Upper bound of |z| of the generated points. bool inc_maxR, ///< Include also |z| == maxR if applicable. PGen_1D_incrementDirection incdir ///< Order of generated points. ); extern const PGenClassInfo PGen_xyWeb; PGen PGen_xyWeb_new(cart2_t b1, cart2_t b2, double rtol, cart2_t offset, double minR, bool inc_minR, double maxR, bool inc_maxR); /// Returns a number larger or equal than the number of all the points generated by a PGen_xyWeb. size_t PGen_xyWeb_sizecap(cart2_t b1, cart2_t b2, double rtol, cart2_t offset, double minR, bool inc_minR, double maxR, bool inc_maxR); /* * THE NICE PART (adaptation of lattices2d.py) * =========================================== * * all the functions are prefixed with l2d_ * convention for argument order: inputs, *outputs, add. params */ #define BASIS_RTOL 1e-13 // Bravais lattice types typedef enum { OBLIQUE = 1, RECTANGULAR = 2, SQUARE = 4, RHOMBIC = 5, EQUILATERAL_TRIANGULAR = 3, RIGHT_ISOSCELES=SQUARE, PARALLELOGRAMMIC=OBLIQUE, CENTERED_RHOMBIC=RECTANGULAR, RIGHT_TRIANGULAR=RECTANGULAR, CENTERED_RECTANGULAR=RHOMBIC, ISOSCELE_TRIANGULAR=RHOMBIC, RIGHT_ISOSCELE_TRIANGULAR=SQUARE, HEXAGONAL=EQUILATERAL_TRIANGULAR } LatticeType2; #if 0 // Wallpaper groups typedef enum { TODO } SpaceGroup2; #endif // Just for detecting the right angles (needed for generators). typedef enum { NOT_ORTHOGONAL = 0, ORTHOGONAL_01 = 1, ORTHOGONAL_12 = 2, ORTHOGONAL_02 = 4 } LatticeFlags; /* * Lagrange-Gauss reduction of a 2D basis. * The output shall satisfy |out1| <= |out2| <= |out2 - out1| */ void l2d_reduceBasis(cart2_t in1, cart2_t in2, cart2_t *out1, cart2_t *out2); // This one uses LLL reduction. void l3d_reduceBasis(const cart3_t in[3], cart3_t out[3]); /* * This gives the "ordered shortest triple" of base vectors (each pair from the triple * is a base) and there may not be obtuse angle between o1, o2 and between o2, o3 */ void l2d_shortestBase3(cart2_t i1, cart2_t i2, cart2_t *o1, cart2_t *o2, cart2_t *o3); /* * TODO doc * return value is 4 or 6. */ int l2d_shortestBase46(cart2_t i1, cart2_t i2, cart2_t *o1, cart2_t *o2, cart2_t *o3, cart2_t *o4, cart2_t *o5, cart2_t *o6, double rtol); // variant int l2d_shortestBase46_arr(cart2_t i1, cart2_t i2, cart2_t *oarr, double rtol); // Determines whether angle between inputs is obtuse bool l2d_is_obtuse_r(cart2_t i1, cart2_t i2, double rtol); bool l2d_is_obtuse(cart2_t i1, cart2_t i2); /* * Given two basis vectors, returns 2D Bravais lattice type. */ LatticeType2 l2d_classifyLattice(cart2_t b1, cart2_t b2, double rtol); // Detects right angles. LatticeFlags l2d_detectRightAngles(cart2_t b1, cart2_t b2, double rtol); LatticeFlags l3d_detectRightAngles(const cart3_t basis[3], double rtol); // Other functions in lattices2d.py: TODO? // range2D() // generateLattice() // generateLatticeDisk() // cutWS() // filledWS() // change_basis() /* * Given basis vectors, returns the corners of the Wigner-Seits unit cell (W1, W2, -W1, W2) * for rectangular and square lattice or (w1, w2, w3, -w1, -w2, -w3) otherwise. */ int l2d_cellCornersWS(cart2_t i1, cart2_t i2, cart2_t *o1, cart2_t *o2, cart2_t *o3, cart2_t *o4, cart2_t *o5, cart2_t *o6, double rtol); // variant int l2d_cellCornersWS_arr(cart2_t i1, cart2_t i2, cart2_t *oarr, double rtol); // Reciprocal bases; returns 0 on success, possibly a non-zero if b1 and b2 are parallel int l2d_reciprocalBasis1(cart2_t b1, cart2_t b2, cart2_t *rb1, cart2_t *rb2); int l2d_reciprocalBasis2pi(cart2_t b1, cart2_t b2, cart2_t *rb1, cart2_t *rb2); double l2d_unitcell_area(cart2_t b1, cart2_t b2); // returns the radius of inscribed circle of a hexagon (or