#include #include "qpms_types.h" #include "gaunt.h" #include "translations.h" #include "indexing.h" // TODO replace size_t and int with own index types here #include #include #include #include "assert_cython_workaround.h" #include "kahansum.h" #include //abort() #include /* * Define macros with additional factors that "should not be there" according * to the "original" formulae but are needed to work with my vswfs. * (actually, I don't know whether the error is in using "wrong" implementation * of vswfs, "wrong" implementation of Xu's translation coefficient formulae, * error/inconsintency in Xu's paper or something else) * Anyway, the zeroes give the correct _numerical_ values according to Xu's * paper tables (without Xu's typos, of course), while * the predefined macros give the correct translations of the VSWFs for the * QPMS_NORMALIZATION_TAYLOR_CS norm. */ #if !(defined AN0 || defined AN1 || defined AN2 || defined AN3) #pragma message "using AN1 macro as default" #define AN1 #endif //#if !(defined AM0 || defined AM2) //#define AM1 //#endif #if !(defined BN0 || defined BN1 || defined BN2 || defined BN3) #pragma message "using BN1 macro as default" #define BN1 #endif //#if !(defined BM0 || defined BM2) //#define BM1 //#endif //#if !(defined BF0 || defined BF1 || defined BF2 || defined BF3) //#define BF1 //#endif // if defined, the pointer B_multipliers[y] corresponds to the q = 1 element; // otherwise, it corresponds to the q = 0 element, which should be identically zero #ifdef QPMS_PACKED_B_MULTIPLIERS #define BQ_OFFSET 1 #else #define BQ_OFFSET 0 #endif /* * References: * [Xu_old] Yu-Lin Xu, Journal of Computational Physics 127, 285–298 (1996) * [Xu] Yu-Lin Xu, Journal of Computational Physics 139, 137–165 (1998) */ /* * GENERAL TODO: use normalised Legendre functions for Kristensson and Taylor conventions directly * instead of normalising them here (the same applies for csphase). */ static const double sqrtpi = 1.7724538509055160272981674833411451827975494561223871; //static const double ln2 = 0.693147180559945309417232121458176568075500134360255254120; // Associated Legendre polynomial at zero argument (DLMF 14.5.1) double qpms_legendre0(int m, int n) { return pow(2,m) * sqrtpi / tgamma(.5*n - .5*m + .5) / tgamma(.5*n-.5*m); } static inline int min1pow(int x) { return (x % 2) ? -1 : 1; } static inline complex double ipow(int x) { return cpow(I, x); } // Derivative of associated Legendre polynomial at zero argument (DLMF 14.5.2) double qpms_legendreD0(int m, int n) { return -2 * qpms_legendre0(m, n); } static inline int imin(int x, int y) { return x > y ? y : x; } // The uppermost value of q index for the B coefficient terms from [Xu](60). // N.B. this is different from [Xu_old](79) due to the n vs. n+1 difference. // However, the trailing terms in [Xu_old] are analytically zero (although // the numerical values will carry some non-zero rounding error). static inline int gauntB_Q_max(int M, int n, int mu, int nu) { return imin(n, imin(nu, (n+nu+1-abs(M+mu))/2)); } int qpms_sph_bessel_fill(qpms_bessel_t typ, int lmax, double x, complex double *result_array) { int retval; double tmparr[lmax+1]; switch(typ) { case QPMS_BESSEL_REGULAR: retval = gsl_sf_bessel_jl_steed_array(lmax, x, tmparr); for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l]; return retval; break; case QPMS_BESSEL_SINGULAR: //FIXME: is this precise enough? Would it be better to do it one-by-one? retval = gsl_sf_bessel_yl_array(lmax,x,tmparr); for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l]; return retval; break; case QPMS_HANKEL_PLUS: case QPMS_HANKEL_MINUS: retval = gsl_sf_bessel_jl_steed_array(lmax, x, tmparr); for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l]; if(retval) return retval; retval = gsl_sf_bessel_yl_array(lmax, x, tmparr); if (typ==QPMS_HANKEL_PLUS) for (int l = 0; l <= lmax; ++l) result_array[l] += I * tmparr[l]; else for (int l = 0; l <= lmax; ++l) result_array[l] +=-I * tmparr[l]; return retval; break; default: abort(); //return GSL_EDOM; } assert(0); } static inline double qpms_trans_normlogfac(qpms_normalisation_t norm, int m, int n, int mu, int nu) { //int csphase = qpms_normalisation_t csphase(norm); // probably not needed here norm = qpms_normalisation_t_normonly(norm); switch(norm) { case QPMS_NORMALISATION_KRISTENSSON: case QPMS_NORMALISATION_TAYLOR: return -0.5*(lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1)); break; case QPMS_NORMALISATION_NONE: return -(lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1)); break; #ifdef USE_XU_ANTINORMALISATION case QPMS_NORMALISATION_XU: return 0; break; #endif default: abort(); } } static inline double qpms_trans_normfac(qpms_normalisation_t norm, int m, int n, int mu, int nu) { int csphase = qpms_normalisation_t_csphase(norm); norm = qpms_normalisation_t_normonly(norm); /* Account for csphase here. Alternatively, this could be done by * using appropriate csphase in the legendre polynomials when calculating * the translation operator. */ double normfac = (1 == csphase) ? min1pow(m-mu) : 1.; switch(norm) { case QPMS_NORMALISATION_KRISTENSSON: normfac *= sqrt((n*(n+1.))/(nu*(nu+1.))); normfac *= sqrt((2.*n+1)/(2.