#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 583
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options false
\maintain_unincluded_children false
\language english
\language_package none
\inputencoding utf8
\fontencoding default
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement class
\float_alignment class
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 0
\use_package cancel 0
\use_package esint 1
\use_package mathdots 0
\use_package mathtools 0
\use_package mhchem 0
\use_package stackrel 0
\use_package stmaryrd 0
\use_package undertilde 0
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 0
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header

\begin_body

\begin_layout Subsection
Periodic systems and mode analysis
\begin_inset CommandInset label
LatexCommand label
name "subsec:Periodic-systems"

\end_inset


\end_layout

\begin_layout Standard
In an infinite periodic array of nanoparticles, the excitations of the nanoparti
cles take the quasiperiodic Bloch-wave form 
\begin_inset Formula 
\[
\coeffs_{i\nu}=e^{i\vect k\cdot\vect R_{i}}\coeffs_{\nu}
\]

\end_inset

(assuming the incident external field has the same periodicity, 
\begin_inset Formula $\coeffr_{\mathrm{ext}(i\nu)}=e^{i\vect k\cdot\vect R_{i}}p_{\mathrm{ext}\left(\nu\right)}$
\end_inset

) where 
\begin_inset Formula $\nu$
\end_inset

 is the index of a particle inside one unit cell and 
\begin_inset Formula $\vect R_{i},\vect R_{i'}\in\Lambda$
\end_inset

 are the lattice vectors corresponding to the sites (labeled by multiindices
 
\begin_inset Formula $i,i'$
\end_inset

) of a Bravais lattice 
\begin_inset Formula $\Lambda$
\end_inset

.
 The multiple-scattering problem (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:multiple scattering per particle a"

\end_inset

) then takes the form
\end_layout

\begin_layout Standard
\begin_inset Formula 
\[
\coeffs_{i\nu}-T_{\nu}\sum_{(i',\nu')\ne\left(i,\nu\right)}S_{i\nu,i'\nu'}e^{i\vect k\cdot\left(\vect R_{i'}-\vect R_{i}\right)}\coeffs_{i\nu'}=T_{\nu}\coeffr_{\mathrm{ext}(i\nu)}
\]

\end_inset

or, labeling 
\begin_inset Formula $W_{\nu\nu'}=\sum_{i';(i',\nu')\ne\left(i,\nu\right)}S_{i\nu,i'\nu'}e^{i\vect k\cdot\left(\vect R_{i'}-\vect R_{i}\right)}=\sum_{i';(i',\nu')\ne\left(0,\nu\right)}S_{0\nu,i'\nu'}e^{i\vect k\cdot\vect R_{i'}}$
\end_inset

 and using the quasiperiodicity, 
\begin_inset Formula 
\begin{equation}
\sum_{\nu'}\left(\delta_{\nu\nu'}\mathbb{I}-T_{\nu}W_{\nu\nu'}\right)\coeffs_{\nu'}=T_{\nu}\coeffr_{\mathrm{ext}(\nu)},\label{eq:multiple scattering per particle a periodic}
\end{equation}

\end_inset

which reduces the linear problem (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:multiple scattering per particle a"

\end_inset

) to interactions between particles inside single unit cell.
 A problematic part is the evaluation of the translation operator lattice
 sums 
\begin_inset Formula $W_{\nu\nu'}$
\end_inset

; this is performed using exponentially convergent Ewald-type representations
 
\begin_inset CommandInset citation
LatexCommand cite
key "linton_lattice_2010"
literal "true"

\end_inset

.
\end_layout

\begin_layout Standard
In an infinite periodic system, a nonlossy mode supports itself without
 external driving, i.e.
 such mode is described by excitation coefficients 
\begin_inset Formula $a_{\nu}$
\end_inset

 that satisfy eq.
 (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:multiple scattering per particle a periodic"

\end_inset

) with zero right-hand side.
 That can happen if the block matrix 
\begin_inset Formula 
\begin{equation}
M\left(\omega,\vect k\right)=\left\{ \delta_{\nu\nu'}\mathbb{I}-T_{\nu}\left(\omega\right)W_{\nu\nu'}\left(\omega,\vect k\right)\right\} _{\nu\nu'}\label{eq:M matrix definition}
\end{equation}

\end_inset

from the left hand side of (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:multiple scattering per particle a periodic"

\end_inset

) is singular (here we explicitly note the 
\begin_inset Formula $\omega,\vect k$
\end_inset

 depence).
\end_layout

\begin_layout Standard
For lossy nanoparticles, however, perfect propagating modes will not exist
 and 
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset

 will never be perfectly singular.
 Therefore in practice, we get the bands by scanning over 
\begin_inset Formula $\omega,\vect k$
\end_inset

 to search for 
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset

 which have an 
\begin_inset Quotes erd
\end_inset

almost zero
\begin_inset Quotes erd
\end_inset

 singular value.
\end_layout

\begin_layout Section
\begin_inset ERT
status collapsed

\begin_layout Plain Layout

{
\end_layout

\end_inset

Symmetries
\begin_inset ERT
status collapsed

\begin_layout Plain Layout

}
\end_layout

\end_inset


\end_layout

\begin_layout Standard
\begin_inset CommandInset label
LatexCommand label
name "sm:symmetries"

