#!/usr/bin/env python3 import argparse, re, random, string, sys import subprocess from scipy.constants import hbar, e as eV, pi, c unitcell_size = 1 # rectangular lattice unitcell_indices = tuple(range(unitcell_size)) def make_action_sharedlist(opname, listname): class opAction(argparse.Action): def __call__(self, parser, args, values, option_string=None): if (not hasattr(args, listname)) or getattr(args, listname) is None: setattr(args, listname, list()) getattr(args,listname).append((opname, values)) return opAction parser = argparse.ArgumentParser() #TODO? použít type=argparse.FileType('r') ? parser.add_argument('--TMatrix', action='store', required=True, help='Path to TMatrix file') #parser.add_argument('--griddir', action='store', required=True, help='Path to the directory with precalculated translation operators') parser.add_argument('--output_prefix', '-p', '-o', action='store', required=True, help='Prefix to the npz output (will be appended frequency, hexside and chunkno)') parser.add_argument('--nosuffix', action='store_true', help='Do not add dimension metadata to the output filenames') #sizepar = parser.add_mutually_exclusive_group(required=True) #parser.add_argument('--hexside', action='store', type=float, required=True, help='Lattice hexagon size length') parser.add_argument('--dx', action='store', type=float, required=True, help='x-direction lattice constant') parser.add_argument('--dy', action='store', type=float, required=True, help='y-direction lattice constant') parser.add_argument('--Nx', '--nx', action='store', type=int, required=True, help='Lattice points in the x-direction') parser.add_argument('--Ny', '--ny', action='store', type=int, required=True, help='Lattice points in the y-direction') # In these default settings, the area is 2x2 times larger than first BZ parser.add_argument('--kxmin', action='store', type=float, default=-1., help='TODO') parser.add_argument('--kxmax', action='store', type=float, default=1., help='TODO') parser.add_argument('--kymin', action='store', type=float, default=-1., help='TODO') parser.add_argument('--kymax', action='store', type=float, default=1., help='TODO') #parser.add_argument('--kdensity', action='store', type=int, default=33, help='Number of k-points per x-axis segment') parser.add_argument('--kxdensity', action='store', type=int, default=51, help='k-space resolution in the x-direction') parser.add_argument('--kydensity', action='store', type=int, default=51, help='k-space resolution in the y-direction') partgrp = parser.add_mutually_exclusive_group() partgrp.add_argument('--only_TE', action='store_true', help='Calculate only the projection on the E⟂z modes') partgrp.add_argument('--only_TM', action='store_true', help='Calculate only the projection on the E∥z modes') partgrp.add_argument('--serial', action='store_true', help='Calculate the TE and TM parts separately to save memory') parser.add_argument('--nocentre', action='store_true', help='Place the coordinate origin to the left bottom corner rather that to the centre of the array') parser.add_argument('--plot_TMatrix', action='store_true', help='Visualise TMatrix on the first page of the output') #parser.add_argument('--SVD_output', action='store', help='Path to output singular value decomposition result') parser.add_argument('--maxlayer', action='store', type=int, default=100, help='How far to sum the lattice points to obtain the dispersion') parser.add_argument('--scp_to', action='store', metavar='N', type=str, help='SCP the output files to a given destination') parser.add_argument('--background_permittivity', action='store', type=float, default=1., help='Background medium relative permittivity (default 1)') parser.add_argument('--eVfreq', action='store', required=True, type=float, help='Frequency in eV') parser.add_argument('--chunklen', action='store', type=int, default=3000, help='Number of k-points per output file (default 3000)') parser.add_argument('--lMax', action='store', type=int, help='Override lMax from the TMatrix file') #TODO some more sophisticated x axis definitions #parser.add_argument('--gaussian', action='store', type=float, metavar='σ', help='Use a gaussian envelope for weighting the interaction matrix contributions (depending on the distance), measured in unit cell lengths (?) FIxME).') parser.add_argument('--verbose', '-v', action='count', help='Be verbose (about computation times, mostly)') popgrp=parser.add_argument_group(title='Operations') popgrp.add_argument('--tr', dest='ops', action=make_action_sharedlist('tr', 'ops'), default=list()) # the default value for dest can be set once for i in unitcell_indices: popgrp.add_argument('--tr%d'%i, dest='ops', action=make_action_sharedlist('tr%d'%i, 'ops')) popgrp.add_argument('--sym', dest='ops', action=make_action_sharedlist('sym', 'ops')) for i in unitcell_indices: popgrp.add_argument('--sym%d'%i, dest='ops', action=make_action_sharedlist('sym%d'%i, 'ops')) #popgrp.add_argument('--mult', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult', 'ops')) #popgrp.add_argument('--mult0', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult0', 'ops')) #popgrp.add_argument('--mult1', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult1', 'ops')) popgrp.add_argument('--multl', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl', 'ops')) for i in unitcell_indices: popgrp.add_argument('--multl%d'%i, dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl%d'%i, 'ops')) #popgrp.add_argument('--multl1', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl1', 'ops')) parser.add_argument('--frequency_multiplier', action='store', type=float, default=1., help='Multiplies the frequencies in the TMatrix file by a given factor.') # TODO enable more flexible per-sublattice specification pargs=parser.parse_args() if pargs.verbose: print(pargs, file = sys.stderr) maxlayer=pargs.maxlayer eVfreq = pargs.eVfreq freq = eVfreq*eV/hbar verbose=pargs.verbose dy = pargs.dy dx = pargs.dx Ny = pargs.Ny Nx = pargs.Nx TMatrix_file = pargs.TMatrix epsilon_b = pargs.background_permittivity #2.3104 #gaussianSigma = pargs.gaussian if pargs.gaussian else None # hexside * 222 / 7 interpfreqfactor = pargs.frequency_multiplier scp_dest = pargs.scp_to if pargs.scp_to else None kxdensity = pargs.kxdensity kydensity = pargs.kydensity chunklen = pargs.chunklen ops = list() opre = re.compile('(tr|sym|copy|multl|mult)(\d*)') for oparg in pargs.ops: opm = opre.match(oparg[0]) if opm: ops.append(((opm.group(2),) if opm.group(2) else unitcell_indices, opm.group(1), oparg[1])) else: raise # should not happen if(verbose): print(ops, file = sys.stderr) # -----------------finished basic CLI parsing (except for op arguments) ------------------ from qpms.timetrack import _time_b, _time_e btime=_time_b(verbose) import qpms import numpy as np import os, warnings, math from scipy import interpolate nx = None s3 = math.sqrt(3) # specifikace T-matice zde refind = math.sqrt(epsilon_b) cdn = c / refind k_0 = freq * refind / c # = freq / cdn TMatrices_orig, freqs_orig, freqs_weirdunits_orig, lMaxTM = qpms.loadScuffTMatrices(TMatrix_file) lMax = lMaxTM if pargs.lMax: lMax = pargs.lMax if pargs.lMax else lMaxTM my, ny = qpms.get_mn_y(lMax) nelem = len(my) if pargs.lMax: #force commandline specified lMax TMatrices_orig = TMatrices_orig[...,0:nelem,:,0:nelem] TMatrices = np.array(np.broadcast_to(TMatrices_orig[:,nx,:,:,:,:],(len(freqs_orig),unitcell_size,2,nelem,2,nelem)) ) xfl = qpms.xflip_tyty(lMax) yfl = qpms.yflip_tyty(lMax) zfl = qpms.zflip_tyty(lMax) c2rot = qpms.apply_matrix_left(qpms.yflip_yy(3),qpms.xflip_yy(3),-1) reCN = re.compile('(\d*)C(\d+)') #TODO C nekonečno for op in ops: if op[0] == 'all': #targets = (0,1) targets = unitcell_indices elif isinstance(op[0],int): targets = (op[0],) else: targets = op[0] if op[1] == 'sym': mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions if op[2] == 'σ_z': for t in targets: TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2 elif op[2] == 'σ_y': for t in targets: TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2 elif op[2] == 'σ_x': for t in targets: TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2 elif op[2] == 'C2': # special case of the latter for t in targets: TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1))/2 elif mCN: rotN = int(mCN.group(2)) TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_) for t in targets: for i in range(rotN): rotangle = 2*np.pi*i / rotN rot = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,rotangle])) rotinv = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,-rotangle])) TMatrix_contribs[i] = qpms.apply_matrix_left(rot,qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1) TMatrices[:,t] = np.sum(TMatrix_contribs, axis=0) / rotN else: raise elif op[1] == 'tr': mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions if op[2] == 'σ_z': for t in targets: TMatrices[:,t] = qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1)) elif op[2] == 'σ_y': for t in targets: TMatrices[:,t] = qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1)) elif op[2] == 'σ_x': for t in targets: TMatrices[:,t] = qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1)) elif op[2] == 'C2': for t in targets: TMatrices[:,t] = qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1) elif mCN: rotN = int(mCN.group(2)) power = int(mCN.group(1)) if mCN.group(1) else 1 TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_) for t in targets: rotangle = 2*np.pi*power/rotN rot = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,rotangle])) rotinv = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,-rotangle])) TMatrices[:,t] = qpms.apply_matrix_left(rot, qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1) else: raise elif op[1] == 'copy': raise # not implemented elif op[1] == 'mult': raise # not implemented elif op[1] == 'multl': incy = np.full((nelem,), False, dtype=bool) for incl in op[2][0].split(','): l = int(incl) incy += (l == ny) scaty = np.full((nelem,), False, dtype=bool) for scatl in op[2][1].split(','): l = int(scatl) scaty += (l == ny) for t in targets: TMatrices[np.ix_(np.arange(TMatrices.shape[0]),np.array([t]),np.array([0,1]),scaty,np.array([0,1]),incy)] *= float(op[2][2]) else: raise #unknown operation; should not happen TMatrices_interp = interpolate.interp1d(freqs_orig*interpfreqfactor, TMatrices, axis=0, kind='linear',fill_value="extrapolate") xpositions = np.arange(Nx) * dx ypositions = np.arange(Ny) * dy if not pargs.nocentre: xpositions -= Nx * dx / 2 ypositions -= Ny * dy / 2 xpositions, ypositions = np.meshgrid(xpositions, ypositions, indexing='ij', copy=False) positions=np.stack((xpositions.ravel(),ypositions.ravel()), axis=-1) N = positions.shape[0] kx = np.linspace(pargs.kxmin, pargs.kxmax, num=pargs.kxdensity, endpoint=True) * 2*np.pi / dx ky = np.linspace(pargs.kymin, pargs.kymax, num=pargs.kydensity, endpoint=True) * 2*np.pi / dy kx, ky = np.meshgrid(kx, ky, indexing='ij', copy=False) kz = np.sqrt(k_0 - (kx ** 2 + ky ** 2)) klist_full = np.stack((kx,ky,kz), axis=-1).reshape((-1,3)) TMatrices_om = TMatrices_interp(freq) chunkn = math.ceil(klist_full.size / 3 / chunklen) if verbose: print('Evaluating %d k-points' % klist_full.size + ('in %d chunks'%chunkn) if chunkn>1 else '' , file = sys.stderr) sys.stderr.flush() try: version = qpms.