*nu+1)); break; case QPMS_NORMALISATION_TAYLOR: normfac *= sqrt((2.*n+1)/(2.*nu+1)); break; case QPMS_NORMALISATION_NONE: normfac *= (2.*n+1)/(2.*nu+1); break; #ifdef USE_XU_ANTINORMALISATION case QPMS_NORMALISATION_XU: break; #endif default: abort(); } return normfac; } complex double qpms_trans_single_A(qpms_normalisation_t norm, int m, int n, int mu, int nu, sph_t kdlj, bool r_ge_d, qpms_bessel_t J) { if(r_ge_d) J = QPMS_BESSEL_REGULAR; double costheta = cos(kdlj.theta); int qmax = gaunt_q_max(-m,n,mu,nu); // nemá tu být +m? // N.B. -m !!!!!! double a1q[qmax+1]; int err; gaunt_xu(-m,n,mu,nu,qmax,a1q,&err); double a1q0 = a1q[0]; if (err) abort(); int csphase = qpms_normalisation_t_csphase(norm); double leg[gsl_sf_legendre_array_n(n+nu)]; if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu,costheta,csphase,leg)) abort(); complex double bes[n+nu+1]; if (qpms_sph_bessel_fill(J, n+nu, kdlj.r, bes)) abort(); complex double sum = 0; for(int q = 0; q <= qmax; ++q) { int p = n+nu-2*q; int Pp_order = mu-m; //if(p < abs(Pp_order)) continue; // FIXME raději nastav lépe meze assert(p >= abs(Pp_order)); double a1q_n = a1q[q] / a1q0; double Pp = leg[gsl_sf_legendre_array_index(p, abs(Pp_order))]; if (Pp_order < 0) Pp *= min1pow(mu-m) * exp(lgamma(1+p+Pp_order)-lgamma(1+p-Pp_order)); complex double zp = bes[p]; complex double summandq = (n*(n+1) + nu*(nu+1) - p*(p+1)) * min1pow(q) * a1q_n * zp * Pp; sum += summandq; // TODO KAHAN } double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2) +lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1) +lgamma(n+nu+1) - lgamma(2*(n+nu)+1)); complex double presum = exp(exponent); presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n) / (4*n); double normlogfac = qpms_trans_normlogfac(norm,m,n,mu,nu); double normfac = qpms_trans_normfac(norm,m,n,mu,nu); // ipow(n-nu) is the difference from the Taylor formula! presum *= /*ipow(n-nu) * */ (normfac * exp(normlogfac)) #ifdef AN1 * ipow(n-nu) #elif defined AN2 * min1pow(-n+nu) #elif defined AN3 * ipow (nu - n) #endif #ifdef AM2 * min1pow(-m+mu) #endif //NNU ; return presum * sum; } complex double qpms_trans_single_A_Taylor(int m, int n, int mu, int nu, sph_t kdlj, bool r_ge_d, qpms_bessel_t J) { if(r_ge_d) J = QPMS_BESSEL_REGULAR; double costheta = cos(kdlj.theta); int qmax = gaunt_q_max(-m,n,mu,nu); // nemá tu být +m? // N.B. -m !!!!!! double a1q[qmax+1]; int err; gaunt_xu(-m,n,mu,nu,qmax,a1q,&err); double a1q0 = a1q[0]; if (err) abort(); double leg[gsl_sf_legendre_array_n(n+nu)]; if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu,costheta,-1,leg)) abort(); complex double bes[n+nu+1]; if (qpms_sph_bessel_fill(J, n+nu, kdlj.r, bes)) abort(); complex double sum = 0; for(int q = 0; q <= qmax; ++q) { int p = n+nu-2*q; int Pp_order = mu-m; //if(p < abs(Pp_order)) continue; // FIXME raději nastav lépe meze assert(p >= abs(Pp_order)); double a1q_n = a1q[q] / a1q0; double Pp = leg[gsl_sf_legendre_array_index(p, abs(Pp_order))]; if (Pp_order < 0) Pp *= min1pow(mu-m) * exp(lgamma(1+p+Pp_order)-lgamma(1+p-Pp_order)); complex double zp = bes[p]; complex double summandq = (n*(n+1) + nu*(nu+1) - p*(p+1)) * min1pow(q) * a1q_n * zp * Pp; sum += summandq; // TODO KAHAN } double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2) +lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1) +lgamma(n+nu+1) - lgamma(2*(n+nu)+1)); complex double presum = exp(exponent); presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n) / (4*n); // N.B. ipow(nu-n) is different from the general formula! complex double prenormratio = ipow(nu-n) * sqrt(((2.*nu+1)/(2.*n+1))* exp( lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1))); return (presum / prenormratio) * sum; } // [Xu_old], eq. (83) complex double qpms_trans_single_B_Xu(int m, int n, int mu, int nu, sph_t kdlj, bool r_ge_d, qpms_bessel_t J) { assert(0); // FIXME probably gives wrong values, do not use. if(r_ge_d) J = QPMS_BESSEL_REGULAR; double costheta = cos(kdlj.theta); // TODO Qmax cleanup: can I replace Qmax with realQmax??? int q2max = gaunt_q_max(-m-1,n+1,mu+1,nu); int Qmax = gaunt_q_max(-m,n+1,mu,nu); int realQmax = gauntB_Q_max(-m, n, mu, nu); double a2q[q2max+1], a3q[Qmax+1], a2q0, a3q0; int err; if (mu == nu) { for (int q = 0; q <= q2max; ++q) a2q[q] = 0; a2q0 = 1; } else { gaunt_xu(-m-1,n+1,mu+1,nu,q2max,a2q,&err); if (err) abort(); a2q0 = a2q[0]; } gaunt_xu(-m,n+1,mu,nu,Qmax,a3q,&err); if (err) abort(); a3q0 = a3q[0]; double leg[gsl_sf_legendre_array_n(n+nu+1)]; if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,costheta,-1,leg)) abort(); complex double bes[n+nu+2]; if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bes)) abort(); complex double sum = 0; for (int q = 0; q <= realQmax; ++q) { int p = n+nu-2*q; double a2q_n = a2q[q]/a2q0; double a3q_n = a3q[q]/a3q0; complex double zp_ = bes[p+1]; int Pp_order_ = mu-m; //if(p+1 < abs(Pp_order_)) continue; // FIXME raději nastav lépe meze assert(p+1 >= abs(Pp_order_)); double Pp_ = leg[gsl_sf_legendre_array_index(p+1, abs(Pp_order_))]; if (Pp_order_ < 0) Pp_ *= min1pow(mu-m) * exp(lgamma(1+1+p+Pp_order_)-lgamma(1+1+p-Pp_order_)); complex double summandq = ((2*(n+1)*(nu-mu)*a2q_n -(-nu*(nu+1) - n*(n+3) - 2*mu*(n+1)+p*(p+3))* a3q_n) *min1pow(q) * zp_ * Pp_); sum += summandq; // TODO KAHAN } double exponent=(lgamma(2*n+3)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2) +lgamma(n+nu+m-mu+2)-lgamma(n-m+1)-lgamma(nu+mu+1) +lgamma(n+nu+2) - lgamma(2*(n+nu)+3)); complex double presum = exp(exponent); presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n+1) / ( (4*n)*(n+1)*(n+m+1)); // Taylor normalisation v2, proven to be equivalent complex double prenormratio = ipow(nu-n); return (presum / prenormratio) * sum; } complex double qpms_trans_single_B(qpms_normalisation_t norm, int m, int n, int mu, int nu, sph_t kdlj, bool r_ge_d, qpms_bessel_t J) { #ifndef USE_BROKEN_SINGLETC assert(0); // FIXME probably gives wrong values, do not use. #endif if(r_ge_d) J = QPMS_BESSEL_REGULAR; double costheta = cos(kdlj.theta); int q2max = gaunt_q_max(-m-1,n+1,mu+1,nu); int Qmax = gaunt_q_max(-m,n+1,mu,nu); int realQmax = gauntB_Q_max(-m,n,mu,nu); double a2q[q2max+1], a3q[Qmax+1], a2q0, a3q0; int err; if (mu == nu) { for (int q = 0; q <= q2max; ++q) a2q[q] = 0; a2q0 = 1; } else { gaunt_xu(-m-1,n+1,mu+1,nu,q2max,a2q,&err); if (err) abort(); a2q0 = a2q[0]; } gaunt_xu(-m,n+1,mu,nu,Qmax,a3q,&err); if (err) abort(); a3q0 = a3q[0]; int csphase = qpms_normalisation_t_csphase(norm); double leg[gsl_sf_legendre_array_n(n+nu+1)]; if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,costheta,csphase,leg)) abort(); complex double bes[n+nu+2]; if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bes)) abort(); complex double sum = 0; for (int q = 0; q <= realQmax; ++q) { int p = n+nu-2*q; double a2q_n = a2q[q]/a2q0; double a3q_n = a3q[q]/a3q0; complex double zp_ = bes[p+1]; int Pp_order_ = mu-m; //if(p+1 < abs(Pp_order_)) continue; // FIXME raději nastav lépe meze assert(p+1 >= abs(Pp_order_)); double Pp_ = leg[gsl_sf_legendre_array_index(p+1, abs(Pp_order_))]; if (Pp_order_ < 0) Pp_ *= min1pow(mu-m) * exp(lgamma(1+1+p+Pp_order_)-lgamma(1+1+p-Pp_order_)); complex double summandq = ((2*(n+1)*(nu-mu)*a2q_n -(-nu*(nu+1) - n*(n+3) - 2*mu*(n+1)+p*(p+3))* a3q_n) *min1pow(q) * zp_ * Pp_); sum += summandq; //TODO KAHAN } double exponent=(lgamma(2*n+3)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2) +lgamma(n+nu+m-mu+2)-lgamma(n-m+1)-lgamma(nu+mu+1) +lgamma(n+nu+2) - lgamma(2*(n+nu)+3)); complex double presum = exp(exponent); presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n+1) / ( (4*n)*(n+1)*(n+m+1)); double normlogfac = qpms_trans_normlogfac(norm,m,n,mu,nu); double normfac = qpms_trans_normfac(norm,m,n,mu,nu); // ipow(n-nu) is the difference from the "old Taylor" formula presum *= /*ipow(n-nu) * */(exp(normlogfac) * normfac) #ifdef AN1 * ipow(n-nu) #elif defined AN2 * min1pow(-n+nu) #elif defined AN3 * ipow (nu - n) #endif #ifdef AM2 * min1pow(-m+mu) #endif //NNU ; return presum * sum; } complex double qpms_trans_single_B_Taylor(int m, int n, int mu, int nu, sph_t kdlj, bool r_ge_d, qpms_bessel_t J) { assert(0); // FIXME probably gives wrong values, do not use. if(r_ge_d) J = QPMS_BESSEL_REGULAR; double costheta = cos(kdlj.theta); int q2max = gaunt_q_max(-m-1,n+1,mu+1,nu); int Qmax = gaunt_q_max(-m,n+1,mu,nu); int realQmax = gauntB_Q_max(-m,n,mu,nu); double a2q[q2max+1], a3q[Qmax+1], a2q0, a3q0; int err; if (mu == nu) { for (int q = 0; q <= q2max; ++q) a2q[q] = 0; a2q0 = 1; } else { gaunt_xu(-m-1,n+1,mu+1,nu,q2max,a2q,&err); if (err) abort(); a2q0 = a2q[0]; } gaunt_xu(-m,n+1,mu,nu,Qmax,a3q,&err); if (err) abort(); a3q0 = a3q[0]; double leg[gsl_sf_legendre_array_n(n+nu+1)]; if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,costheta,-1,leg)) abort(); complex double bes[n+nu+2]; if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bes)) abort(); complex double sum = 0; for (int q = 0; q <= realQmax; ++q) { int p = n+nu-2*q; double a2q_n = a2q[q]/a2q0; double a3q_n = a3q[q]/a3q0; complex double zp_ = bes[p+1]; int Pp_order_ = mu-m; //if(p+1 < abs(Pp_order_)) continue; // FIXME raději nastav lépe meze assert(p+1 >= abs(Pp_order_)); double Pp_ = leg[gsl_sf_legendre_array_index(p+1, abs(Pp_order_))]; if (Pp_order_ < 0) Pp_ *= min1pow(mu-m) * exp(lgamma(1+1+p+Pp_order_)-lgamma(1+1+p-Pp_order_)); complex double summandq = ((2*(n+1)*(nu-mu)*a2q_n -(-nu*(nu+1) - n*(n+3) - 2*mu*(n+1)+p*(p+3))* a3q_n) *min1pow(q) * zp_ * Pp_); sum += summandq; //TODO KAHAN } double exponent=(lgamma(2*n+3)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2) +lgamma(n+nu+m-mu+2)-lgamma(n-m+1)-lgamma(nu+mu+1) +lgamma(n+nu+2) - lgamma(2*(n+nu)+3)); complex double presum = exp(exponent); presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n+1) / ( (4*n)*(n+1)*(n+m+1)); // Taylor normalisation v2, proven to be equivalent // ipow(nu-n) is different from the new general formula!!! complex double prenormratio = ipow(nu-n) * sqrt(((2.*nu+1)/(2.