rectangle/square if applicable) created by the shortest base triple double l2d_hexWebInCircleRadius(cart2_t b1, cart2_t b2); /* * THE MORE OR LESS OK PART * ======================== */ /* * General set of points ordered by the r-coordinate. * Typically, this will include all lattice inside a certain circle. * This structure is internally used by the "lattice generators" below. * It does not have its memory management of its own, as it is handled * by the "generators". For everything except the generators, * this structure shall be read-only. */ typedef struct { size_t nrs; // number of different radii double *rs; // the radii; of length nrs (largest contained radius == rs[nrs-1]) point2d *base; ptrdiff_t *r_offsets; // of length nrs+1 (using relative offsets due to possible realloc's) // the jth point of i-th radius is base[r_offsets[i]+j] or using the inline below.. /* // redundand (therefore removed) members * point2d *points; // redundant as it is the same as points_at_r[0] * size_t npoints; // redundant as it is the same as points_at_r[nrs]-points_at_r[0] */ } points2d_rordered_t; // sorts arbitrary points and creates points2d_rordered_t points2d_rordered_t *points2d_rordered_frompoints(const point2d *orig_base, size_t nmemb, double rtol, double atol); // returns a copy but shifted by a constant (actually in a stupid way, but whatever) points2d_rordered_t *points2d_rordered_shift(const points2d_rordered_t *orig, point2d shift, double rtol, double atol); // returns a copy but scaled by a factor points2d_rordered_t *points2d_rordered_scale(const points2d_rordered_t *orig, double factor); /* The destructor: use only for results of * - points2D_rordered_frompoints, * - points2d_rordered_shift, * - points2d_rordered_scale. */ void points2d_rordered_free(points2d_rordered_t *); static inline point2d points2d_rordered_get_point(const points2d_rordered_t *ps, int r_order, int i) { assert(i >= 0); assert(r_order < ps->nrs); assert(i < (ps->r_offsets[r_order+1] - ps->r_offsets[r_order])); return ps->base[ps->r_offsets[r_order] + i]; } static inline double points2d_rordered_get_r(const points2d_rordered_t *ps, int r_order) { assert(r_order < ps->nrs); return ps->rs[r_order]; } ptrdiff_t points2d_rordered_locate_r(const points2d_rordered_t *, double r); // returns a "view" (does not copy any of the arrays) // -- DO NOT FREE orig BEFORE THE END OF SCOPE OF THE RESULT points2d_rordered_t points2d_rordered_annulus(const points2d_rordered_t *orig, double minr, bool minr_inc, double maxr, bool maxr_inc); #if 0 /// Gives the frequency of \a n-th empty lattice mode at a given wave vector \a k. double qpms_emptylattice2_mode_nth( cart2_t b1_rec, ///< First reciprocal lattice base vector cart2_t b2_rec, ///< Second reciprocal lattice base vector double rtol, ///< Relative tolerance to detect right angles cart2_t k, ///< The wave vector double wave_speed, ///< Wave speed in a given medium (i.e. vacuum speed / refractive index). size_t N ///< Index of the mode (note that degenerate modes are counted multiple times). ); /// Gives the first `maxindex` frequencies of empty lattice modes at a given wave vector \a k. void qpms_emptylattice2_modes_maxindex( double target_freqs[], ///< Target array of size maxindex. cart2_t b1_rec, ///< First reciprocal lattice base vector cart2_t b2_rec, ///< Second reciprocal lattice base vector double rtol, ///< Relative tolerance to detect right angles cart2_t k, ///< The wave vector double wave_speed, ///< Wave speed in a given medium (i.e. vacuum speed / refractive index). size_t maxindex ///< Number of the frequencies