import numpy as np from qpms_c import * ň = np.newaxis import scipy from scipy.constants import epsilon_0 as ε_0, c, pi as π, e, hbar as ℏ, mu_0 as μ_0 eV = e from scipy.special import lpmn, lpmv, spherical_jn, spherical_yn, poch, gammaln, factorial import math import cmath import os """ ''' Try to import numba. Its pre-0.28.0 versions can not handle functions containing utf8 identifiers, so we keep track about that. ''' try: import numba use_jit = True if numba.__version__ >= '0.28.0': use_jit_utf8 = True else: use_jit_utf8 = False except ImportError: use_jit = False use_jit_utf8 = False ''' Accordingly, we define our own jit decorator that handles different versions of numba or does nothing if numba is not present. Note that functions that include unicode identifiers must be decorated with #@ujit ''' #def dummywrap(f): # return f def jit(f): if use_jit: return numba.jit(f) else: return f def ujit(f): if use_jit_utf8: return numba.jit(f) else: return f """ # Coordinate transforms for arrays of "arbitrary" shape #@ujit def cart2sph(cart,axis=-1, allow2d=False): cart = np.array(cart, copy=False) if cart.shape[axis] == 3: [x, y, z] = np.split(cart,3,axis=axis) r = np.linalg.norm(cart,axis=axis,keepdims=True) r_zero = np.logical_not(r) θ = np.arccos(z/(r+r_zero)) elif cart.shape[axis] == 2 and allow2d: [x, y] = np.split(cart,2,axis=axis) r = np.linalg.norm(cart,axis=axis,keepdims=True) r_zero = np.logical_not(r) θ = np.broadcast_to(np.pi/2, x.shape) else: raise ValueError("The converted array has to have dimension 3 " "(or 2 if allow2d==True)" " along the given axis, not %d" % cart.shape[axis]) φ = np.arctan2(y,x) # arctan2 handles zeroes correctly itself return np.concatenate((r,θ,φ),axis=axis) #@ujit def sph2cart(sph, axis=-1): sph = np.array(sph, copy=False) if (sph.shape[axis] != 3): raise ValueError("The converted array has to have dimension 3" " along the given axis") [r,θ,φ] = np.split(sph,3,axis=axis) sinθ = np.sin(θ) x = r * sinθ * np.cos(φ) y = r * sinθ * np.sin(φ) z = r * np.cos(θ) return np.concatenate((x,y,z),axis=axis) #@ujit def sph_loccart2cart(loccart, sph, axis=-1): """ Transformation of vector specified in local orthogonal coordinates (tangential to spherical coordinates – basis r̂,θ̂,φ̂) to global cartesian coordinates (basis x̂,ŷ,ẑ) SLOW FOR SMALL ARRAYS Parameters ---------- loccart: ... TODO the transformed vector in the local orthogonal coordinates sph: ... TODO the point (in spherical coordinates) at which the locally orthogonal basis is evaluated Returns ------- output: ... TODO The coordinates of the vector in global cartesian coordinates """ loccart = np.array(loccart, copy=False) sph = np.array(sph, copy=False) if (loccart.shape[axis] != 3): raise ValueError("The converted array has to have dimension 3" " along the given axis") [r,θ,φ] = np.split(sph,3,axis=axis) sinθ = np.sin(θ) cosθ = np.cos(θ) sinφ = np.sin(φ) cosφ = np.cos(φ) #x = r * sinθ * cosφ #y = r * sinθ * sinφ #z = r * cosθ r̂x = sinθ * cosφ r̂y = sinθ * sinφ r̂z = cosθ θ̂x = cosθ * cosφ θ̂y = cosθ * sinφ θ̂z = -sinθ φ̂x = -sinφ φ̂y = cosφ φ̂z = np.zeros(φ̂y.shape) r̂ = np.concatenate((r̂x,r̂y,r̂z),axis=axis) θ̂ = np.concatenate((θ̂x,θ̂y,θ̂z),axis=axis) φ̂ = np.concatenate((φ̂x,φ̂y,φ̂z),axis=axis) [inr̂,inθ̂,inφ̂] = np.split(loccart,3,axis=axis) out=inr̂*r̂+inθ̂*θ̂+inφ̂*φ̂ return out #@ujit def sph_loccart_basis(sph, sphaxis=-1, cartaxis=None): """ Returns the local cartesian basis in terms of global cartesian basis. sphaxis refers to the original dimensions TODO doc """ if(cartaxis is None): cartaxis = sph.ndim # default to last axis [r,θ,φ] = np.split(sph,3,axis=sphaxis) sinθ = np.sin(θ) cosθ = np.cos(θ) sinφ = np.sin(φ) cosφ = np.cos(φ) #x = r * sinθ * cosφ #y = r * sinθ * sinφ #z = r * cosθ r̂x = sinθ * cosφ r̂y = sinθ * sinφ r̂z = cosθ θ̂x = cosθ * cosφ θ̂y = cosθ * sinφ θ̂z = -sinθ φ̂x = -sinφ φ̂y = cosφ φ̂z = np.zeros(φ̂y.shape) #r̂ = np.concatenate((r̂x,r̂y,r̂z),axis=axis) #θ̂ = np.concatenate((θ̂x,θ̂y,θ̂z),axis=axis) #φ̂ = np.concatenate((φ̂x,φ̂y,φ̂z),axis=axis) x = np.expand_dims(np.concatenate((r̂x,θ̂x,φ̂x), axis=sphaxis),axis=cartaxis) y = np.expand_dims(np.concatenate((r̂y,θ̂y,φ̂y), axis=sphaxis),axis=cartaxis) z = np.expand_dims(np.concatenate((r̂z,θ̂z,φ̂z), axis=sphaxis),axis=cartaxis) out = np.concatenate((x,y,z),axis=cartaxis) return out #@jit def nelem2lMax(nelem): """ Auxiliary inverse function to nelem(lMax) = (lMax + 2) * lMax. Returns 0 if it nelem does not come from positive integer lMax. """ lMax = round(math.sqrt(1+nelem) - 1) if ((lMax < 1) or ((lMax + 2) * lMax != nelem)): return 0 else: return lMax def lMax2nelem(lMax): return lMax * (lMax+2) def lpy(nmax, z): # TODO TRUEVECTORIZE # TODO DOC nelem = nmax * (nmax+2) z = np.array(z, copy=False) P_y = np.empty(z.shape + (nelem,), dtype=np.float_) dP_y = np.empty(z.shape + (nelem,), dtype=np.float_) for i in np.ndindex(z.shape): P_y[i], dP_y[i] = lpy1(nmax, z[i]) return (P_y, dP_y) def lpy1(nmax, z): """ Associated legendre function and its derivatative at z in the 'y-indexing'. (Without Condon-Shortley phase AFAIK.) NOT THOROUGHLY TESTED Parameters ---------- nmax: int The maximum order to which the Legendre functions will be evaluated.. z: float The point at which the Legendre functions are evaluated. output: (P_y, dP_y) TODO y-indexed legendre polynomials and their derivatives """ pmn_plus, dpmn_plus = lpmn(nmax, nmax, z) pmn_minus, dpmn_minus = lpmn(-nmax, nmax, z) nelem = nmax * nmax + 2*nmax P_y = np.empty((nelem,), dtype=np.float_) dP_y = np.empty((nelem,), dtype=np.float_) mn_p_y, mn_n_y = get_y_mn_unsigned(nmax) mn_plus_mask = (mn_p_y >= 0) mn_minus_mask = (mn_n_y >= 0) #print( mn_n_y[mn_minus_mask]) P_y[mn_p_y[mn_plus_mask]] = pmn_plus[mn_plus_mask] P_y[mn_n_y[mn_minus_mask]] = pmn_minus[mn_minus_mask] dP_y[mn_p_y[mn_plus_mask]] = dpmn_plus[mn_plus_mask] dP_y[mn_n_y[mn_minus_mask]] = dpmn_minus[mn_minus_mask] return (P_y, dP_y) def vswf_yr(pos_sph,lMax,J=1): """ Normalized vector spherical wavefunctions $\widetilde{M}_{mn}^{j}$, $\widetilde{N}_{mn}^{j}$ as in [1, (2.40)]. Parameters ---------- pos_sph : np.array(dtype=float, shape=(someshape,3)) The positions where the spherical vector waves are to be evaluated. The last axis corresponds to the individual points (r,θ,φ). The radial coordinate r is dimensionless, assuming that it has already been multiplied by the wavenumber. nmax : int The maximum order to which the VSWFs are evaluated. Returns ------- output : np.array(dtype=complex, shape=(someshape,nmax*nmax + 2*nmax,3)) Spherical vector wave functions evaluated at pos_sph, in the local basis (r̂,θ̂,φ̂). The last indices correspond to m, n (in the ordering given by mnindex()), and basis vector index, respectively. [1] Jonathan M. Taylor. Optical Binding Phenomena: Observations and Mechanisms. """ # TODO TRUEVECTORIZE pos_sph = np.array(pos_sph, copy = False) nelem = (lMax + 2) * lMax M_y = np.empty(pos_sph.shape[:-1] + (nelem,3), dtype = np.complex_) N_y = np.empty(pos_sph.shape[:-1] + (nelem,3), dtype = np.complex_) for i in np.ndindex(pos_sph.shape[:-1]): M_y[i], N_y[i] = vswf_yr1(pos_sph[i], lMax, J) # non-vectorised function return (M_y, N_y) #@jit def _sph_zn_1(n,z,derivative=False): return spherical_jn(n,z,derivative) #@jit def _sph_zn_2(n,z,derivative=False): return spherical_yn(n,z,derivative) #@jit def _sph_zn_3(n,z,derivative=False): besj=spherical_jn(n,z,derivative) besy=spherical_yn(n,z,derivative) return besj + 1j*besy #@jit def _sph_zn_4(n,z,derivative=False): besj=spherical_jn(n,z,derivative) besy=spherical_yn(n,z,derivative) return besj + 1j*besy _sph_zn = [_sph_zn_1,_sph_zn_2,_sph_zn_3,_sph_zn_4] # computes bessel/hankel functions for orders from 0 up to n; #@jit def zJn(n, z, J=1): return (_sph_zn[J-1](n=np.arange(n+1),z=z,derivative=False), _sph_zn[J-1](n=np.arange(n+1),z=z,derivative=True)) # The following 4 funs have to be refactored, possibly merged # FIXME: this can be expressed simply as: # $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}+\delta_{m,-1}) $$ #@ujit def π̃_zerolim(nmax): # seems OK """ lim_{θ→ 0-} π̃(cos θ) """ my, ny = get_mn_y(nmax) nelems = len(my) π̃_y = np.zeros((nelems)) plus1mmask = (my == 1) minus1mmask = (my == -1) pluslim = -ny*(1+ny)/2 minuslim = 0.5 π̃_y[plus1mmask] = pluslim[plus1mmask] π̃_y[minus1mmask] = - minuslim prenorm = np.sqrt((2*ny + 1)*factorial(ny-my)/(4*π*factorial(ny+my))) π̃_y = prenorm * π̃_y return π̃_y #@ujit def π̃_pilim(nmax): # Taky OK, jen to možná není kompatibilní se vzorečky z mathematiky """ lim_{θ→ π+} π̃(cos θ) """ my, ny = get_mn_y(nmax) nelems = len(my) π̃_y = np.zeros((nelems)) plus1mmask = (my == 1) minus1mmask = (my == -1) pluslim = (-1)**ny*ny*(1+ny)/2 minuslim = 0.5*(-1)**ny π̃_y[plus1mmask] = pluslim[plus1mmask] π̃_y[minus1mmask] = minuslim[minus1mmask] prenorm = np.sqrt((2*ny + 1)*factorial(ny-my)/(4*π*factorial(ny+my))) π̃_y = prenorm * π̃_y return π̃_y # FIXME: this can be expressed simply as # $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}-\delta_{m,-1}) $$ #@ujit def τ̃_zerolim(nmax): """ lim_{θ→ 0-} τ̃(cos θ) """ p0 = π̃_zerolim(nmax) my, ny = get_mn_y(nmax) minus1mmask = (my == -1) p0[minus1mmask] = -p0[minus1mmask] return p0 #@ujit def τ̃_pilim(nmax): """ lim_{θ→ π+} τ̃(cos θ) """ t = π̃_pilim(nmax) my, ny = get_mn_y(nmax) plus1mmask = (my == 1) t[plus1mmask] = -t[plus1mmask] return t #@ujit def get_π̃τ̃_y1(θ,nmax): # TODO replace with the limit functions (below) when θ approaches # the extreme values at about 1e-6 distance """ (... TODO) """ if (abs(θ)<1e-6): return (π̃_zerolim(nmax),τ̃_zerolim(nmax)) if (abs(θ-π)<1e-6): return (π̃_pilim(nmax),τ̃_pilim(nmax)) my, ny = get_mn_y(nmax) nelems = len(my) Py, dPy = lpy(nmax, math.cos(θ)) prenorm = np.sqrt((2*ny + 1)*factorial(ny-my)/(4*π*factorial(ny+my))) π̃_y = prenorm * my * Py / math.sin(θ) # bacha, možné dělení nulou τ̃_y = prenorm * dPy * (- math.sin(θ)) # TADY BACHA!!!!!!!!!! * (- math.sin(pos_sph[1])) ??? return (π̃_y,τ̃_y) #@ujit def vswf_yr1(pos_sph,nmax,J=1): """ As vswf_yr, but evaluated only at single position (i.e. pos_sph has to have shape=(3)) """ if (pos_sph[1].imag or pos_sph[2].imag): raise ValueError("The angles for the spherical wave functions can not be complex") kr = pos_sph[0] if pos_sph[0].imag else pos_sph[0].real # To supress the idiotic warning in scipy.special.sph_jn θ = pos_sph[1].real φ = pos_sph[2].real my, ny = get_mn_y(nmax) Py, dPy = lpy(nmax, math.cos(θ)) nelems = nmax*nmax + 2*nmax # TODO Remove these two lines in production: if(len(Py) != nelems or len(my) != nelems): raise ValueError("This is very wrong.") prenorm = np.sqrt((2*ny + 1)*factorial(ny-my)/(4*π*factorial(ny+my))) if (abs(θ)<1e-6): # Ošetření limitního chování derivací Leg. fcí π̃_y=π̃_zerolim(nmax) τ̃_y=τ̃_zerolim(nmax) elif (abs(θ-π)<1e-6): π̃_y=π̃_pilim(nmax) τ̃_y=τ̃_pilim(nmax) else: π̃_y = prenorm * my * Py / math.sin(θ) τ̃_y = prenorm * dPy * (- math.sin(θ)) # TADY BACHA!!!!!!!!!! * (- math.sin(pos_sph[1])) ??? z_n, dz_n = zJn(nmax, kr, J=J) z_y = z_n[ny] dz_y = dz_n[ny] eimf_y = np.exp(1j*my*φ) # zbytečné opakování my, lepší by bylo to spočítat jednou a vyindexovat M̃_y = np.zeros((nelems,3), dtype=np.complex_) M̃_y[:,1] = 1j * π̃_y * eimf_y * z_y M̃_y[:,2] = - τ̃_y * eimf_y * z_y Ñ_y = np.empty((nelems,3), dtype=np.complex_) Ñ_y[:,0] = (ny*(ny+1)/kr) * prenorm * Py * eimf_y * z_y Ñradial_fac_y = z_y / kr + dz_y Ñ_y[:,1] = τ̃_y * eimf_y * Ñradial_fac_y