*n+1))* exp( lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1))); return (presum / prenormratio) * sum; } complex double qpms_trans_single_A_Taylor_ext(int m, int n, int mu, int nu, double kdlj_r, double kdlj_theta, double kdlj_phi, int r_ge_d, int J) { sph_t kdlj = {kdlj_r, kdlj_theta, kdlj_phi}; return qpms_trans_single_A_Taylor(m,n,mu,nu,kdlj,r_ge_d,J); } complex double qpms_trans_single_B_Taylor_ext(int m, int n, int mu, int nu, double kdlj_r, double kdlj_theta, double kdlj_phi, int r_ge_d, int J) { sph_t kdlj = {kdlj_r, kdlj_theta, kdlj_phi}; return qpms_trans_single_B_Taylor(m,n,mu,nu,kdlj,r_ge_d,J); } void qpms_trans_calculator_free(qpms_trans_calculator *c) { free(c->A_multipliers[0]); free(c->A_multipliers); free(c->B_multipliers[0]); free(c->B_multipliers); free(c); } static inline size_t qpms_trans_calculator_index_mnmunu(const qpms_trans_calculator *c, int m, int n, int mu, int nu){ return c->nelem * qpms_mn2y(m,n) + qpms_mn2y(mu,nu); } static inline size_t qpms_trans_calculator_index_yyu(const qpms_trans_calculator *c, size_t y, size_t yu) { return c->nelem * y + yu; } #define SQ(x) ((x)*(x)) static inline int isq(int x) { return x * x; } static inline double fsq(double x) {return x * x; } static void qpms_trans_calculator_multipliers_A_general( qpms_normalisation_t norm, complex double *dest, int m, int n, int mu, int nu, int qmax) { assert(qmax == gaunt_q_max(-m,n,mu,nu)); double a1q[qmax+1]; int err; gaunt_xu(-m,n,mu,nu,qmax,a1q,&err); if (err) abort(); double a1q0 = a1q[0]; double normlogfac = qpms_trans_normlogfac(norm,m,n,mu,nu); double normfac = qpms_trans_normfac(norm,m,n,mu,nu); normfac *= min1pow(m); //different from old Taylor double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2) +lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1) +lgamma(n+nu+1) - lgamma(2*(n+nu)+1)) + normlogfac; complex double presum = exp(exponent); presum *= normfac / (4.*n); presum *= ipow(n+nu); // different from old Taylor for(int q = 0; q <= qmax; q++) { int p = n+nu-2*q; int Pp_order = mu - m; assert(p >= abs(Pp_order)); double a1q_n = a1q[q] / a1q0; // Assuming non_normalized legendre polynomials (normalisation done here by hand)! double Ppfac = (Pp_order >= 0) ? 1 : min1pow(mu-m) * exp(lgamma(1+p+Pp_order)-lgamma(1+p-Pp_order)); double summandfac = (n*(n+1) + nu*(nu+1) - p*(p+1)) * min1pow(q) * a1q_n; dest[q] = presum * summandfac * Ppfac #ifdef AN1 * ipow(n-nu) #elif defined AN2 * min1pow(-n+nu) #elif defined AN3 * ipow (nu - n) #endif #ifdef AM2 * min1pow(-m+mu) #endif //NNU ; // FIXME I might not need complex here } } // as in [Xu](61) double cruzan_bfactor(int M, int n, int mu, int nu, int p) { double logprefac = lgamma(n+M+1) - lgamma(n-M+1) + lgamma(nu+mu+1) - lgamma(nu-mu+1) + lgamma(p-M-mu+2) - lgamma(p+M+mu+2); logprefac *= 0.5; return min1pow(mu+M) * (2*p+3) * exp(logprefac) * gsl_sf_coupling_3j(2*n, 2*nu, 2*(p+1), 2*M, 2*mu, 2*(-M-mu)) * gsl_sf_coupling_3j(2*n, 2*nu, 2*p, 0, 0, 0); } void qpms_trans_calculator_multipliers_B_general( qpms_normalisation_t norm, complex double *dest, int m, int n, int mu, int nu, int Qmax){ // This is according to the Cruzan-type formula [Xu](59) assert(Qmax == gauntB_Q_max(-m,n,mu,nu)); double normlogfac= qpms_trans_normlogfac(norm,m,n,mu,nu); double normfac = qpms_trans_normfac(norm,m,n,mu,nu); double presum = min1pow(1-m) * (2*nu+1)/(2.*(n*(n+1))) * exp(lgamma(n+m+1) - lgamma(n-m+1) + lgamma(nu-mu+1) - lgamma(nu+mu+1) + normlogfac) * normfac; for(int q = BQ_OFFSET; q <= Qmax; ++q) { int p = n+nu-2*q; int Pp_order = mu - m; // Assuming non-normalised Legendre polynomials, normalise here by hand. // Ppfac_ differs from Ppfac in the A-case by the substitution p->p+1 double Ppfac_ = (Pp_order >= 0)? 1 : min1pow(mu-m) * exp(lgamma(1+1+p+Pp_order)-lgamma(1+1+p-Pp_order)); double t = sqrt( (isq(p+1)-isq(n-nu)) * (isq(n+nu+1)-isq(p+1)) ); dest[q-BQ_OFFSET] = presum * t * Ppfac_ * cruzan_bfactor(-m,n,mu,nu,p) * ipow(p+1) #ifdef BN1 * ipow(n-nu) #elif defined BN2 * min1pow(-n+nu) #elif defined BN3 * ipow (nu - n) #endif #ifdef BM2 * min1pow(-m+mu) #endif #ifdef BF1 * I #elif defined BF2 * (-1) #elif defined BF3 * (-I) #endif ;// NNU } } /*static*/ void qpms_trans_calculator_multipliers_B_general_oldXu( qpms_normalisation_t norm, complex double *dest, int m, int n, int mu, int nu, int Qmax) { assert(0); // FIXME probably gives wrong values, do not use. assert(Qmax == gauntB_Q_max(-m,n,mu,nu)); int q2max = gaunt_q_max(-m-1,n+1,mu+1,nu); // assert(Qmax == q2max); // FIXME is it safe to replace q2max with Qmax in gaunt_xu?? double a2q[q2max+1], a3q[Qmax+1], a2q0, a3q0; int err; if (mu == nu) { for (int q = 0; q <= q2max; ++q) a2q[q] = 0; a2q0 = 1; } else { gaunt_xu(-m-1,n+1,mu+1,nu,q2max,a2q,&err); if (err) abort(); a2q0 = a2q[0]; } gaunt_xu(-m,n+1,mu,nu,q2max,a3q,&err); if (err) abort(); // FIXME this should probably go away a3q0 = a3q[0]; int csphase = qpms_normalisation_t_csphase(norm); //TODO FIXME use this norm = qpms_normalisation_t_normonly(norm); double normlogfac= qpms_trans_normlogfac(norm,m,n,mu,nu); double normfac = qpms_trans_normfac(norm,m,n,mu,nu); // TODO use csphase to modify normfac here!!!! // normfac = xxx ? -normfac : normfac; normfac *= min1pow(m);//different from old taylor double exponent=(lgamma(2*n+3)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2) +lgamma(n+nu+m-mu+2)-lgamma(n-m+1)-lgamma(nu+mu+1) +lgamma(n+nu+2) - lgamma(2*(n+nu)+3)) +normlogfac; complex double presum = exp(exponent); presum *= I * ipow(nu+n) /*different from old Taylor */ * normfac / ( (4*n)*(n+1)*(n+m+1)); for (int q = BQ_OFFSET; q <= Qmax; ++q) { int p = n+nu-2*q; double a2q_n = a2q[q]/a2q0; double a3q_n = a3q[q]/a3q0; int Pp_order_ = mu-m; //if(p+1 < abs(Pp_order_)) continue; // FIXME raději nastav lépe meze assert(p+1 >= abs(Pp_order_)); double Ppfac = (Pp_order_ >= 0) ? 