#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 584 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass article \use_default_options true \maintain_unincluded_children false \language finnish \language_package default \inputencoding utf8 \fontencoding auto \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf false \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \float_placement class \float_alignment class \paperfontsize default \spacing single \use_hyperref false \papersize a4paper \use_geometry true \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \leftmargin 2cm \topmargin 2cm \rightmargin 2cm \bottommargin 2cm \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Title 1D in 3D Ewald sum \end_layout \begin_layout Standard \begin_inset FormulaMacro \newcommand{\ud}{\mathrm{d}} \end_inset \begin_inset FormulaMacro \newcommand{\abs}[1]{\left|#1\right|} \end_inset \begin_inset FormulaMacro \newcommand{\vect}[1]{\mathbf{#1}} \end_inset \begin_inset FormulaMacro \newcommand{\uvec}[1]{\hat{\mathbf{#1}}} \end_inset \lang english \begin_inset FormulaMacro \newcommand{\ush}[2]{Y_{#1}^{#2}} \end_inset \begin_inset FormulaMacro \newcommand{\ushD}[2]{Y'_{#1}^{#2}} \end_inset \end_layout \begin_layout Standard \begin_inset FormulaMacro \newcommand{\vsh}{\vect A} \end_inset \begin_inset FormulaMacro \newcommand{\vshD}{\vect{A'}} \end_inset \begin_inset FormulaMacro \newcommand{\wfkc}{\vect y} \end_inset \begin_inset FormulaMacro \newcommand{\wfkcout}{\vect u} \end_inset \begin_inset FormulaMacro \newcommand{\wfkcreg}{\vect v} \end_inset \begin_inset FormulaMacro \newcommand{\wckcreg}{a} \end_inset \begin_inset FormulaMacro \newcommand{\wckcout}{f} \end_inset \end_layout \begin_layout Section General formula \end_layout \begin_layout Standard We need to find the expansion coefficient \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{i}{\kappa j_{l'}\left(\kappa\left|\vect r\right|\right)}\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)\ushD{l'}{m'}\left(\uvec r\right).\label{eq:tau extraction formula} \end{equation} \end_inset \end_layout \begin_layout Standard [Linton, (2.24)] with slightly modified notation and setting \begin_inset Formula $d_{c}=2$ \end_inset : \begin_inset Formula \[ G_{\Lambda}^{(1;\kappa)}\left(\vect r\right)=-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect r}\int_{1/\eta}^{\infty e^{i\pi/4}}e^{-\kappa^{2}\gamma^{2}t^{2}/4}e^{-\left|\vect r^{\bot}\right|^{2}/t^{2}}t^{-1}\ud t \] \end_inset or, evaluated at point \begin_inset Formula $\vect s+\vect r$ \end_inset instead \begin_inset Formula \[ G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)=-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\left(\vect s+\vect r\right)}\int_{1/\eta}^{\infty e^{i\pi/4}}e^{-\kappa^{2}\gamma^{2}t^{2}/4}e^{-\left|\vect s^{\bot}+\vect r^{\bot}\right|^{2}/t^{2}}t^{-1}\ud t \] \end_inset The integral can be by substitutions taken into the form \begin_inset Note Note status open \begin_layout Plain Layout \lang english \begin_inset Formula \[ G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{2\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\int_{1/\eta}^{\infty\exp\left(i\pi/4\right)}e^{-\kappa^{2}\gamma_{m}^{2}\zeta^{2}/4}e^{-\left|\vect r_{\bot}\right|^{2}/\zeta^{2}}\zeta^{1-d_{c}}\ud\zeta \] \end_inset Try substitution \begin_inset Formula $t=\zeta^{2}$ \end_inset : then \begin_inset Formula $\ud t=2\zeta\,\ud\zeta$ \end_inset ( \begin_inset Formula $\ud\zeta=\ud t/2t^{1/2}$ \end_inset ) and \begin_inset Formula \[ G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{4\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\int_{1/\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\kappa^{2}\gamma_{m}^{2}t/4}e^{-\left|\vect r_{\bot}\right|^{2}/t}t^{\frac{-d_{c}}{2}}\ud t \] \end_inset Try subst. \begin_inset Formula $\tau=k^{2}\gamma_{m}^{2}/4$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{4\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\left(\frac{\kappa\gamma_{m}}{2}\right)^{d_{c}}\int_{\kappa^{2}\gamma_{m}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{m}^{2}/4\tau}\tau^{\frac{-d_{c}}{2}}\ud\tau \] \end_inset \end_layout \end_inset \begin_inset Formula \[ G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)=-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\left(\vect s+\vect r\right)}\int_{\kappa^{2}\gamma_{m}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{m}^{2}/4\tau}\tau^{-1}\ud\tau \] \end_inset \end_layout \begin_layout Standard \begin_inset Foot status open \begin_layout Plain Layout [Linton, (2.25)] with slightly modified notation: \begin_inset Formula \[ G_{\Lambda}^{(1;\kappa)}\left(\vect r\right)=-\frac{1}{\sqrt{4\pi}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect r}\sum_{j=0}^{\infty}\frac{\left(-1\right)^{j}\left|\vect r^{\bot}\right|^{2j}}{j!}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2j-1}\Gamma_{j\vect K} \] \end_inset We want to express an expansion in a shifted point, so let's substitute \begin_inset Formula $\vect r\to\vect s+\vect r$ \end_inset \begin_inset Formula \[ G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)=-\frac{1}{\sqrt{4\pi}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\left(\vect s+\vect r\right)}\sum_{j=0}^{\infty}\frac{\left(-1\right)^{j}\left|\vect s^{\bot}+\vect r^{\bot}\right|^{2j}}{j!}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2j-1}\Gamma_{j\vect K} \] \end_inset \end_layout \end_inset Let's do the integration to get \begin_inset Formula $\tau_{l}^{m}\left(\vect s,\vect k\right)$ \end_inset \begin_inset Formula \[ \int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\left(\vect s+\vect r\right)}\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-1}\ud\tau \] \end_inset The \begin_inset Formula $\vect r$ \end_inset -dependent plane wave factor can be also written as \begin_inset Formula \begin{align*} e^{i\vect K\cdot\vect r} & =e^{i\left|\vect K\right|\vect r\cdot\uvec K}=4\pi\sum_{lm}i^{l}\mathcal{J}'_{l}^{m}\left(\left|\vect K\right|\vect r\right)\ush lm\left(\uvec K\right)\\ & =4\pi\sum_{lm}i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ushD lm\left(\uvec{\vect r}\right)\ush lm\left(\uvec K\right) \end{align*} \end_inset \begin_inset Note Note status open \begin_layout Plain Layout or the other way around \begin_inset Formula \[ e^{i\vect K\cdot\vect r}=4\pi\sum_{lm}i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec{\vect r}\right)\ushD lm\left(\uvec K\right) \] \end_inset \end_layout \end_inset so \begin_inset Formula \[ \int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ushD lm\left(\uvec r\right)\ush lm\left(\uvec K\right)\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-1}\ud\tau \] \end_inset \end_layout \begin_layout Standard We also have \begin_inset Formula \begin{align*} e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau} & =e^{-\left(\left|\vect s_{\bot}\right|^{2}+\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\\ & =e^{-\left|\vect s_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\sum_{n=0}^{\infty}\frac{1}{n!