Ñ_y[:,2] = 1j*π̃_y * eimf_y * Ñradial_fac_y return(M̃_y, Ñ_y) #def plane_E_y(nmax): # """ # The E_mn normalization factor as in [1, (3)] WITHOUT the E_0 factor, # y-indexed # # (... TODO) # # References # ---------- # [1] Jonathan M. Taylor. Optical Binding Phenomena: Observations and # Mechanisms. FUCK, I MADE A MISTAKE: THIS IS FROM 7U # """ # my, ny = get_mn_y(nmax) # return 1j**ny * np.sqrt((2*ny+1)*factorial(ny-my) / # (ny*(ny+1)*factorial(ny+my)) # ) #@ujit def zplane_pq_y(nmax, betap = 0): """ The z-propagating plane wave expansion coefficients as in [1, (1.12)] Taylor's normalization (... TODO) """ my, ny = get_mn_y(nmax) U_y = 4*π * 1j**ny / (ny * (ny+1)) π̃_y = π̃_zerolim(nmax) τ̃_y = τ̃_zerolim(nmax) # fixme co je zač ten e_θ ve vzorečku? (zde neimplementováno) p_y = U_y*(τ̃_y*math.cos(betap) - 1j*math.sin(betap)*π̃_y) q_y = U_y*(π̃_y*math.cos(betap) - 1j*math.sin(betap)*τ̃_y) return (p_y, q_y) #import warnings #@ujit def plane_pq_y(nmax, kdir_cart, E_cart): """ The plane wave expansion coefficients for any direction kdir_cart and amplitude vector E_cart (which might be complex, depending on the phase and polarisation state). If E_cart and kdir_cart are not orthogonal, the result should correspond to the k-normal part of E_cart. The Taylor's convention on the expansion is used; therefore, the electric field is expressed as E(r) = E_cart * exp(1j * k ∙ r) = -1j * ∑_y ( p_y * Ñ_y(|k| * r) + q_y * M̃_y(|k| * r)) (note the -1j factor). Parameters ---------- nmax: int The order of the expansion. kdir_cart: (...,3)-shaped real array The wave vector (its magnitude does not play a role). E_cart: (...,3)-shaped complex array Amplitude of the plane wave Returns ------- p_y, q_y: The expansion coefficients for the electric (Ñ) and magnetic (M̃) waves, respectively. """ # TODO TRUEVECTORIZE if np.iscomplexobj(kdir_cart): warnings.warn("The direction vector for the plane wave coefficients should be real. I am discarding the imaginary part now.") kdir_cart = kdir_cart.real E_cart = np.array(E_cart, copy=False) k_sph = cart2sph(kdir_cart) my, ny = get_mn_y(nmax) nelem = len(my) U_y = 4*π * 1j**ny / (ny * (ny+1)) θ̂ = sph_loccart2cart(np.array([0,1,0]), k_sph, axis=-1) φ̂ = sph_loccart2cart(np.array([0,0,1]), k_sph, axis=-1) # not properly vectorised part: π̃_y = np.empty(k_sph.shape[:-1] + (nelem,), dtype=np.complex_) τ̃_y = np.empty(π̃_y.shape, dtype=np.complex_) for i in np.ndindex(k_sph.shape[:-1]): π̃_y[i], τ̃_y[i] = get_π̃τ̃_y1(k_sph[i][1], nmax) # this shit is not vectorised # last indices of the summands: [...,y,local cartesian component index (of E)] p_y = np.sum( U_y[...,:,ň] * np.conj(np.exp(1j*my[...,:,ň]*k_sph[...,ň,ň,2]) * ( θ̂[...,ň,:]*τ̃_y[...,:,ň] + 1j*φ̂[...,ň,:]*π̃_y[...,:,ň])) * E_cart[...,ň,:], axis=-1) q_y = np.sum( U_y[...,:,ň] * np.conj(np.exp(1j*my[...,:,ň]*k_sph[...,ň,ň,2]) * ( θ̂[...,ň,:]*π̃_y[...,:,ň] + 1j*φ̂[...,ň,:]*τ̃_y[...,:,ň])) * E_cart[...,ň,:], axis=-1) return (p_y, q_y) # Material parameters #@ujit def ε_drude(ε_inf, ω_p, γ_p, ω): # RELATIVE permittivity, of course return ε_inf - ω_p*ω_p/(ω*(ω+1j*γ_p)) # In[8]: # Mie scattering #@ujit def mie_coefficients(a, nmax, #ω, ε_i, ε_e=1, J_ext=1, J_scat=3 k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3): """ FIXME test the magnetic case TODO description RH concerns the N ("electric") part, RV the M ("magnetic") part # Parameters ---------- a : float Diameter of the sphere. nmax : int To which order (inc. nmax) to compute the coefficients. ω : float Frequency of the radiation ε_i, ε_e, μ_i, μ_e : complex Relative permittivities and permeabilities of the sphere (_i) and the environment (_e) MAGNETIC (μ_i, μ_e != 1) CASE UNTESTED AND PROBABLY BUGGY J_ext, J_scat : 1, 2, 3, or 4 (must be different) Specifies the species of the Bessel/Hankel functions in which the external incoming (J_ext) and scattered (J_scat) fields are represented. 