1 : min1pow(mu-m) * exp(lgamma(1+1+p+Pp_order_)-lgamma(1+1+p-Pp_order_)); double summandq = ((2*(n+1)*(nu-mu)*a2q_n -(-nu*(nu+1) - n*(n+3) - 2*mu*(n+1)+p*(p+3))* a3q_n) *min1pow(q)); dest[q-BQ_OFFSET] = Ppfac * summandq * presum; } } //#if 0 static void qpms_trans_calculator_multipliers_A_Taylor( complex double *dest, int m, int n, int mu, int nu, int qmax) { assert(qmax == gaunt_q_max(-m,n,mu,nu)); double a1q[qmax+1]; int err; gaunt_xu(-m,n,mu,nu,qmax,a1q,&err); if (err) abort(); double a1q0 = a1q[0]; double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2) +lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1) +lgamma(n+nu+1) - lgamma(2*(n+nu)+1)) - 0.5*( // ex-prenormratio lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1)); double presum = exp(exponent); presum *= min1pow(m+n) * sqrt((2.*n+1)/(2.*nu+1)) / (4*n); for(int q = 0; q <= qmax; q++) { int p = n+nu-2*q; int Pp_order = mu - m; assert(p >= abs(Pp_order)); double a1q_n = a1q[q] / a1q0; // Assuming non_normalized legendre polynomials! double Ppfac = (Pp_order >= 0) ? 1 : min1pow(mu-m) * exp(lgamma(1+p+Pp_order)-lgamma(1+p-Pp_order)); double summandfac = (n*(n+1) + nu*(nu+1) - p*(p+1)) * min1pow(q) * a1q_n; dest[q] = presum * summandfac * Ppfac; // FIXME I might not need complex here } } //#endif #if 0 static void qpms_trans_calculator_multipliers_A_Taylor( complex double *dest, int m, int n, int mu, int nu, int qmax) { assert(qmax == gaunt_q_max(-m,n,mu,nu)); double a1q[qmax+1]; int err; gaunt_xu(-m,n,mu,nu,qmax,a1q,&err); if (err) abort(); double a1q0 = a1q[0]; for(int q = 0; q <= qmax; ++q) { int p = n+nu-2*q; int Pp_order = mu-m; //if(p < abs(Pp_order)) continue; // FIXME raději nastav lépe meze assert(p >= abs(Pp_order)); double a1q_n = a1q[q] / a1q0; //double Pp = leg[gsl_sf_legendre_array_index(p, abs(Pp_order))]; //complex double zp = bes[p]; dest[q] = (n*(n+1) + nu*(nu+1) - p*(p+1)) * min1pow(q) * a1q_n /* * zp * Pp*/; if (Pp_order < 0) dest[q] *= min1pow(mu-m) * exp(lgamma(1+p+Pp_order)-lgamma(1+p-Pp_order)); //sum += summandq; } double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2) +lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1) +lgamma(n+nu+1) - lgamma(2*(n+nu)+1)); complex double presum = exp(exponent); presum *=/* cexp(I*(mu-m)*kdlj.phi) * */ min1pow(m) * ipow(nu+n) / (4*n); complex double prenormratio = ipow(nu-n) * sqrt(((2.*nu+1)/(2.*n+1))* exp( lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1))); //return (presum / prenormratio) * sum; for(int q=0;q<=qmax;++q) dest[q] *= presum / prenormratio; } #endif static void qpms_trans_calculator_multipliers_B_Taylor( complex double *dest, int m, int n, int mu, int nu, int Qmax) { assert(0); // FIXME probably gives wrong values, do not use. assert(Qmax == gauntB_Q_max(-m,n,mu,nu)); int q2max = gaunt_q_max(-m-1,n+1,mu+1,nu); //assert(Qmax == q2max); // FIXME remove the q2max variable altogether, as it is probably equal // to Qmax double a2q[q2max+1], a3q[q2max+1], a2q0, a3q0; int err; if (mu == nu) { for (int q = 0; q <= q2max; ++q) a2q[q] = 0; a2q0 = 1; } else { gaunt_xu(-m-1,n+1,mu+1,nu,q2max,a2q,&err); if (err) abort(); a2q0 = a2q[0]; } gaunt_xu(-m,n+1,mu,nu,q2max,a3q,&err); if (err) abort(); a3q0 = a3q[0]; double exponent=(lgamma(2*n+3)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2) +lgamma(n+nu+m-mu+2)-lgamma(n-m+1)-lgamma(nu+mu+1) +lgamma(n+nu+2) - lgamma(2*(n+nu)+3)) - 0.5 * ( lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1) -lgamma(nu+mu+1)); complex double presum = exp(exponent); presum *= I * (min1pow(m+n) *sqrt((2.*n+1)/(2.*nu+1)) / ( (4*n)*(n+1)*(n+m+1))); for (int q = BQ_OFFSET; q <= Qmax; ++q) { int p = n+nu-2*q; double a2q_n = a2q[q]/a2q0; double a3q_n = a3q[q]/a3q0; int Pp_order_ = mu-m; //if(p+1 < abs(Pp_order_)) continue; // FIXME raději nastav lépe meze assert(p+1 >= abs(Pp_order_)); double Ppfac = (Pp_order_ >= 0) ? 1 : min1pow(mu-m) * exp(lgamma(1+1+p+Pp_order_)-lgamma(1+1+p-Pp_order_)); double summandq = ((2*(n+1)*(nu-mu)*a2q_n -(-nu*(nu+1) - n*(n+3) - 2*mu*(n+1)+p*(p+3))* a3q_n) *min1pow(q)); dest[q-BQ_OFFSET] = Ppfac * summandq * presum; } } int qpms_trans_calculator_multipliers_A(qpms_normalisation_t norm, complex double *dest, int m, int n, int mu, int nu, int qmax) { switch (qpms_normalisation_t_normonly(norm)) { case QPMS_NORMALISATION_TAYLOR: #ifdef USE_SEPARATE_TAYLOR qpms_trans_calculator_multipliers_A_Taylor(dest,m,n,mu,nu,qmax); return 0; break; #endif case QPMS_NORMALISATION_NONE: #ifdef USE_XU_ANTINORMALISATION case QPMS_NORMALISATION_XU: #endif case QPMS_NORMALISATION_KRISTENSSON: qpms_trans_calculator_multipliers_A_general(norm, dest, m, n, mu, nu, qmax); return 0; break; default: abort(); } assert(0); } int qpms_trans_calculator_multipliers_B(qpms_normalisation_t norm, complex double *dest, int m, int n, int mu, int nu, int Qmax) { switch (qpms_normalisation_t_normonly(norm)) { case QPMS_NORMALISATION_TAYLOR: #ifdef USE_SEPARATE_TAYLOR qpms_trans_calculator_multipliers_B_Taylor(dest,m,n,mu,nu,Qmax); return 