}\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4\tau}\right)^{n}, \end{align*} \end_inset hence \begin_inset Formula \begin{align*} \int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right) & =-\frac{1}{2\pi\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ushD lm\left(\uvec r\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{1}{n!}\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4}\right)^{n}\underbrace{\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-1-n}\ud\tau}_{\Delta_{n+1/2}}\\ & =-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\Delta_{n+1/2}}{n!}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4}\right)^{n}\\ & =-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left|\vect r_{\bot}\right|^{2(n-k)}\left(2\vect r_{\bot}\cdot\vect s_{\bot}\right)^{k} \end{align*} \end_inset If we label \begin_inset Formula $\left|\vect r_{\bot}\right|\left|\vect s_{\bot}\right|\cos\varphi\equiv\vect r_{\bot}\cdot\vect s_{\bot}$ \end_inset , we have \begin_inset Formula \[ \int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left|\vect r_{\bot}\right|^{2n-k}\left(\cos\varphi\right)^{k} \] \end_inset and if we label \begin_inset Formula $\left|\vect r\right|\sin\vartheta\equiv\left|\vect r_{\bot}\right|$ \end_inset \begin_inset Formula \[ \int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\left|\vect r\right|^{2n-k}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{2n-k}\left(\cos\varphi\right)^{k} \] \end_inset Now let's put the RHS into \begin_inset CommandInset ref LatexCommand eqref reference "eq:tau extraction formula" plural "false" caps "false" noprefix "false" \end_inset and try eliminating some sum by taking the limit \begin_inset Formula $\left|\vect r\right|\to0$ \end_inset . We have \begin_inset Formula $j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\sim\left(\left|\vect K\right|\left|\vect r\right|\right)^{l}/\left(2l+1\right)!!$ \end_inset ; the denominator from \begin_inset CommandInset ref LatexCommand eqref reference "eq:tau extraction formula" plural "false" caps "false" noprefix "false" \end_inset behaves like \begin_inset Formula $j_{l'}\left(\kappa\left|\vect r\right|\right)\sim\left(\kappa\left|\vect r\right|\right)^{l'}/\left(2l'+1\right)!!.$ \end_inset The leading terms are hence those with \begin_inset Formula $\left|\vect r\right|^{l-l'+2n-k}$ \end_inset . So \begin_inset Formula \[ \tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi\mathcal{A}\kappa^{1+l'}}\left(2l'+1\right)!!\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\delta_{l'-l,2n-k}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{l'-l}\left(\cos\varphi\right)^{k}. \] \end_inset Let's now focus on rearranging the sums; we have \begin_inset Formula \[ S(l')\equiv\sum_{l=0}^{\infty}\sum_{n=0}^{\infty}\sum_{k=0}^{n}\delta_{l'-l,2n-k}f(l',l,n,k)=\sum_{l=0}^{\infty}\sum_{n=0}^{\infty}\sum_{k=0}^{n}\delta_{l'-l,2n-k}f(l',l,n,2n-l'+l) \] \end_inset We have \begin_inset Formula $0\le k\le n$ \end_inset , hence \begin_inset Formula $0\le2n-l'+l\le n$ \end_inset , hence \begin_inset Formula $-2n\le-l'+l\le-n$ \end_inset , hence also \begin_inset Formula $l'-2n\le l\le l'-n$ \end_inset , which gives the opportunity to swap the \begin_inset Formula $l,n$ \end_inset sums and the \begin_inset Formula $l$ \end_inset -sum becomes finite; so also consuming \begin_inset Formula $\sum_{k=0}^{n}\delta_{l'-l,2n-k}$ \end_inset we get \begin_inset Formula \[ S(l')=\sum_{n=0}^{\infty}\sum_{l=\max(0,l'-2n)}^{l'-n}f(l',l,n,2n-l'+l). \] \end_inset Finally, we see that the interval of valid \begin_inset Formula $l$ \end_inset becomes empty when \begin_inset Formula $l'-n<0$ \end_inset , i.e. \begin_inset Formula $n>l'$ \end_inset ; so we get a finite sum \begin_inset Formula \[ S(l')=\sum_{n=0}^{l'}\sum_{l=\max(0,l'-2n)}^{l'-n}f(l',l,n,2n-l'+l). \] \end_inset Applying rearrangement, \begin_inset Formula \[ \tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi\mathcal{A}\kappa^{1+l'}}\left(2l'+1\right)!!\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{n=0}^{l'}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{l=\max\left(0,l'-2n\right)}^{l'-n}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2n-l'+l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\sum_{m=-l}^{l}\ush lm\left(\uvec K\right)\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{l'-l}\left(\cos\varphi\right)^{2n-l'+l}. \] \end_inset \end_layout \begin_layout Section Z-aligned lattice \end_layout \begin_layout Standard Now we set some conventions: let the lattice lie on the \begin_inset Formula $z$ \end_inset axis, so that \begin_inset Formula $\vect s_{\bot},\vect r_{\bot}$ \end_inset lie in the \begin_inset Formula $xy$ \end_inset -plane. \begin_inset Note Note status open \begin_layout Plain Layout (TODO check the meaning of \begin_inset Formula $\vect k$ \end_inset and possible additional phase factor.) \end_layout \end_inset If we write \begin_inset Formula $\vect s_{\bot}=\uvec x\left|\vect s_{\bot}\right|\cos\Phi+\uvec y\left|\vect s_{\bot}\right|\sin\Phi$ \end_inset , \begin_inset Formula $\vect r_{\bot}=\uvec x\left|\vect r_{\bot}\right|\cos\phi+\uvec y\left|\vect r_{\bot}\right|\sin\phi=\uvec x\left|\vect r\right|\sin\theta\cos\phi+\uvec y\left|\vect r\right|\sin\theta\sin\phi$ \end_inset , we have \begin_inset Formula $\varphi=\phi-\Phi$ \end_inset , and \begin_inset Formula $\vartheta=\theta$ \end_inset . Also, in this convention \begin_inset Formula $\ush lm\left(\uvec K\right)=0$ \end_inset for \begin_inset Formula $m\ne0$ \end_inset , so \begin_inset Formula \[ \tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi\mathcal{A}\kappa^{1+l'}}\left(2l'+1\right)!!\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{n=0}^{l'}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{l=\max\left(0,l'-2n\right)}^{l'-n}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2n-l'+l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\ush l0\left(\uvec K\right)\underbrace{\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD l0\left(\uvec r\right)\left(\sin\theta\right)^{l'-l}\left(\cos\varphi\right)^{2n-l'+l}}_{\equiv A_{l',l,n,m'}}. \] \end_inset Let's also fix the (dual) spherical harmonics for now, \begin_inset Formula \[ \ushD lm\left(\uvec r\right)=\lambda'_{lm}e^{-im\phi}P_{l}^{-m}\left(\cos\theta\right); \] \end_inset the angular integral then becomes (we also use \begin_inset Formula $e^{-im'\phi}=e^{im'\Phi}e^{-im'\varphi}$ \end_inset ) \begin_inset Formula \begin{align*} A_{l',l,n,m'} & \equiv\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD l0\left(\uvec r\right)\left(\sin\theta\right)^{l'-l}\left(\cos\varphi\right)^{2n-l'+l}\\ & =\lambda'_{l'm'}\lambda'_{l0}e^{im'\Phi}\int_{0}^{\pi}\ud\theta\,\sin\theta