1,2,3,4 correspond to j,y,h(1),h(2), respectively. The returned coefficients are always with respect to the decomposition of the "external incoming" wave. Returns ------- RV == a/p, RH == b/q, TV = d/p, TH = c/q TODO what does it return on index 0??? FIXME permeabilities """ # permittivities are relative! # cf. worknotes #print("a, nmax, ε_m, ε_b, ω",a, nmax, ε_m, ε_b, ω) #k_i = cmath.sqrt(ε_i*μ_i) * ω / c x_i = k_i * a #k_e = cmath.sqrt(ε_e*μ_e) * ω / c x_e = k_e * a #print("Mie: phase at radius: x_i",x_i,"x_e",x_e) m = k_i/k_e#cmath.sqrt(ε_i*μ_i/(ε_e*μ_e)) # We "need" the absolute permeabilities for the final formula # This is not the absolute wave impedance, because only their ratio # ηi/ηe is important for getting the Mie coefficients. η_inv_i = k_i / μ_i η_inv_e = k_e / μ_e #print("k_m, x_m,k_b,x_b",k_m, x_m,k_b,x_b) zi, ži = zJn(nmax, x_i, J=1) #Pi = (zi * x_i) #Di = (zi + x_i * ži) / Pi # Vzoreček Taylor (2.9) #ži = zi + x_i * ži ze, že = zJn(nmax, x_e, J=J_ext) #Pe = (ze * x_e) #De = (ze + x_e * že) / Pe # Vzoreček Taylor (2.9) #že = ze + x_e * že zs, žs = zJn(nmax, x_e, J=J_scat) #Ps = (zs * x_e) #Ds = (zs + x_e * žs) / Ps # Vzoreček Taylor (2.9) #žs = zs + x_e * zs #RH = (μ_i*zi*že - μ_e*ze*ži) / (μ_i*zi*žs - μ_e*zs*ži) #RV = (μ_e*m*m*zi*že - μ_i*ze*ži) / (μ_e*m*m*zi*žs - μ_i*zs*ži) #TH = (μ_i*ze*žs - μ_i*zs*že) / (μ_i*zi*žs - μ_e*zs*ži) #TV = (μ_i*m*ze*žs - μ_i*m*zs*že) / (μ_e*m*m*zi*žs - μ_i*zs*ži) ži = zi/x_i+ži žs = zs/x_e+žs že = ze/x_e+že RV = -((-η_inv_i * že * zi + η_inv_e * ze * ži)/(-η_inv_e * ži * zs + η_inv_i * zi * žs)) RH = -((-η_inv_e * že * zi + η_inv_i * ze * ži)/(-η_inv_i * ži * zs + η_inv_e * zi * žs)) TV = -((-η_inv_e * že * zs + η_inv_e * ze * žs)/( η_inv_e * ži * zs - η_inv_i * zi * žs)) TH = -(( η_inv_e * že * zs - η_inv_e * ze * žs)/(-η_inv_i * ži * zs + η_inv_e * zi * žs)) return (RH, RV, TH, TV) #@ujit def G_Mie_scat_precalc_cart_new(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3): """ Implementation according to Kristensson, page 50 My (Taylor's) basis functions are normalized to n*(n+1), whereas Kristensson's to 1 TODO: check possible -1 factors (cf. Kristensson's dagger notation) """ my, ny = get_mn_y(nmax) nelem = len(my) #source to origin source_sph = cart2sph(source_cart) source_sph[0] = k_e * source_sph[0] dest_sph = cart2sph(dest_cart) dest_sph[0] = k_e * dest_sph[0] if(dest_sph[0].real >= source_sph[0].real): lo_sph = source_sph hi_sph = dest_sph else: lo_sph = dest_sph hi_sph = source_sph lo_sph = source_sph hi_sph = dest_sph M̃lo_y, Ñlo_y = vswf_yr1(lo_sph,nmax,J=J_scat) lo_loccart_basis = sph_loccart_basis(lo_sph, sphaxis=-1, cartaxis=None) M̃lo_cart_y = np.sum(M̃lo_y[:,:,ň]*lo_loccart_basis[ň,:,:],axis=-2) Ñlo_cart_y = np.sum(Ñlo_y[:,:,ň]*lo_loccart_basis[ň,:,:],axis=-2) M̃hi_y, Ñhi_y = vswf_yr1(hi_sph,nmax,J=J_scat)#J_scat hi_loccart_basis = sph_loccart_basis(hi_sph, sphaxis=-1, cartaxis=None) M̃hi_cart_y = np.sum(M̃hi_y[:,:,ň]*hi_loccart_basis[ň,:,:],axis=-2) Ñhi_cart_y = np.sum(Ñhi_y[:,:,ň]*hi_loccart_basis[ň,:,:],axis=-2) G_y = (RH[ny][:,ň,ň] * M̃lo_cart_y[:,:,ň].conj() * M̃hi_cart_y[:,ň,:] + RV[ny][:,ň,ň] * Ñlo_cart_y[:,:,ň].conj() * Ñhi_cart_y[:,ň,:]) / (ny * (ny+1))[:,ň,ň] return 1j* k_e*np.sum(G_y,axis=0) # From PRL 112, 253601 (1) #@ujit def Grr_Delga(nmax, a, r, k, ε_m, ε_b): om = k * c z = (r-a)/a g0 = om*cmath.sqrt(ε_b)/(6*c*π) n = np.arange(1,nmax+1) s = np.sum( (n+1)**2 * (ε_m-ε_b) / ((1+z)**(2*n+4) * (ε_m + ((n+1)/n)*ε_b))) return (g0 + s * c**2/(4*π*om**2*ε_b*a**3)) # TODOs # ==== # # Rewrite the functions zJn, lpy in (at least simulated) universal manner. # Then universalise the rest # # Implement the actual multiple scattering # # Test if the decomposition of plane wave works also for absorbing environment (complex k). # From PRL 112, 253601 (1) #@ujit def Grr_Delga(nmax, a, r, k, ε_m, ε_b): om = k * c z = (r-a)/a g0 = om*cmath.sqrt(ε_b)/(6*c*π) n = np.arange(1,nmax+1) s = np.sum( (n+1)**2 * (ε_m-ε_b) / ((1+z)**(2*n+4) * (ε_m + ((n+1)/n)*ε_b))) return (g0 + s * c**2/(4*π*om**2*ε_b*a**3)) #@ujit def G0_dip_1(r_cart,k): """ Free-space dyadic Green's function in terms of the spherical vector waves. FIXME """ sph = cart2sph(r_cart*k) pfz = 0.32573500793527994772 # 1./math.sqrt(3.