0; break; #endif case QPMS_NORMALISATION_NONE: #ifdef USE_XU_ANTINORMALISATION case QPMS_NORMALISATION_XU: #endif case QPMS_NORMALISATION_KRISTENSSON: qpms_trans_calculator_multipliers_B_general(norm, dest, m, n, mu, nu, Qmax); return 0; break; default: abort(); } assert(0); } qpms_trans_calculator *qpms_trans_calculator_init (int lMax, qpms_normalisation_t normalisation) { assert(lMax > 0); qpms_trans_calculator *c = malloc(sizeof(qpms_trans_calculator)); c->lMax = lMax; c->nelem = lMax * (lMax+2); c->A_multipliers = malloc((1+SQ(c->nelem)) * sizeof(complex double *)); c->B_multipliers = malloc((1+SQ(c->nelem)) * sizeof(complex double *)); c->normalisation = normalisation; size_t *qmaxes = malloc(SQ(c->nelem) * sizeof(size_t)); size_t qmaxsum = 0; for(size_t y = 0; y < c->nelem; y++) for(size_t yu = 0; yu < c->nelem; yu++) { int m,n, mu, nu; qpms_y2mn_p(y,&m,&n); qpms_y2mn_p(yu,&mu,&nu); qmaxsum += 1 + ( qmaxes[qpms_trans_calculator_index_yyu(c,y,yu)] = gaunt_q_max(-m,n,mu,nu)); } c->A_multipliers[0] = malloc(qmaxsum * sizeof(complex double)); // calculate multiplier beginnings for(size_t i = 0; i < SQ(c->nelem); ++i) c->A_multipliers[i+1] = c->A_multipliers[i] + qmaxes[i] + 1; // calculate the multipliers for(size_t y = 0; y < c->nelem; ++y) for(size_t yu = 0; yu < c->nelem; ++yu) { size_t i = y * c->nelem + yu; int m, n, mu, nu; qpms_y2mn_p(y, &m, &n); qpms_y2mn_p(yu, &mu, &nu); qpms_trans_calculator_multipliers_A(normalisation, c->A_multipliers[i], m, n, mu, nu, qmaxes[i]); } qmaxsum = 0; for(size_t y=0; y < c->nelem; y++) for(size_t yu = 0; yu < c->nelem; yu++) { int m, n, mu, nu; qpms_y2mn_p(y,&m,&n); qpms_y2mn_p(yu,&mu,&nu); qmaxsum += (1 - BQ_OFFSET) + ( qmaxes[qpms_trans_calculator_index_yyu(c,y,yu)] = gauntB_Q_max(-m,n,mu,nu)); } c->B_multipliers[0] = malloc(qmaxsum * sizeof(complex double)); // calculate multiplier beginnings for(size_t i = 0; i < SQ(c->nelem); ++i) c->B_multipliers[i+1] = c->B_multipliers[i] + qmaxes[i] + (1 - BQ_OFFSET); // calculate the multipliers for(size_t y = 0; y < c->nelem; ++y) for(size_t yu = 0; yu < c->nelem; ++yu) { size_t i = y * c->nelem + yu; int m, n, mu, nu; qpms_y2mn_p(y, &m, &n); qpms_y2mn_p(yu, &mu, &nu); qpms_trans_calculator_multipliers_B(normalisation, c->B_multipliers[i], m, n, mu, nu, qmaxes[i]); } free(qmaxes); return c; } static inline complex double qpms_trans_calculator_get_A_precalcbuf(const qpms_trans_calculator *c, int m, int n, int mu, int nu, sph_t kdlj, bool r_ge_d, qpms_bessel_t J, const complex double *bessel_buf, const double *legendre_buf) { size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu); size_t qmax = c->A_multipliers[i+1] - c->A_multipliers[i] - 1; assert(qmax == gaunt_q_max(-m,n,mu,nu)); complex double sum, kahanc; ckahaninit(&sum, &kahanc); for(size_t q = 0; q <= qmax; ++q) { int p = n+nu-2*q; double Pp = legendre_buf[gsl_sf_legendre_array_index(p, abs(mu-m))]; complex double zp = bessel_buf[p]; complex double multiplier = c->A_multipliers[i][q]; ckahanadd(&sum, &kahanc, Pp * zp * multiplier); } complex double eimf = cexp(I*(mu-m)*kdlj.phi); return sum * eimf; } complex double qpms_trans_calculator_get_A_buf(const qpms_trans_calculator *c, int m, int n, int mu, int nu, sph_t kdlj, bool r_ge_d, qpms_bessel_t J, complex double *bessel_buf, double *legendre_buf) { // This functions gets preallocated memory for bessel and legendre functions, but computes them itself if (r_ge_d) J = QPMS_BESSEL_REGULAR; if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) // TODO warn? return NAN+I*NAN; int csphase = qpms_normalisation_t_csphase(c->normalisation); switch(qpms_normalisation_t_normonly(c->normalisation)) { // TODO use normalised legendre functions for Taylor and Kristensson case QPMS_NORMALISATION_TAYLOR: case QPMS_NORMALISATION_KRISTENSSON: case QPMS_NORMALISATION_NONE: #ifdef USE_XU_ANTINORMALISATION case QPMS_NORMALISATION_XU: #endif { double costheta = cos(kdlj.theta); if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu, costheta,csphase,legendre_buf)) abort(); if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bessel_buf)) abort(); return qpms_trans_calculator_get_A_precalcbuf(c,m,n,mu,nu, kdlj,r_ge_d,J,bessel_buf,legendre_buf); } break; default: abort(); } assert(0); } static inline complex double qpms_trans_calculator_get_B_precalcbuf(const qpms_trans_calculator *c, int m, int n, int mu, int nu, sph_t kdlj, bool r_ge_d, qpms_bessel_t J, const complex double *bessel_buf, const double *legendre_buf) { size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu); size_t qmax = c->B_multipliers[i+1] - c->B_multipliers[i] - (1 - BQ_OFFSET); assert(qmax == gauntB_Q_max(-m,n,mu,nu)); complex double sum, kahanc; ckahaninit(&sum, &kahanc); for(int q = BQ_OFFSET; q <= qmax; ++q) { int p = n+nu-2*q; double Pp_ = legendre_buf[gsl_sf_legendre_array_index(p+1, abs(mu-m))]; complex double zp_ = bessel_buf[p+1]; complex double multiplier = c->B_multipliers[i][q-BQ_OFFSET]; ckahanadd(&sum, &kahanc, Pp_ * zp_ * multiplier); } complex double eimf = cexp(I*(mu-m)*kdlj.phi); return sum * eimf; } complex double qpms_trans_calculator_get_B_buf(const qpms_trans_calculator *c, int m, int n, int mu, int nu, sph_t kdlj, bool r_ge_d, qpms_bessel_t