\end_inset


\end_layout

\begin_layout Standard
A general overview of utilizing group theory to find lattice modes at high-symme
try points of the Brillouin zone can be found e.g.
 in 
\begin_inset CommandInset citation
LatexCommand cite
after "chapters 10–11"
key "dresselhaus_group_2008"
literal "true"

\end_inset

; here we use the same notation.
\end_layout

\begin_layout Standard
We analyse the symmetries of the system in the same VSWF representation
 as used in the 
\begin_inset Formula $T$
\end_inset

-matrix formalism introduced above.
 We are interested in the modes at the 
\begin_inset Formula $\Kp$
\end_inset

-point of the hexagonal lattice, which has the 
\begin_inset Formula $D_{3h}$
\end_inset

 point symmetry.
 The six irreducible representations (irreps) of the 
\begin_inset Formula $D_{3h}$
\end_inset

 group are known and are available in the literature in their explicit forms.
 In order to find and classify the modes, we need to find a decomposition
 of the lattice mode representation 
\begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}=\Gamma^{\mathrm{equiv.}}\otimes\Gamma_{\mathrm{vec.}}$
\end_inset

 into the irreps of 
\begin_inset Formula $D_{3h}$
\end_inset

.
 The equivalence representation 
\begin_inset Formula $\Gamma^{\mathrm{equiv.}}$
\end_inset

 is the 
\begin_inset Formula $E'$
\end_inset

 representation as can be deduced from 
\begin_inset CommandInset citation
LatexCommand cite
after "eq. (11.19)"
key "dresselhaus_group_2008"
literal "true"

\end_inset

, eq.
 (11.19) and the character table for 
\begin_inset Formula $D_{3h}$
\end_inset

.
 
\begin_inset Formula $\Gamma_{\mathrm{vec.}}$
\end_inset

 operates on a space spanned by the VSWFs around each nanoparticle in the
 unit cell (the effects of point group operations on VSWFs are described
 in 
\begin_inset CommandInset citation
LatexCommand cite
key "schulz_point-group_1999"
literal "true"

\end_inset

).
 This space can be then decomposed into invariant subspaces of the 
\begin_inset Formula $D_{3h}$
\end_inset

 using the projectors 
\begin_inset Formula $\hat{P}_{ab}^{\left(\Gamma\right)}$
\end_inset

 defined by 
\begin_inset CommandInset citation
LatexCommand cite
after "eq. (4.28)"
key "dresselhaus_group_2008"
literal "true"

\end_inset

.
 This way, we obtain a symmetry adapted basis 
\begin_inset Formula $\left\{ \vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}\right\} $
\end_inset

 as linear combinations of VSWFs 
\begin_inset Formula $\vswfs lm{p,t}$
\end_inset

 around the constituting nanoparticles (labeled 
\begin_inset Formula $p$
\end_inset

), 
\begin_inset Formula 
\[
\vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}=\sum_{l,m,p,t}U_{\Gamma,r,i}^{p,t,l,m}\vswfs lm{p,t},
\]

\end_inset

where 
\begin_inset Formula $\Gamma$
\end_inset

 stands for one of the six different irreps of 
\begin_inset Formula $D_{3h}$
\end_inset

, 
\begin_inset Formula $r$
\end_inset

 labels the different realisations of the same irrep, and the last index
 
\begin_inset Formula $i$
\end_inset

 going from 1 to 
\begin_inset Formula $d_{\Gamma}$
\end_inset

 (the dimensionality of 
\begin_inset Formula $\Gamma$
\end_inset

) labels the different partners of the same given irrep.
 The number of how many times is each irrep contained in 
\begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}$
\end_inset

 (i.e.
 the range of index 
\begin_inset Formula $r$
\end_inset

 for given 
\begin_inset Formula $\Gamma$
\end_inset

) depends on the multipole degree cutoff 
\begin_inset Formula $l_{\mathrm{max}}$
\end_inset

.
\end_layout

\begin_layout Standard
Each mode at the 
\begin_inset Formula $\Kp$
\end_inset

-point shall lie in the irreducible spaces of only one of the six possible
 irreps and it can be shown via 
\begin_inset CommandInset citation
LatexCommand cite
after "eq. (2.51)"
key "dresselhaus_group_2008"
literal "true"

\end_inset

 that, at the 
\begin_inset Formula $\Kp$
\end_inset

-point, the matrix 
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset

 defined above takes a block-diagonal form in the symmetry-adapted basis,
 
\begin_inset Formula 
\[
M\left(\omega,\vect K\right)_{\Gamma,r,i;\Gamma',r',j}^{\mathrm{s.a.b.}}=\frac{\delta_{\Gamma\Gamma'}\delta_{ij}}{d_{\Gamma}}\sum_{q}M\left(\omega,\vect K\right)_{\Gamma,r,q;\Gamma',r',q}^{\mathrm{s.a.b.}}.
\]

\end_inset

This enables us to decompose the matrix according to the irreps and to solve
 the singular value problem in each irrep separately, as done in Fig.
 
\begin_inset CommandInset ref
LatexCommand ref
reference "smfig:dispersions"

\end_inset

(a).
\end_layout

\end_body
\end_document