*π) pf = 0.23032943298089031951 # 1./math.sqrt(6.*π) M1_y, N1_y = vswf_yr1(sph,nmax = 1,J=3) loccart_basis = sph_loccart_basis(sph, sphaxis=-1, cartaxis=None) N1_cart = np.sum(N1_y[:,:,ň]*loccart_basis[ň,:,:],axis=-2) coeffs_cart = np.array([[pf,-1j*pf,0.],[0.,0.,pfz],[-pf,-1j*pf,0.]]).conj() return 1j*k*np.sum(coeffs_cart[:,:,ň]*N1_cart[:,ň,:],axis=0)/2. # Free-space dyadic Green's functions from RMP 70, 2, 447 =: [1] # (The numerical value is correct only at the regular part, i.e. r != 0) #@ujit def _P(z): return (1-1/z+1/(z*z)) #@ujit def _Q(z): return (-1+3/z-3/(z*z)) # [1, (9)] FIXME The sign here is most likely wrong!!! #@ujit def G0_analytical(r #cartesian! , k): I=np.identity(3) rn = sph_loccart2cart(np.array([1.,0.,0.]), cart2sph(r), axis=-1) rnxrn = rn[...,:,ň] * rn[...,ň,:] r = np.linalg.norm(r, axis=-1) #print(_P(1j*k*r).shape,_Q(1j*k*r).shape, rnxrn.shape, I.shape) return ((-np.exp(1j*k*r)/(4*π*r))[...,ň,ň] * (_P(1j*k*r)[...,ň,ň]*I +_Q(1j*k*r)[...,ň,ň]*rnxrn )) # [1, (11)] #@ujit def G0L_analytical(r, k): I=np.identity(3) rn = sph_loccart2cart(np.array([1.,0.,0.]), cart2sph(r), axis=-1) rnxrn = rn[...,:,ň] * rn[...,ň,:] r = np.linalg.norm(r, axis=-1) return (I-3*rnxrn)/(4*π*k*k*r**3)[...,ň,ň] # [1,(10)] #@jit def G0T_analytical(r, k): return G0_analytical(r,k) - G0L_analytical(r,k) #@ujit def G0_sum_1_slow(source_cart, dest_cart, k, nmax): my, ny = get_mn_y(nmax) nelem = len(my) RH = np.full((nelem),1) RV = RH return G_Mie_scat_precalc_cart(source_cart, dest_cart, RH, RV, a=0.001, nmax=nmax, k_i=1, k_e=k, μ_i=1, μ_e=1, J_ext=1, J_scat=3) def loadWfile(fileName, lMax = None, fatForm = True, nparticles = 2): ''' Load the translation operator lattice sums generated by hexlattice_ewald.c fatForm has different indices (so that it can be easily multiplied with T-Matrix and twice the size. ''' #nparticles = 2 # TODO generalize um = 1e-6 # micrometer in SI units data = np.loadtxt(fileName) nsamples = data.shape[0] Wdata = data[:,5:] if (lMax is None): nelem = int((Wdata.shape[1]/nparticles**2)**.5/2) lMax = nelem2lMax(nelem) else: nelem = lMax2nelem(lMax) Ws = Wdata[:,::2] + 1j*Wdata[:,1::2] # indices: destparticle, srcparticle, wavetype, desty, srcy Ws.shape = (nsamples, nparticles, nparticles, 2, nelem, nelem) # maybe TODO copy the following so the original data gets freed to save memory freqs_weirdunits = np.array(data[:,0], copy=True) k0s = np.array(data[:,2], copy=True) ks = np.array(data[:,3:5], copy=True) freqs = freqs_weirdunits * c / um if fatForm: #indices: (...,) destparticle, desttype, desty, srcparticle, srctype, srcy Ws2 = np.moveaxis(Ws, [-5,-4,-3,-2,-1], [-4,-2,-5,-3,-1] ) fatWs = np.empty(Ws2.shape[:-5]+(nparticles, 2,nelem, nparticles, 2, nelem),dtype=complex) fatWs[...,:,0,:,:,0,:] = Ws2[...,0,:,:,:,:] #A fatWs[...,:,1,:,:,1,:] = Ws2[...,0,:,:,:,:] #A fatWs[...,:,1,:,:,0,:] = Ws2[...,1,:,:,:,:] #B fatWs[...,:,0,:,:,1,:] = Ws2[...,1,:,:,:,:] #B Ws = fatWs return { 'lMax' : lMax, 'nelem' : nelem, 'npart' : nparticles, 'freqs' : freqs, 'ks' : ks, 'k0_effs' : k0s, 'Ws' : Ws, 'freqs_weirdunits' : freqs_weirdunits, } def processWfiles_sameKs(freqfilenames, destfilename, nparticles = 2, lMax = None, f='npz'): ''' Processes translation operator data in different files; each file is supposed to contain one