J, complex double *bessel_buf, double *legendre_buf) { // This functions gets preallocated memory for bessel and legendre functions, but computes them itself if (r_ge_d) J = QPMS_BESSEL_REGULAR; if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) // TODO warn? return NAN+I*NAN; int csphase = qpms_normalisation_t_csphase(c->normalisation); switch(qpms_normalisation_t_normonly(c->normalisation)) { case QPMS_NORMALISATION_TAYLOR: case QPMS_NORMALISATION_KRISTENSSON: case QPMS_NORMALISATION_NONE: #ifdef USE_XU_ANTINORMALISATION case QPMS_NORMALISATION_XU: #endif { double costheta = cos(kdlj.theta); if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1, costheta,csphase,legendre_buf)) abort(); if (qpms_sph_bessel_fill(J, n+nu+2, kdlj.r, bessel_buf)) abort(); return qpms_trans_calculator_get_B_precalcbuf(c,m,n,mu,nu, kdlj,r_ge_d,J,bessel_buf,legendre_buf); } break; default: abort(); } assert(0); } int qpms_trans_calculator_get_AB_buf_p(const qpms_trans_calculator *c, complex double *Adest, complex double *Bdest, int m, int n, int mu, int nu, sph_t kdlj, bool r_ge_d, qpms_bessel_t J, complex double *bessel_buf, double *legendre_buf) { if (r_ge_d) J = QPMS_BESSEL_REGULAR; if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) { *Adest = NAN+I*NAN; *Bdest = NAN+I*NAN; // TODO warn? different return value? return 0; } switch(qpms_normalisation_t_normonly(c->normalisation)) { case QPMS_NORMALISATION_TAYLOR: case QPMS_NORMALISATION_KRISTENSSON: case QPMS_NORMALISATION_NONE: #ifdef USE_XU_ANTINORMALISATION case QPMS_NORMALISATION_XU: #endif { double costheta = cos(kdlj.theta); if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1, costheta,-1,legendre_buf)) abort(); if (qpms_sph_bessel_fill(J, n+nu+2, kdlj.r, bessel_buf)) abort(); *Adest = qpms_trans_calculator_get_A_precalcbuf(c,m,n,mu,nu, kdlj,r_ge_d,J,bessel_buf,legendre_buf); *Bdest = qpms_trans_calculator_get_B_precalcbuf(c,m,n,mu,nu, kdlj,r_ge_d,J,bessel_buf,legendre_buf); return 0; } break; default: abort(); } assert(0); } int qpms_trans_calculator_get_AB_arrays_buf(const qpms_trans_calculator *c, complex double *Adest, complex double *Bdest, size_t deststride, size_t srcstride, sph_t kdlj, bool r_ge_d, qpms_bessel_t J, complex double *bessel_buf, double *legendre_buf) { if (r_ge_d) J = QPMS_BESSEL_REGULAR; if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) { for (size_t i = 0; i < c->nelem; ++i) for (size_t j = 0; j < c->nelem; ++j) { *(Adest + i*srcstride + j*deststride) = NAN+I*NAN; *(Bdest + i*srcstride + j*deststride) = NAN+I*NAN; } // TODO warn? different return value? return 0; } switch(c->normalisation) { case QPMS_NORMALISATION_TAYLOR: { double costheta = cos(kdlj.theta); if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,2*c->lMax+1, costheta,-1,legendre_buf)) abort(); if (qpms_sph_bessel_fill(J, 2*c->lMax+2, kdlj.r, bessel_buf)) abort(); size_t desti = 0, srci = 0; for (int n = 1; n <= c->lMax; ++n) for (int m = -n; m <= n; ++m) { for (int nu = 1; nu <= c->lMax; ++nu) for (int mu = -nu; mu <= nu; ++mu) { size_t assertindex = qpms_trans_calculator_index_mnmunu(c,m,n,mu,nu); assert(assertindex == desti*c->nelem + srci); *(Adest + deststride * desti + srcstride * srci) = qpms_trans_calculator_get_A_precalcbuf(c,m,n,mu,nu, kdlj,r_ge_d,J,bessel_buf,legendre_buf); *(Bdest + deststride * desti + srcstride * srci) = qpms_trans_calculator_get_B_precalcbuf(c,m,n,mu,nu, kdlj,r_ge_d,J,bessel_buf,legendre_buf); ++srci; } ++desti; srci = 0; } return 0; } break; default: abort(); } assert(0); } complex double qpms_trans_calculator_get_A(const qpms_trans_calculator *c, int m, int n, int mu, int nu, sph_t kdlj, bool r_ge_d, qpms_bessel_t J) { double leg[gsl_sf_legendre_array_n(n+nu)]; complex double bes[n+nu+1]; return qpms_trans_calculator_get_A_buf(c,m,n,mu,nu,kdlj,r_ge_d,J, bes,leg); } complex double qpms_trans_calculator_get_B(const qpms_trans_calculator *c, int m, int n, int mu, int nu, sph_t kdlj, bool r_ge_d, qpms_bessel_t J) { double leg[gsl_sf_legendre_array_n(n+nu+1)]; complex double bes[n+nu+2]; return qpms_trans_calculator_get_B_buf(c,m,n,mu,nu,kdlj,r_ge_d,J, bes,leg); } int qpms_trans_calculator_get_AB_p(const qpms_trans_calculator *c, complex double *Adest, complex double *Bdest, int m, int n, int mu, int nu, sph_t kdlj, bool r_ge_d, qpms_bessel_t J) { double leg[gsl_sf_legendre_array_n(2*c->lMax+1)]; complex double bes[2*c->lMax+2]; return qpms_trans_calculator_get_AB_buf_p(c,Adest, Bdest,m,n,mu,nu,kdlj,r_ge_d,J, bes,leg); } int qpms_trans_calculator_get_AB_arrays(const qpms_trans_calculator *c, complex double *Adest, complex double *Bdest, size_t deststride, size_t srcstride, sph_t kdlj, bool r_ge_d, qpms_bessel_t J) { double leg[gsl_sf_legendre_array_n(c->lMax+c->lMax+1)]; complex double bes[c->lMax+c->lMax+2]; return qpms_trans_calculator_get_AB_arrays_buf(c, Adest, Bdest, deststride, srcstride, kdlj, r_ge_d, J, bes, leg); } complex double qpms_trans_calculator_get_A_ext(const qpms_trans_calculator *c, int m, int n, int mu, int nu, double kdlj_r, double kdlj_theta, double kdlj_phi, int r_ge_d, int J) { sph_t kdlj = {kdlj_r, kdlj_theta, kdlj_phi}; return qpms_trans_calculator_get_A(c,m,n,mu,nu,kdlj,r_ge_d,J); } complex