P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)\left(\sin\theta\right)^{l'-l}\int_{0}^{2\pi}\ud\varphi\,e^{-im'\varphi}\left(\cos\varphi\right)^{2n-l'+l}. \end{align*} \end_inset The asimuthal integral evaluates to \begin_inset Formula \[ \int_{0}^{2\pi}\ud\varphi\,e^{-im'\varphi}\left(\cos\varphi\right)^{2n-l'+l}=\pi\delta_{\left|m'\right|,2n-l'+l} \] \end_inset (note that \begin_inset Formula $2n-l'+l\ge0$ \end_inset as it's the former index \begin_inset Formula $k$ \end_inset ). That eliminates one of the two remaining (finite) sums. We are left with the polar integral \begin_inset Formula \[ \int_{0}^{\pi}\ud\theta\,\sin\theta P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)\left(\sin\theta\right)^{l'-l} \] \end_inset for which I couldn't find an explicit form yet. \end_layout \begin_layout Section X-aligned lattice \end_layout \begin_layout Standard If we instead set \begin_inset Formula $\vect s_{\bot}=\uvec z\left|\vect s_{\bot}\right|\cos\Theta+\uvec y\left|\vect s_{\bot}\right|\sin\Theta$ \end_inset , \begin_inset Formula $\vect r_{\bot}=\uvec z\left|\vect r_{\bot}\right|\cos\theta+\uvec y\left|\vect r_{\bot}\right|\sin\theta=\uvec z\left|\vect r\right|\cos\theta+\uvec y\left|\vect r\right|\sin\theta\sin\phi$ \end_inset , we have \begin_inset Formula $\vartheta=\Theta-\theta$ \end_inset \end_layout \begin_layout Standard \begin_inset Formula \[ \int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{l'-l}\left(\cos\varphi\right)^{k} \] \end_inset \end_layout \begin_layout Standard \begin_inset Note Note status open \begin_layout Plain Layout BTW: \begin_inset Formula \begin{align*} \left|\vect r_{\bot}\right|^{2} & =\left|\vect r\right|^{2}-\left|\vect r_{\parallel}\right|^{2}=\left|\vect r\right|^{2}-\left(\vect r\cdot\uvec K\right)^{2},\\ \vect r_{\bot}\cdot\vect s_{\bot} & =\vect r\cdot\vect s_{\bot} \end{align*} \end_inset \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Note Note status open \begin_layout Plain Layout Now we set the conventions: let the lattice lie on the \begin_inset Formula $z$ \end_inset axis, so that \begin_inset Formula $\vect s_{\bot},\vect r_{\bot}$ \end_inset lie in the \begin_inset Formula $xy$ \end_inset -plane, (TODO check the meaning of \begin_inset Formula $\vect k$ \end_inset and possible additional phase factor.) If we write \begin_inset Formula $\vect s_{\bot}=\uvec xs_{\bot}\cos\Phi+\uvec ys_{\bot}\sin\Phi$ \end_inset , \begin_inset Formula $\vect r_{\bot}=\uvec xr_{\bot}\cos\phi+\uvec yr_{\bot}\sin\phi=\uvec xr\sin\theta\cos\phi+\uvec yr\sin\theta\sin\phi$ \end_inset , we have \begin_inset Formula \[ \left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}=s_{\bot}^{2}+r^{2}\left(\sin\theta\right)^{2}+2s_{\bot}r\sin\theta\cos\left(\phi-\Phi\right). \] \end_inset \end_layout \begin_layout Plain Layout Also, in this convention \begin_inset Formula $\ush lm\left(\uvec K\right)=0$ \end_inset for \begin_inset Formula $m\ne0$ \end_inset , so \end_layout \begin_layout Plain Layout \begin_inset Formula \begin{align*} \int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right) & =-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush l0\left(\uvec K\right)\times\\ & \quad\times\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD l0\left(\uvec r\right)\sum_{n=0}^{\infty}\Delta_{n+1/2}\frac{1}{n!