frequency. The Ks in the different files are expected to be exactly the same and in the same order; the result is sorted by frequencies and saved to npz file; The representation is always "thin", i.e. the elements which are zero due to z-symmetry are skipped F is either 'npz' or 'd' 'npz' creates npz archive, 'd' creates a directory with individual npy files, where the W-matrix data are writen using memmap. ''' if (nparticles is None): # TODO here read nparticles from file; raise # NOT IMPLEMENTED um = 1e-6 # micrometre in SI units nfiles = len(freqfilenames) if (nfiles < 1): return ValueError("At least one filename has to be passed") #Check the first file to get the "constants" set filename = freqfilenames[0] data = np.loadtxt(filename) if len(data.shape) == 1: data = np.reshape(data, (1,) + data.shape) nk_muster = data.shape[0] Wdata = data[...,5:] if (lMax is None): nelem = int((Wdata.shape[1]/nparticles**2)**.5/2) lMax = nelem2lMax(nelem) else: nelem = lMax2nelem(lMax) ks_muster = np.array(data[...,3:5], copy=True) if f == 'npz': allWs = np.empty((nfiles, nk_muster, nparticles, nparticles, 2, nelem, nelem,), dtype=complex) elif f == 'd': j = os.path.join d = destfilename try: os.mkdir(destfilename) except FileExistsError as exc: pass allWs = np.lib.format.open_memmap(filename=j(d,"Wdata.npy"), dtype=complex, shape=(nfiles, nk_muster, nparticles, nparticles,2,nelem,nelem,),mode='w+') else: raise ValueError("f has to be either 'npz' or 'd'") k0s = np.empty((nfiles,)) freqs_weirdunits = np.empty((nfiles,)) EeVs = np.empty((nfiles,)) succread = 0 for filename in freqfilenames: data = np.loadtxt(filename) if len(data.shape) == 1: data = np.reshape(data, (1,) + data.shape) if data.shape[0] != nk_muster: raise ValueError("%s contains different number of lines than %s"%(filename, freqfilenames[0])) ks_current = np.array(data[:,3:5]) if not np.all(ks_current == ks_muster): raise ValueError("%s contains different k-vectors than %s"%(filename, freqfilenames[0])) curWdata = data[...,5:] curWs = curWdata[...,::2] + 1j*curWdata[...,1::2] curWs.shape = (nk_muster, nparticles, nparticles, 2, nelem, nelem) allWs[succread] = curWs cur_freqs_weirdunits = np.array(data[:,0]) if not np.all(cur_freqs_weirdunits == cur_freqs_weirdunits[0]): raise ValueError("%s contains various frequencies; we require only one frequency per file"%(filename)) freqs_weirdunits[succread] = cur_freqs_weirdunits[0] k0s[succread] = data[0,2] # TODO check this as well? EeVs[succread] = data[0,1] succread += 1 del allWs freqs = freqs_weirdunits * c / um if f == 'npz': np.savez(destfilename, lMax = lMax, nelem = nelem, npart = nparticles, nfreqs = succread, nk = nk_muster, freqs = freqs[:succread], freqs_weirdunits = freqs_weirdunits[:succread], EeVs_orig = EeVs[:succread], k0s = k0s[:succread], ks = ks_muster, Wdata = allWs[:succread] ) elif f == 'd': np.save(j(d,'lMax.npy'), lMax) np.save(j(d,'nelem.npy'), nelem) np.save(j(d,'npart.npy'), nparticles) np.save(j(d,'nfreqs.npy'), succread) np.save(j(d,'nk.npy'), nk_muster) np.save(j(d,'freqs.npy'), freqs[:succread]) np.save(j(d,'freqs_weirdunits.npy'), freqs_weirdunits[:succread]) np.save(j(d,'EeVs_orig.npy'), EeVs[:succread]) np.save(j(d,'k0s.npy'), k0s[:succread]) np.save(j(d,'ks.npy'), ks_muster) # Wdata already saved return def loadWfile_info(fileName, lMax = None, midk_halfwidth = None, freqlimits = None): """ Returns all the relevant data from the W file except for the W values themselves """ slovnik = loadWfile_processed(fileName, lMax = lMax, fatForm = False, midk_halfwidth=midk_halfwidth, freqlimits=freqlimits) slovnik['Ws'] = None return slovnik def loadWfile_processed(fileName, lMax = None, fatForm = True, midk_halfwidth = None, midk_index = None, freqlimits = None, iteratechunk = None): """ midk_halfwidth: int if