#!/usr/bin/env python3 import math pi = math.pi from qpms.argproc import ArgParser ap = ArgParser(['rectlattice2d', 'single_particle', 'single_lMax', 'omega_seq_real_ng', 'planewave']) ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)') ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)") ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path") #ap.add_argument("-g", "--save-gradually", action='store_true', help="saves the partial result after computing each irrep") a=ap.parse_args() import logging logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO) import numpy as np import qpms from qpms.qpms_p import cart2sph, sph2cart, sph_loccart2cart, sph_loccart_basis import warnings from qpms.cybspec import BaseSpec from qpms.cytmatrices import CTMatrix, TMatrixGenerator from qpms.qpms_c import Particle, pgsl_ignore_error from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude from qpms.cycommon import DebugFlags, dbgmsg_enable from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar eh = eV/hbar dbgmsg_enable(DebugFlags.INTEGRATION) px, py = a.period particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9)) if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9) defaultprefix = "%s_p%gnmx%gnm_m%s_n%g_φ%g_θ(%g_%g)π_ψ%gπ_χ%gπ_f%s_L%d" % ( particlestr, px*1e9, py*1e9, str(a.material), a.refractive_index, a.phi/pi, np.amin(a.theta)/pi, np.amax(a.theta)/pi, a.psi/pi, a.chi/pi, ap.omega_descr, a.lMax) logging.info("Default file prefix: %s" % defaultprefix) a1 = ap.direct_basis[0] a2 = ap.direct_basis[1] #Particle positions orig_x = [0] orig_y = [0] orig_xy = np.stack(np.meshgrid(orig_x,orig_y),axis=-1) bspec = BaseSpec(lMax = a.lMax) # The parameters here should probably be changed (needs a better qpms_c.Particle implementation) pp = Particle(orig_xy[0][0], ap.tmgen, bspec=bspec) par = [pp] ss, ssw = ScatteringSystem.create(par, ap.background_emg, ap.allomegas[0], latticebasis = ap.direct_basis) ## Plane wave data a.theta = np.array(a.theta) dir_sph_list = np.stack((np.broadcast_to(1, a.theta.shape), a.theta, np.broadcast_to(a.phi, a.theta.shape)), axis=-1) sψ, cψ = math.sin(a.psi), math.cos(a.psi) sχ, cχ = math.sin(a.chi), math.cos(a.chi) E_sph = (0., cψ*cχ + 1j*sψ*sχ, sψ*cχ + 1j*cψ*sχ) dir_cart_list = sph2cart(dir_sph_list) E_cart_list = sph_loccart2cart(E_sph, dir_sph_list) nfreq = len(ap.allomegas) ndir = len(dir_sph_list) k_cart_arr = np.empty((nfreq, ndir, 3), dtype=float) wavenumbers = np.empty((nfreq,), dtype=float) σ_ext_arr = np.empty((nfreq,ndir), dtype=float) σ_scat_arr = np.empty((nfreq,ndir), dtype=float) with pgsl_ignore_error(15): # avoid gsl crashing on underflow for i, omega in enumerate(ap.allomegas): if i != 0: ssw = ss(omega) if ssw.wavenumber.imag != 0: warnings.warn("The background medium wavenumber has non-zero imaginary part. Don't expect meaningful results for cross sections.") wavenumber = ssw.wavenumber.real wavenumbers[i] = wavenumber k_sph_list = np.array(dir_sph_list, copy=True) k_sph_list[:,0] = wavenumber k_cart_arr[i] = sph2cart(k_sph_list) for j in range(ndir): k_cart = k_cart_arr[i,j] blochvector = (k_cart[0], k_cart[1], 0) # the following two could be calculated only once, but probably not a big deal LU = ssw.scatter_solver(k=blochvector) ã = ss.planewave_full(k_cart=k_cart, E_cart=E_cart_list[j]) Tã = ssw.apply_Tmatrices_full(ã) f = LU(Tã) σ_ext_arr[i,j] = -np.vdot(ã, f).real/wavenumber**2 translation_matrix = ssw.translation_matrix_full(blochvector=blochvector) + np.eye(ss.fecv_size) σ_scat_arr[i,j] = np.vdot(f,np.dot(translation_matrix, f)).real/wavenumber**2 σ_abs_arr = σ_ext_arr - σ_scat_arr outfile = defaultprefix + ".npz" if a.output is None else a.output np.savez(outfile, meta=vars(a), dir_sph=dir_sph_list, k_cart = k_cart_arr, omega = ap.allomegas, E_cart = E_cart_list, wavenumbers= wavenumbers, σ_ext=σ_ext_arr,σ_abs=σ_abs_arr,σ_scat=σ_scat_arr, unitcell_area=ss.unitcell_volume ) logging.info("Saved to %s" % outfile) if a.plot or (a.plot_out is not None): import matplotlib from matplotlib.backends.backend_pdf import PdfPages matplotlib.use('pdf') from matplotlib import pyplot as plt from scipy.interpolate import griddata plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out with PdfPages(plotfile) as pdf: ipm = 'nearest' sintheta = np.sin(a.theta) if False: #len(ap.omega_ranges) != 0: # angle plot --------------------------------- fig = plt.figure(figsize=(210/25.4, 297/25.4)) vmax = max(np.amax(σ_ext_arr), np.amax(σ_scat_arr), np.amax(σ_abs_arr)) vmin = min(np.amin(σ_ext_arr), np.amin(σ_scat_arr), np.amin(σ_abs_arr)) ax = fig.add_subplot(311) ax.pcolormesh(a.theta, ap.allomegas/eh, σ_ext_arr, vmin=vmin, vmax=vmax) ax.set_xlabel('$\\theta$') ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$') ax.set_title('$\\sigma_\\mathrm{ext}$') ax = fig.add_subplot(312) ax.pcolormesh(a.theta, ap.allomegas/eh, σ_scat_arr, vmin=vmin, vmax=vmax) ax.set_xlabel('$\\theta$') ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$') ax.set_title('$\\sigma_\\mathrm{scat}$') ax = fig.add_subplot(313) im = ax.pcolormesh(a.theta, ap.allomegas/eh, σ_abs_arr, vmin=vmin, vmax=vmax) ax.set_xlabel('$\\theta$') ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$') ax.set_title('$\\sigma_\\mathrm{abs}$') fig.subplots_adjust(right=0.8) fig.colorbar(im, cax = fig.add_axes([0.85, 0.15, 0.05, 0.7])) pdf.savefig(fig) plt.close(fig) if len(ap.omega_ranges) != 0: # "k-space" plot ----------------------------- domega = np.amin(np.diff(ap.allomegas)) dsintheta = np.amin(abs(np.diff(sintheta))) dk = dsintheta * wavenumbers[0] # target image grid grid_y, grid_x = np.mgrid[ap.allomegas[0] : ap.allomegas[-1] : domega, np.amin(sintheta) * wavenumbers[-1] : np.amax(sintheta) * wavenumbers[-1] : dk] imextent = (np.amin(sintheta) * wavenumbers[-1] / 1e6, np.amax(sintheta) * wavenumbers[-1] / 1e6, ap.allomegas[0] / eh, ap.allomegas[-1] / eh) # source coordinates for griddata ktheta = sintheta[None, :] * wavenumbers[:, None] omegapoints = np.broadcast_to(ap.allomegas[:, None], ktheta.shape) points = np.stack( (ktheta.flatten(), omegapoints.flatten()), axis = -1) fig = plt.figure(figsize=(210/25.4, 297/25.4)) vmax = np.amax(σ_ext_arr) ax = fig.add_subplot(311) grid_z = griddata(points, σ_ext_arr.flatten(), (grid_x, grid_y), method = ipm) ax.imshow(grid_z, extent = imextent, origin = 'lower', vmin = 0, vmax = vmax, aspect = 'auto', interpolation='none') ax.set_xlabel('$k_\\theta / \\mathrm{\\mu m^{-1}}$') ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$') ax.set_title('$\\sigma_\\mathrm{ext}$') ax = fig.add_subplot(312) grid_z = griddata(points, σ_scat_arr.flatten(), (grid_x, grid_y), method = ipm) ax.imshow(grid_z, extent = imextent, origin = 'lower', vmin = 0, vmax = vmax, aspect = 'auto', interpolation='none') ax.set_xlabel('$k_\\theta / \\mathrm{\\mu m^{-1}}$') ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$') ax.set_title('$\\sigma_\\mathrm{scat}$') ax = fig.add_subplot(313) grid_z = griddata(points, σ_abs_arr.flatten(), (grid_x, grid_y), method = ipm) im = ax.imshow(grid_z, extent = imextent, origin = 'lower', vmin = 0, vmax = vmax, aspect = 'auto', interpolation='none') ax.set_xlabel('$k_\\theta / \\mathrm{\\mu m^{-1}}$') ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$') ax.set_title('$\\sigma_\\mathrm{abs}$') fig.subplots_adjust(right=0.8) fig.colorbar(im, cax = fig.add_axes([0.85, 0.15, 0.05, 0.7])) pdf.savefig(fig) plt.close(fig) for omega in ap.omega_singles: i = np.searchsorted(ap.allomegas, omega) fig = plt.figure() fig.suptitle("%g eV" % (omega / eh)) ax = fig.add_subplot(111) sintheta = np.sin(a.theta) ax.plot(sintheta, σ_ext_arr[i]*1e12,label='$\sigma_\mathrm{ext}$') ax.plot(sintheta, σ_scat_arr[i]*1e12, label='$\sigma_\mathrm{scat}$') ax.plot(sintheta, σ_abs_arr[i]*1e12, label='$\sigma_\mathrm{abs}$') ax.legend() ax.set_xlabel('$\sin\\theta$') ax.set_ylabel('$\sigma/\mathrm{\mu m^2}$') pdf.savefig(fig) plt.close(fig) exit(0)