generated. ); #endif /// Gives the frequencies of empty lattice modes at a given wave vector \a k up to \a maxfreq and one more. /** * The frequencies are saved to a newly allocated array *target_freqs (to be deallocated * using free() by the caller). * * \returns Number of found mode frequencies lower or equal than \a maxfreq plus one. */ size_t qpms_emptylattice2_modes_maxfreq( double **target_freqs, cart2_t b1_rec, ///< First reciprocal lattice base vector cart2_t b2_rec, ///< Second reciprocal lattice base vector double rtol, ///< Relative tolerance to detect right angles cart2_t k, ///< The wave vector double wave_speed, ///< Wave speed in a given medium (i.e. vacuum speed / refractive index). double maxfreq ///< The maximum frequency. ); /// Gives the frequencies of two empty lattice modes nearest to \a omega at a given wave vector \a k. void qpms_emptylattice2_modes_nearest( double target[2], ///< Target array with lower ([0]) and upper ([1]) frequency. cart2_t b1_rec, ///< First reciprocal lattice base vector cart2_t b2_rec, ///< Second reciprocal lattice base vector double rtol, ///< Relative tolerance to detect right angles cart2_t k, ///< The wave vector double wave_speed, ///< Wave speed in a given medium (i.e. vacuum speed / refractive index). double omega ///< The frequency around which the frequencies are searched. ); /* * THE UGLY PART * ============= */ /* * EQUILATERAL TRIANGULAR LATTICE */ typedef enum { TRIANGULAR_VERTICAL, // there is a lattice base vector parallel to the y-axis TRIANGULAR_HORIZONTAL // there is a lattice base vector parallel to the x-axis } TriangularLatticeOrientation; static inline TriangularLatticeOrientation reverseTriangularLatticeOrientation(TriangularLatticeOrientation o){ switch(o) { case TRIANGULAR_VERTICAL: return TRIANGULAR_HORIZONTAL; break; case TRIANGULAR_HORIZONTAL: return TRIANGULAR_VERTICAL; break; default: abort(); } abort(); } // implementation data structures; not needed in the header file typedef struct triangular_lattice_gen_privstuff_t triangular_lattice_gen_privstuff_t; typedef struct { // public: points2d_rordered_t ps; TriangularLatticeOrientation orientation; double a; // lattice vector length // not sure if needed: bool includes_origin; // Denotes an offset of the "origin" point; meaning step hexshift * a / sqrt(2) upwards // or leftwards for the horizontal or vertical orientations, respectively. int hexshift; // private: triangular_lattice_gen_privstuff_t *priv; } triangular_lattice_gen_t; triangular_lattice_gen_t *triangular_lattice_gen_init(double a, TriangularLatticeOrientation ori, bool include_origin, int halfoffset); const points2d_rordered_t * triangular_lattice_gen_getpoints(const triangular_lattice_gen_t *g); int triangular_lattice_gen_extend_to_r(triangular_lattice_gen_t *g, double r); int triangular_lattice_gen_extend_to_steps(triangular_lattice_gen_t *g, int maxsteps); void triangular_lattice_gen_free(triangular_lattice_gen_t *g); /* * HONEYCOMB LATTICE */ typedef struct { // public: points2d_rordered_t ps; TriangularLatticeOrientation orientation; double a; double h; // private: triangular_lattice_gen_t *tg; } honeycomb_lattice_gen_t; honeycomb_lattice_gen_t *honeycomb_lattice_gen_init_h(double h, TriangularLatticeOrientation ori); honeycomb_lattice_gen_t *honeycomb_lattice_gen_init_a(double a, TriangularLatticeOrientation ori); int honeycomb_lattice_gen_extend_to_steps(honeycomb_lattice_gen_t *g, int maxsteps); int honeycomb_lattice_gen_extend_to_r(honeycomb_lattice_gen_t *g, double r); void honeycomb_lattice_gen_free(honeycomb_lattice_gen_t *g); #endif // LATTICES_H