given, takes only the "middle" k-value by index nk//2 and midk_halfwidth values from both sides midk_index: int if given, midk_index is taken as the "middle" value instad of nk//2 freqlimit: pair of doubles; if given, only the values from the given frequency range (in Hz) are returned to save RAM N.B.: the frequencies in the processed file are expected to be sorted! iteratechunk: positive int ; NI if given, this works as a generator with only iteratechunk frequencies processed and returned at each iteration to save memory """ if os.path.isdir(fileName): # .npy files in a directory p = fileName j = os.path.join nk = np.load(j(p,'nk.npy'))[()] nfreqs = np.load(j(p,'nfreqs.npy'))[()] nparticles = np.load(j(p,'npart.npy'))[()] Ws = np.load(j(p,'Wdata.npy'), mmap_mode='r') ks = np.load(j(p,'ks.npy')) freqs = np.load(j(p,'freqs.npy')) k0s = np.load(j(p,'k0s.npy')) EeVs_orig = np.load(j(p,'EeVs_orig.npy')) freqs_weirdunits = np.load(j(p,'freqs_weirdunits.npy')) else: # npz file data = np.load(fileName, mmap_mode='r') nk = data['nk'][()] nfreqs = data['nfreqs'][()] nparticles = data['npart'][()] Ws = data['Wdata'] ks = data['ks'] freqs = data['freqs'] k0s = data['k0s'] EeVs_orig = data['EeVs_orig'] freqs_weirdunits = data['freqs_weirdunits'] if midk_halfwidth is not None: k_mid_i = nk // 2 if midk_index is None else midk_index maxk_i = min(k_mid_i + midk_halfwidth, nk) mink_i = max(0, k_mid_i - midk_halfwidth) nk = maxk_i + 1 - mink_i Ws = Ws[:,mink_i:(maxk_i+1)] ks = ks[mink_i:(maxk_i+1)] #k_mid_i_new = k_mid_i - mink_i if lMax is not None: nelem = lMax2nelem(lMax) Ws = Ws[...,:nelem,:nelem] else: lMax = data['lMax'][()] nelem = lMax2nelem(lMax) if freqlimits is not None: minind = np.searchsorted(freqs, freqlimits[0], side='left') maxind = np.searchsorted(freqs, freqlimits[1], side='right') freqs = freqs[minind:maxind] Ws = Ws[minind:maxind] k0s = k0s[minind:maxind] EeVs_orig = EeVs_orig[minind:maxind] freqs_weirdunints = freqs_weirdunits[minind:maxind] nfreqs = maxind-minind if iteratechunk is None: # everyting at once if fatForm: #indices: (...,) destparticle, desttype, desty, srcparticle, srctype, srcy Ws2 = np.moveaxis(Ws, [-5,-4,-3,-2,-1], [-4,-2,-5,-3,-1] ) fatWs = np.empty(Ws2.shape[:-5]+(nparticles, 2,nelem, nparticles, 2, nelem),dtype=complex) fatWs[...,:,0,:,:,0,:] = Ws2[...,0,:,:,:,:] #A fatWs[...,:,1,:,:,1,:] = Ws2[...,0,:,:,:,:] #A fatWs[...,:,1,:,:,0,:] = Ws2[...,1,:,:,:,:] #B fatWs[...,:,0,:,:,1,:] = Ws2[...,1,:,:,:,:] #B Ws = fatWs return{ 'lMax': lMax, 'nelem': nelem, 'npart': nparticles, 'nfreqs': nfreqs, 'nk' : nk, 'freqs': freqs, 'freqs_weirdunits': freqs_weirdunits, 'EeVs_orig': EeVs_orig, 'k0s': k0s, 'ks': ks, 'Ws': Ws, } else: def gen(lMax, nelem, nparticles, nfreqs, nk, freqs, freqs_weirdunits, EeVs_orig, k0s, ks, Ws, iteratechunk): starti = 0 while(starti < nfreqs): stopi = min(starti+iteratechunk, nfreqs) chunkWs = Ws[starti:stopi] if fatForm: #indices: (...,) destparticle, desttype, desty, srcparticle, srctype, srcy Ws2 = np.moveaxis(chunkWs, [-5,-4,-3,-2,-1], [-4,-2,-5,-3,-1] ) fatWs = np.empty(Ws2.shape[:-5]+(nparticles, 2,nelem, nparticles, 2, nelem),dtype=complex) fatWs[...,:,0,:,:,0,:] = Ws2[...,0,:,:,:,:] #A fatWs[...,:,1,:,:,1,:] = Ws2[...,0,:,:,:,:] #A fatWs[...,:,1,:,:,0,:] = Ws2[...,1,:,:,:,:] #B fatWs[...,:,0,:,:,1,:] = Ws2[...,1,:,:,:,:] #B chunkWs = fatWs yield { 'lMax': lMax, 'nelem': nelem, 'npart': nparticles, 'nfreqs': stopi-starti, 'nk' : nk, 'freqs': freqs[starti:stopi], 'freqs_weirdunits': freqs_weirdunits[starti:stopi], 'EeVs_orig': EeVs_orig[starti:stopi], 'k0s': k0s[starti:stopi], 'ks': ks, 'Ws': chunkWs, 'chunk_range': (starti, stopi), 'nfreqs_total': nfreqs } starti += iteratechunk return gen(lMax, nelem, nparticles, nfreqs, nk, freqs, freqs_weirdunits, EeVs_orig, k0s, ks, Ws, iteratechunk)