}\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4}\right)^{n}. \end{align*} \end_inset Let's also fix the spherical harmonics for now, \begin_inset Formula \[ \ushD lm\left(\uvec r\right)=\lambda'_{lm}e^{-im\phi}P_{l}^{-m}\left(\cos\theta\right) \] \end_inset Also, in this convention \begin_inset Formula $\ush lm\left(\uvec K\right)=0$ \end_inset for \begin_inset Formula $m\ne0$ \end_inset , so \begin_inset Formula \[ \int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{l}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ushD l0\left(\uvec r\right)\ush l0\left(\uvec K\right)\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left(s_{\bot}^{2}+r_{\bot}^{2}+2s_{\bot}r_{\bot}\cos\left(\phi-\Phi\right)\right)^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-1}\ud\tau \] \end_inset \end_layout \begin_layout Plain Layout Let's also fix the spherical harmonics for now, \begin_inset Formula \[ \ushD lm\left(\uvec r\right)=\lambda'_{lm}e^{-im\phi}P_{l}^{-m}\left(\cos\theta\right) \] \end_inset \end_layout \begin_layout Plain Layout The angular integral (assuming it can be separated from the rest like this) is \begin_inset Formula \[ I_{l'}^{m'}\equiv\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)e^{-\left(r_{\bot}^{2}+2s_{\bot}r_{\bot}\cos\left(\phi-\Phi\right)\right)^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau} \] \end_inset \end_layout \begin_layout Plain Layout Let's further extract the azimuthal part \begin_inset Formula $\left(w\equiv2r_{\bot}s_{\bot}\kappa^{2}\gamma_{\vect K}^{2}/4\tau\right)$ \end_inset \begin_inset Formula \[ e^{-im'\Phi}A_{l'}^{m'}\equiv\int_{0}^{2\pi}e^{-im'\phi}e^{-w\cos\left(\phi-\Phi\right)}\ud\phi=e^{-im'\Phi}\int_{0}^{2\pi}e^{-im'\varphi}e^{-w\cos\varphi}\ud\varphi \] \end_inset Using [DLMF 10.9.2], \begin_inset Formula $\int_{0}^{2\pi}e^{-im'\varphi}e^{-w\cos\varphi}\ud\varphi=\int_{0}^{2\pi}\cos\left(m'\varphi\right)e^{i(iw)\cos\varphi}=2\pi i^{m'}J_{m'}\left(iw\right)$ \end_inset we have \begin_inset Formula \[ e^{-m'\Phi}A_{l'}^{m'}=2\pi i^{m'}J_{m'}\left(iw\right), \] \end_inset assuming that \begin_inset Formula $w$ \end_inset is real (which does not necessarily have to be true!); numerical experiments in Sage show that the result is valid also for complex \begin_inset Formula $w$ \end_inset . \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula \begin{align*} A_{l}^{m} & =\int_{0}^{2\pi}e^{-im\varphi}\sum_{n=0}^{\infty}\frac{\left(-w\cos\varphi\right)^{n}}{n!}\ud\varphi\\ & =\int_{0}^{2\pi}e^{-im\varphi}\sum_{n=0}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\left(e^{i\varphi}+e^{-i\varphi}\right)^{n}\ud\varphi\\ & =\sum_{n=0}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\int_{0}^{2\pi}e^{-im\varphi}\sum_{k=0}^{n}\binom{n}{k}e^{ik\varphi}e^{-i\left(n-k\right)\varphi}\ud\varphi\\ & =\sum_{n=0}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\sum_{k=0}^{n}\binom{n}{k}\int_{0}^{2\pi}e^{i\left(2k-n-m\right)\varphi}\ud\varphi\\ & =2\pi\sum_{n=0}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\sum_{k=0}^{n}\binom{n}{k}\delta_{2k-n-m=0}\\ & =2\pi\sum_{n=0}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\sum_{k=0}^{n}\binom{n}{k}\delta_{2k-n-m=0}\\ & =2\pi\sum_{k=0}^{\infty}\sum_{n=k}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\binom{n}{k}\delta_{2k-n-m=0}\\ & =2\pi\sum_{k=0}^{\infty}\frac{\left(-w\right)^{2k-m}}{2^{2k-m}\left(2k-m\right)!}\binom{2k-m}{k}\delta_{2k-m\ge k}\\ & =2\pi\sum_{k=0}^{\infty}\frac{\left(-w\right)^{2k-m}}{2^{2k-m}}\frac{1}{k!\left(k-m\right)!