VSWF expansions in terms of SSWF ================================ From \cite necada_multiple-scattering_2021, eq. (2.19) \f[ \wfkcout_{\tau lm}\left(\kappa (\vect r - \vect r_1) \right) = \sum_{\tau'l'm'} \tropSr{\kappa(\vect r_2 - \vect r_1)}_{\tau l m;\tau'l'm} \wfkcreg_{\tau'l'm'}(\vect r -\vect r_2), \qquad |\vect r -\vect r_2| < |\vect r_1 - \vect r_2|, \f] setting \f$ \vect r = \vect r_2\f$ and considering that \f$ \wfkcreg_{\tau'l'm'}(\vect 0) \ne \vect 0 \f$ only for electric dipole waves (\f$ \tau = \mathrm{E}, l=1 \f$), we have \f[ \wfkcout_{\tau lm}\left(\kappa (\vect r - \vect r_1) \right) = \sum_{m'} \tropSr{\kappa(\vect r - \vect r_1)}_{\tau l m;\mathrm{E}1m} \wfkcreg_{\mathrm{E}1m'}(\vect 0), \qquad \vect r \ne \vect r_1 . \f] Combining this with \cite necada_multiple-scattering_2021, eq. (2.25) \f[ \tropSr{\vect d}_{\tau l m; \tau' l' m'} = \sum_{\lambda =|l-l'|+|\tau-\tau'|}^{l+l'} C^{\lambda}_{\tau l m;\tau' l'm'} \underbrace{ \spharm{\lambda}{m-m'}(\uvec d) h_\lambda^{(1)}(d)}_{\sswfout_\lambda^{m-m'}(\vect d)}, \f] we get \f[ \wfkcout_{\tau lm}(\vect d) = \sum_{m'=-1}^1 \wfkcreg_{\mathrm{E}1m'}(\vect 0) \sum_{\lambda=l-1+|\tau-\tau'|}^{l+1} C^\lambda_{\tau l m;\mathrm{E}1m'} \sswfout_\lambda^{m-m'}(\vect d). \f] Note that the VSWF components in this expression are given in global "cartesian" basis, *not* the local orthonormal basis derived from spherical coordinates. (This is mostly desirable, because in lattices we need to work with flat coordinates anyway.)