#LyX 2.0 created this file. For more info see http://www.lyx.org/ \lyxformat 413 \begin_document \begin_header \textclass revtex4 \options pra,superscriptaddress,twocolumn,notitlepage \use_default_options false \maintain_unincluded_children false \language english \language_package default \inputencoding auto \fontencoding global \font_roman default \font_sans default \font_typewriter default \font_default_family default \use_non_tex_fonts true \font_sc false \font_osf false \font_sf_scale 100 \font_tt_scale 100 \graphics default \default_output_format pdf4 \output_sync 0 \bibtex_command bibtex \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize a4paper \use_geometry false \use_amsmath 1 \use_esint 1 \use_mhchem 1 \use_mathdots 1 \cite_engine basic \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \use_refstyle 1 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \quotes_language english \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Standard \lang finnish \begin_inset FormulaMacro \newcommand{\ket}[1]{\left|#1\right\rangle } \end_inset \begin_inset FormulaMacro \newcommand{\bra}[1]{\left\langle #1\right|} \end_inset \lang english \begin_inset FormulaMacro \newcommand{\vect}[1]{\mathbf{\boldsymbol{#1}}} {\boldsymbol{\mathbf{#1}}} \end_inset \end_layout \begin_layout Title Technical notes on quantum electromagnetic multiple scattering \end_layout \begin_layout Author Marek Nečada \end_layout \begin_layout Affiliation COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 15100, Fi-00076 Aalto, Finland \end_layout \begin_layout Date \begin_inset ERT status open \begin_layout Plain Layout \backslash today \end_layout \end_inset \end_layout \begin_layout Abstract ... \end_layout \begin_layout Section Theory of quantum electromagnetic multiple scattering \end_layout \begin_layout Subsection Incoherent pumping \end_layout \begin_layout Standard Cf. Wubs \begin_inset CommandInset citation LatexCommand cite key "wubs_multiple-scattering_2004" \end_inset , Delga \begin_inset CommandInset citation LatexCommand cite key "delga_quantum_2014,delga_theory_2014" \end_inset . \end_layout \begin_layout Subsection General initial states \end_layout \begin_layout Standard Look at \begin_inset CommandInset citation LatexCommand cite key "landau_computational_2015" \end_inset for an inspiration for solving the LS equation with an arbitrary initial state. \end_layout \begin_layout Section Computing classical Green's functions \end_layout \begin_layout Subsection Boundary element method \end_layout \begin_layout Subsection T-Matrix method \end_layout \begin_layout Subsection T-Matrix resummation (multiple scatterers) \end_layout \begin_layout Subsection BEM→TM \end_layout \begin_layout Standard Cf. SCUFF-TMATRIX ( \begin_inset CommandInset ref LatexCommand ref reference "sub:SCUFF-TMATRIX" \end_inset ) \end_layout \begin_layout Section Available software \end_layout \begin_layout Subsection SCUFF-EM \begin_inset CommandInset citation LatexCommand cite key "reid_scuff-em_2015" \end_inset \end_layout \begin_layout Subsubsection \family typewriter SCUFF-TMATRIX \family default \begin_inset CommandInset label LatexCommand label name "sub:SCUFF-TMATRIX" \end_inset \end_layout \begin_layout Subsubsection \family typewriter SCUFF-SCATTER \family default \begin_inset CommandInset label LatexCommand label name "sub:SCUFF-SCATTER" \end_inset \end_layout \begin_layout Subsubsection Caveats \end_layout \begin_layout Description Units. \family typewriter SCUFF-SCATTER \family default 's Angular frequencies specified using the \family typewriter --Omega \family default or \family typewriter --OmegaFile \family default arguments are interpreted in units of \begin_inset Formula $c/1\,\mathrm{μm}=3\cdot10^{14}\,\mathrm{rad/s}$ \end_inset \begin_inset Foot status open \begin_layout Plain Layout \family typewriter \begin_inset CommandInset href LatexCommand href