}\delta_{k-m\ge0}\\ & =2\pi\sum_{k=\max\left(m,0\right)}^{\infty}\left(-\frac{w}{2}\right)^{2k-m}\frac{1}{k!\left(k-m\right)!} \end{align*} \end_inset \end_layout \end_inset \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula \begin{align*} A_{l}^{m} & =\int_{0}^{2\pi}e^{-im\varphi}\sum_{n=0}^{\infty}\frac{\left(-w\cos\varphi\right)^{n}}{n!}\ud\varphi\\ & =\int_{0}^{2\pi}e^{-im\varphi}\sum_{n=0}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\left(e^{i\varphi}+e^{-i\varphi}\right)^{n}\ud\varphi\\ & =\sum_{n=0}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\int_{0}^{2\pi}e^{-im\varphi}\sum_{k=0}^{n}\binom{n}{k}e^{i\left(n-k\right)\varphi}e^{-ik\varphi}\ud\varphi\\ & =\sum_{n=0}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\sum_{k=0}^{n}\binom{n}{k}\int_{0}^{2\pi}e^{i\left(-2k+n-m\right)\varphi}\ud\varphi\\ & =2\pi\sum_{n=0}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\sum_{k=0}^{n}\binom{n}{k}\delta_{-2k+n-m=0}\\ & =2\pi\sum_{n=0}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\sum_{k=0}^{n}\binom{n}{k}\delta_{-2k+n-m=0}\\ & =2\pi\sum_{k=0}^{\infty}\sum_{n=k}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\binom{n}{k}\delta_{-2k+n-m=0}\\ & =2\pi\sum_{k=0}^{\infty}\frac{\left(-w\right)^{2k+m}}{2^{2k+m}\left(2k+m\right)!}\binom{2k+m}{k}\delta_{2k+m\ge k}\\ & =2\pi\sum_{k=0}^{\infty}\frac{\left(-w\right)^{2k+m}}{2^{2k+m}}\frac{1}{k!\left(k+m\right)!}\delta_{k+m\ge0}\\ & =2\pi\sum_{k=\max\left(-m,0\right)}^{\infty}\frac{\left(-w\right)^{2k+m}}{2^{2k+m}}\frac{1}{k!\left(k+m\right)!} \end{align*} \end_inset \end_layout \end_inset Althought it's not superobvious, this sum is symmetric w.r.t. sign change in \begin_inset Formula $m$ \end_inset . \end_layout \begin_layout Plain Layout Let's do the polar integration next: \begin_inset Formula $r_{\bot}=r\sin\theta$ \end_inset \begin_inset Formula \[ B_{l'}^{m'}\equiv\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)e^{-\left(\sin\theta\right)^{2}r^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\left(-\sin\theta\,rs_{\bot}\kappa^{2}\gamma_{\vect K}^{2}/4\tau\right)^{2k-m'} \] \end_inset Label \begin_inset Formula $u\equiv r^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau,v\equiv rs_{\bot}\kappa^{2}\gamma_{\vect K}^{2}/4\tau$ \end_inset ; then \begin_inset Formula \begin{align*} B_{l'}^{m'} & =\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)e^{-u\left(\sin\theta\right)^{2}}\left(-v\sin\theta\right)^{2k-m'}\\ & =\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)\left(-v\sin\theta\right)^{2k-m'}\sum_{a=0}^{\infty}\frac{\left(-u\right)^{a}}{a!}\left(\sin\theta\right)^{2a}\\ & =\left(-v\right)^{2k-m'}\sum_{a=0}^{\infty}\frac{\left(-u\right)^{a}}{a!}\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)\left(\sin\theta\right)^{2a+2k-m'} \end{align*} \end_inset If we now perform the limit \begin_inset Formula $r\to0$ \end_inset and compare the radial parts (incl. those in \begin_inset Formula $u,v$ \end_inset ) powers, the leading term indices will have \begin_inset Formula \[ l'\sim l+2a+2k-m' \] \end_inset so we can fix \begin_inset Formula $2a+2k-m'=l'-l$ \end_inset and get \begin_inset Formula \[ \int_{0}^{\pi}\sin\theta\ud\theta\,P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)\left(\sin\theta\right)^{l'-l}=\begin{cases} 0 & l'-l+m'\text{ odd}\\ ? & l'-l+m'\text{ even} \end{cases} \] \end_inset \end_layout \end_inset \begin_inset Formula $ $ \end_inset \end_layout \end_body \end_document