double qpms_trans_calculator_get_B_ext(const qpms_trans_calculator *c, int m, int n, int mu, int nu, double kdlj_r, double kdlj_theta, double kdlj_phi, int r_ge_d, int J) { sph_t kdlj = {kdlj_r, kdlj_theta, kdlj_phi}; return qpms_trans_calculator_get_B(c,m,n,mu,nu,kdlj,r_ge_d,J); } int qpms_trans_calculator_get_AB_p_ext(const qpms_trans_calculator *c, complex double *Adest, complex double *Bdest, int m, int n, int mu, int nu, double kdlj_r, double kdlj_theta, double kdlj_phi, int r_ge_d, int J) { sph_t kdlj = {kdlj_r, kdlj_theta, kdlj_phi}; return qpms_trans_calculator_get_AB_p(c,Adest,Bdest,m,n,mu,nu,kdlj,r_ge_d,J); } int qpms_trans_calculator_get_AB_arrays_ext(const qpms_trans_calculator *c, complex double *Adest, complex double *Bdest, size_t deststride, size_t srcstride, double kdlj_r, double kdlj_theta, double kdlj_phi, int r_ge_d, int J) { sph_t kdlj = {kdlj_r, kdlj_theta, kdlj_phi}; return qpms_trans_calculator_get_AB_arrays(c,Adest,Bdest,deststride,srcstride, kdlj, r_ge_d, J); } #ifdef QPMS_COMPILE_PYTHON_EXTENSIONS #include #ifdef QPMS_USE_OMP #include #endif int qpms_cython_trans_calculator_get_AB_arrays_loop( const qpms_trans_calculator *c, const qpms_bessel_t J, const int resnd, const int daxis, const int saxis, char *A_data, const npy_intp *A_shape, const npy_intp *A_strides, char *B_data, const npy_intp *B_shape, const npy_intp *B_strides, const char *r_data, const npy_intp *r_shape, const npy_intp *r_strides, const char *theta_data, const npy_intp *theta_shape, const npy_intp *theta_strides, const char *phi_data, const npy_intp *phi_shape, const npy_intp *phi_strides, const char *r_ge_d_data, const npy_intp *r_ge_d_shape, const npy_intp *r_ge_d_strides){ assert(daxis != saxis); assert(resnd >= 2); int longest_axis = 0; int longestshape = 1; const npy_intp *resultshape = A_shape, *resultstrides = A_strides; // TODO put some restrict's everywhere? for (int ax = 0; ax < resnd; ++ax){ assert(A_shape[ax] == B_shape[ax]); assert(A_strides[ax] == B_strides[ax]); if (daxis == ax || saxis == ax) continue; if (A_shape[ax] > longestshape) { longest_axis = ax; longestshape = 1; } } const npy_intp longlen = resultshape[longest_axis]; npy_intp innerloop_shape[resnd]; for (int ax = 0; ax < resnd; ++ax) { innerloop_shape[ax] = resultshape[ax]; } /* longest axis will be iterated in the outer (parallelized) loop. * Therefore, longest axis, together with saxis and daxis, * will not be iterated in the inner loop: */ innerloop_shape[longest_axis] = 1; innerloop_shape[daxis] = 1; innerloop_shape[saxis] = 1; // these are the 'strides' passed to the qpms_trans_calculator_get_AB_arrays_ext // function, which expects 'const double *' strides, not 'char *' ones. const npy_intp dstride = resultstrides[daxis] / sizeof(complex double); const npy_intp sstride = resultstrides[saxis] / sizeof(complex double); int errval = 0; // TODO here start parallelisation //#pragma omp parallel { npy_intp local_indices[resnd]; memset(local_indices, 0, sizeof(local_indices)); int errval_local = 0; size_t longi; //#pragma omp for for(longi = 0; longi < longlen; ++longi) { // this might be done also in the inverse order, but this is more // 'c-contiguous' way of incrementing the indices int ax = resnd - 1; while(ax >= 0) { /* calculate the correct index/pointer for each array used. * This can be further optimized from O(resnd * total size of * the result array) to O(total size of the result array), but * fick that now */ const char *r_p = r_data + r_strides[longest_axis] * longi; const char *theta_p = theta_data + theta_strides[longest_axis] * longi; const char *phi_p = phi_data + phi_strides[longest_axis] * longi; const char *r_ge_d_p = r_ge_d_data + r_ge_d_strides[longest_axis] * longi; char *A_p = A_data + A_strides[longest_axis] * longi; char *B_p = B_data + B_strides[longest_axis] * longi; for(int i = 0; i < resnd; ++i) { // following two lines are probably not needed, as innerloop_shape is there 1 anyway // so if i == daxis, saxis, or longest_axis, local_indices[i] is zero. if (i == longest_axis) continue; if (daxis == i || saxis == i) continue; r_p += r_strides[i] * local_indices[i]; theta_p += theta_strides[i] * local_indices[i]; phi_p += phi_strides[i] * local_indices[i]; A_p += A_strides[i] * local_indices[i]; B_p += B_strides[i] * local_indices[i]; } // perform the actual task here errval_local |= qpms_trans_calculator_get_AB_arrays_ext(c, (complex double *)A_p, (complex double *)B_p, dstride, sstride, // FIXME change all the _ext function types to npy_... so that // these casts are not needed *((double *) r_p), *((double *) theta_p), *((double *)phi_p), (int)(*((npy_bool *) r_ge_d_p)), J); if (errval_local) abort(); // increment the last index 'digit' (ax is now resnd-1; we don't have do-while loop in python) ++local_indices[ax]; while(local_indices[ax] == innerloop_shape[ax] && ax >= 0) { // overflow to the next digit but stop when reached below the last one local_indices[ax] = 0; local_indices[--ax]++; } if (ax >= 0) // did not overflow, get back to the lowest index ax = resnd - 1; } } errval |= errval_local; } // FIXME when parallelizing // TODO Here end parallelisation return errval; } #endif // QPMS_COMPILE_PYTHON_EXTENSIONS