name "http://homerreid.dyndns.org/scuff-EM/scuff-scatter/scuffScatterExamples.shtml" target "http://homerreid.dyndns.org/scuff-EM/scuff-scatter/scuffScatterExamples.shtml" \end_inset \end_layout \end_inset . \emph on TODO what are the output units? \end_layout \begin_layout Subsection MSTM \begin_inset CommandInset citation LatexCommand cite key "mackowski_mstm_2013" \end_inset \end_layout \begin_layout Itemize The incident field is a gaussian beam or a plane wave in the vanilla code (no multipole radiation as input!). \end_layout \begin_layout Itemize The bulk of the useful code is in the \family typewriter mstm-modules-v3.0.f90 \family default file. \end_layout \begin_layout Itemize For solving the interaction equations \begin_inset CommandInset citation LatexCommand cite after "(14)" key "mackowski_mstm_2013" \end_inset , the BCGM (biconjugate gradient method) is used. (According to Wikipedia, this method is numerically unstable but has a stabilized version (stabilized BCGM).) \end_layout \begin_layout Itemize According to the manual \begin_inset CommandInset citation LatexCommand cite after "2.3" key "mackowski_mstm_2013" \end_inset , they use some method (rotational-axial translation decomposition of the translation operation), which \begin_inset Quotes eld \end_inset reduces the operation from an \begin_inset Formula $L_{S}^{4}$ \end_inset process to \begin_inset Formula $L_{S}^{3}$ \end_inset process where \begin_inset Formula $L_{S}$ \end_inset is the truncation order of the expansion \begin_inset Quotes erd \end_inset (more details can probably be found at \begin_inset CommandInset citation LatexCommand cite after "around (68)" key "mackowski_calculation_1996" \end_inset . \end_layout \begin_deeper \begin_layout Itemize \emph on Not sure if this holds also for nonspherical particles, I should either read carefully \emph default \begin_inset CommandInset citation LatexCommand cite key "mackowski_calculation_1996" \end_inset \emph on or look into \begin_inset CommandInset citation LatexCommand cite key "mishchenko_electromagnetic_2003" \end_inset which is also cited in the manual. \end_layout \end_deeper \begin_layout Itemize By default spheres, it is possible to add own T-Matrix coefficients instead. \end_layout \begin_deeper \begin_layout Itemize \emph on Is it then possible to insert a T-Matrix of an arbitrary shape, or is it somehow limited to \begin_inset Quotes eld \end_inset spherical-like \begin_inset Quotes erd \end_inset particles? \end_layout \end_deeper \begin_layout Itemize Why the heck are the T-matrix options listed in the \begin_inset Quotes eld \end_inset Options for random orientation calculations \begin_inset Quotes erd \end_inset ? \end_layout \begin_layout Section Code integration \end_layout \begin_layout Section Testing and reproduction of foreign results \end_layout \begin_layout Subsection Delga PRL \begin_inset CommandInset citation LatexCommand cite key "delga_quantum_2014" \end_inset \end_layout \begin_layout Subsubsection Parameters \end_layout \begin_layout Itemize Surrounding lossless dielectric \series bold medium \series default with permittivity \begin_inset Formula $\epsilon_{d}=2.13$ \end_inset . \end_layout \begin_layout Itemize \series bold QEs: \series default dipole moment \begin_inset Formula $\mu=0.19\, e\cdot\mathrm{nm}=9.12\,\mathrm{D}$ \end_inset , count \begin_inset Formula $N\in\left\{ 1,50,100,200\right\} $ \end_inset , radial orientation, \begin_inset Formula $h=1\,\mathrm{nm}$ \end_inset above the sphere (except for Fig. 5 where variable), natural frequency \begin_inset Formula $\Omega_{n}=\omega_{0}-i\gamma_{\mathrm{QE}}/2,$ \end_inset \begin_inset Formula $\omega_{0}=$ \end_inset varies, \begin_inset Formula $\gamma_{\mathrm{QE}}=15\,\mathrm{meV}$ \end_inset . \end_layout \begin_layout Itemize \series bold Sphere: \end_layout \begin_deeper \begin_layout Itemize radius \begin_inset