__version__ except NameError: version = None metadata = np.array({ 'script': os.path.basename(__file__), 'version': version, 'type' : 'Plane wave scattering on a finite rectangular lattice', 'lMax' : lMax, 'dx' : dx, 'dy' : dy, 'Nx' : Nx, 'Ny' : Ny, #'maxlayer' : maxlayer, #'gaussianSigma' : gaussianSigma, 'epsilon_b' : epsilon_b, #'hexside' : hexside, 'chunkn' : chunkn, 'chunki' : 0, 'TMatrix_file' : TMatrix_file, 'ops' : ops, 'centred' : not pargs.nocentre }) scat = qpms.Scattering_2D_zsym(positions, TMatrices_om, k_0, verbose=verbose) if pargs.only_TE: actions = (0,) elif pargs.only_TM: actions = (1,) elif pargs.serial: actions = (0,1) else: actions = (None,) xu = np.array((1,0,0)) yu = np.array((0,1,0)) zu = np.array((0,0,1)) TEč, TMč = qpms.symz_indexarrays(lMax) klist_full_2D = klist_full[...,:2] klist_full_dir = klist_full/np.linalg.norm(klist_full, axis=-1, keepdims=True) for action in actions: if action is None: scat.prepare(verbose=verbose) actionstring = '' else: scat.prepare_partial(action, verbose=verbose) actionstring = '.TM' if action else '.TE' for chunki in range(chunkn): sbtime = _time_b(verbose, step='Solving the scattering problem, chunk %d'%chunki+actionstring) if pargs.nosuffix: outfile = pargs.output_prefix + actionstring + ( ('.%03d' % chunki) if chunkn > 1 else '') else: outfile = '%s_%dx%d_%.0fnmx%.0fnm_%.4f%s%s.npz' % ( pargs.output_prefix, Nx, Ny, dx/1e-9, dy/1e-9, eVfreq, actionstring, (".%03d" % chunki) if chunkn > 1 else '') klist = klist_full[chunki * chunklen : (chunki + 1) * chunklen] klist2d = klist_full_2D[chunki * chunklen : (chunki + 1) * chunklen] klistdir = klist_full_dir[chunki * chunklen : (chunki + 1) * chunklen] ''' The following loop is a fuckup that has its roots in the fact that the function qpms.get_π̃τ̃_y1 in qpms_p.py is not vectorized (and consequently, neither is plane_pq_y.) And Scattering_2D_zsym.scatter_partial is not vectorized, either. ''' if action == 0 or action is None: xresult = np.full((klist.shape[0], N, nelem), np.nan, dtype=complex) yresult = np.full((klist.shape[0], N, nelem), np.nan, dtype=complex) if action == 1 or action is None: zresult = np.full((klist.shape[0], N, nelem), np.nan, dtype=complex) for i in range(klist.shape[0]): if math.isnan(klist[i,2]): continue kdir = klistdir[i] phases = np.exp(np.sum(klist2d[i] * positions, axis=-1)) if action == 0 or action is None: pq = np.array(qpms.plane_pq_y(lMax, kdir, xu)).ravel()[TEč] * phases[:, nx] xresult[i] = scat.scatter_partial(0, pq) pq = np.array(qpms.plane_pq_y(lMax, kdir, yu)).ravel()[TEč] * phases[:, nx] yresult[i] = scat.scatter_partial(0, pq) if action == 1 or action is None: pq = np.array(qpms.plane_pq_y(lMax, kdir, zu)).ravel()[TMč] * phases[:, nx] zresult[i] = scat.scatter_partial(1, pq) _time_e(sbtime, verbose, step='Solving the scattering problem, chunk %d'%chunki+actionstring) metadata[()]['chunki'] = chunki if action is None: np.savez(outfile, omega = freq, klist = klist, metadata=metadata, ab_x=xresult, ab_y=yresult, ab_z=zresult ) elif action == 0: np.savez(outfile, omega = freq, klist = klist, metadata=metadata, ab_x=xresult, ab_y=yresult, ) elif action == 1: np.savez(outfile, omega = freq, klist = klist, metadata=metadata, ab_z=zresult ) else: raise if scp_dest: if outfile: subprocess.run(['scp', outfile, scp_dest]) scat.forget_matrices() # free memory in case --serial was used _time_e(btime, verbose)