Formula $a=7\,\mathrm{nm}$ \end_inset , \end_layout \begin_layout Itemize Drude model \begin_inset Formula $\epsilon_{m}(\omega)=\epsilon_{\infty}-\frac{\omega_{p}^{2}}{\omega\left(\omega+i\gamma_{p}\right)}$ \end_inset \end_layout \begin_deeper \begin_layout Itemize Drude parameters \begin_inset Formula $\omega_{p}=9\,\mathrm{eV}$ \end_inset , \begin_inset Formula $\epsilon_{\infty}=4.6$ \end_inset , \begin_inset Formula $\gamma_{p}=0.1\,\mathrm{eV}$ \end_inset \end_layout \end_deeper \begin_layout Itemize background permittivity \begin_inset Formula $\epsilon_{d}(\omega)=2.13$ \end_inset \end_layout \begin_layout Itemize (approximate?; not really a parameter) LSP resonances \begin_inset Formula $\omega_{l}=\omega_{p}/\sqrt{\epsilon_{\infty}+\left(1+1/l\right)\epsilon_{d}}$ \end_inset ; particularly, \begin_inset Formula $\omega_{1}\approx3.0236\,\mathrm{eV}$ \end_inset , \begin_inset Formula $\omega_{2}\approx3.2236\,\mathrm{eV}$ \end_inset , \begin_inset Formula $\omega_{3}\approx3.30\,\mathrm{eV}$ \end_inset , \begin_inset Formula $\omega_{4}\approx3.34\,\mathrm{eV}$ \end_inset , \begin_inset Formula $\omega_{5}\approx3.364\,\mathrm{eV}$ \end_inset \begin_inset Formula $\omega_{\infty}\approx3.4692\,\mathrm{eV}$ \end_inset \end_layout \end_deeper \begin_layout Itemize \series bold Detector: \series default \end_layout \begin_deeper \begin_layout Itemize Far field: \begin_inset Formula $1\,\mathrm{\mu m}$ \end_inset away from the center of the nanoparticle along the \begin_inset Formula $y$ \end_inset axis (Fig. 3). \end_layout \begin_layout Itemize Near field: position not specified in the paper; but in Fig. 4(b) there are \begin_inset Quotes eld \end_inset polarization spectra \begin_inset Quotes erd \end_inset instead of \begin_inset Quotes eld \end_inset light spectra \begin_inset Quotes erd \end_inset (eq. 4) in Fig. 4(a). Does this mean that they are evaluated somewhere in/on the sphere? Or in the particle? The latter is likely, as it is given by \begin_inset Formula $P_{n}\left(\omega\right)=\left\langle \sigma_{n}^{+}\left(-\omega\right)\sigma_{n}^{-}(\omega)\right\rangle $ \end_inset (cf. the column below Fig. 3). \end_layout \end_deeper \begin_layout Subsubsection Testing \end_layout \begin_layout Standard In my \begin_inset Quotes eld \end_inset old \begin_inset Quotes erd \end_inset code, there no splitting observable around \begin_inset Formula $\omega\approx\omega_{0}\approx\omega_{\infty}\approx3.46\,\mathrm{eV}$ \end_inset . This is perhaps because the couplings to the higher multipoles is miscalculated (too small). No splitting around the NP dipole ( \begin_inset Formula $\approx3,02\,\mathrm{eV}$ \end_inset ) should be OK for single QE in far field (cf. Fig. 3). And there are yet the \begin_inset Quotes eld \end_inset switched axes \begin_inset Quotes erd \end_inset ... \end_layout \begin_layout Subsection Delga JoO \begin_inset CommandInset citation LatexCommand cite key "delga_theory_2014" \end_inset \end_layout \begin_layout Subsubsection Parameters \end_layout \begin_layout Itemize \series bold QEs: \series default dipole moment \begin_inset Formula $\mu=0.38\, e\cdot\mathrm{nm}=18.24\,\mathrm{D}$ \end_inset (double), otherwise the same parameters as in \begin_inset CommandInset citation LatexCommand cite key "delga_quantum_2014" \end_inset . \end_layout \begin_layout Itemize \series bold Sphere: \series default as in \begin_inset CommandInset citation LatexCommand cite key "delga_quantum_2014" \end_inset \end_layout \begin_layout Itemize \series bold Detector: \series default not stated in the paper \end_layout \begin_layout Itemize \series bold Numerics: \series default looking at the leftmost ball in Fig. 3, it seems that their SVW cutoff is around 12. \end_layout \begin_layout Standard \begin_inset CommandInset bibtex LatexCommand bibtex bibfiles "dipdip" options "apsrev" \end_inset \end_layout \end_body \end_document