#include #include "qpms_types.h" #include "qpms_specfunc.h" #include "gaunt.h" #include "translations.h" #include "indexing.h" // TODO replace size_t and int with own index types here #include #include #include #include "tiny_inlines.h" #include "assert_cython_workaround.h" #include "kahansum.h" #include #include "qpms_error.h" #include "normalisation.h" #include "translations_inlines.h" /* * Define macros with additional factors that "should not be there" according * to the "original" formulae but are needed to work with my vswfs. * (actually, I don't know whether the error is in using "wrong" implementation * of vswfs, "wrong" implementation of Xu's translation coefficient formulae, * error/inconsintency in Xu's paper or something else) * Anyway, the zeroes give the correct _numerical_ values according to Xu's * paper tables (without Xu's typos, of course), while * the predefined macros give the correct translations of the VSWFs for the * QPMS_NORMALIZATION_TAYLOR_CS norm. */ #if !(defined AN0 || defined AN1 || defined AN2 || defined AN3) #pragma message "using AN1 macro as default" #define AN1 #endif //#if !(defined AM0 || defined AM2) //#define AM1 //#endif #if !(defined BN0 || defined BN1 || defined BN2 || defined BN3) #pragma message "using BN1 macro as default" #define BN1 #endif //#if !(defined BM0 || defined BM2) //#define BM1 //#endif //#if !(defined BF0 || defined BF1 || defined BF2 || defined BF3) //#define BF1 //#endif // if defined, the pointer B_multipliers[y] corresponds to the q = 1 element; // otherwise, it corresponds to the q = 0 element, which should be identically zero #ifdef QPMS_PACKED_B_MULTIPLIERS #define BQ_OFFSET 1 #else #define BQ_OFFSET 0 #endif // Translation operators for real sph. harm. based waves are not yet implemented... static inline void TROPS_ONLY_EIMF_IMPLEMENTED(qpms_normalisation_t norm) { if (norm & (QPMS_NORMALISATION_SPHARM_REAL | QPMS_NORMALISATION_REVERSE_AZIMUTHAL_PHASE)) QPMS_NOT_IMPLEMENTED("Translation operators for real or inverse complex spherical harmonics based waves are not implemented."); } // Use if only the symmetric form [[A, B], [B, A]] (without additional factors) of translation operator is allowed. static inline void TROPS_ONLY_AB_SYMMETRIC_NORMS_IMPLEMENTED(qpms_normalisation_t norm) { switch (norm & QPMS_NORMALISATION_NORM_BITS) { case QPMS_NORMALISATION_NORM_SPHARM: case QPMS_NORMALISATION_NORM_POWER: break; // OK default: QPMS_NOT_IMPLEMENTED("Only spherical harmonic and power normalisation supported."); } if ( ( !(norm & QPMS_NORMALISATION_N_I) != !(norm & QPMS_NORMALISATION_M_I) ) || ( !(norm & QPMS_NORMALISATION_N_MINUS) != !(norm & QPMS_NORMALISATION_M_MINUS) ) ) QPMS_NOT_IMPLEMENTED("Only normalisations without a phase factors between M and N waves are supported."); } /* * References: * [Xu_old] Yu-Lin Xu, Journal of Computational Physics 127, 285–298 (1996) * [Xu] Yu-Lin Xu, Journal of Computational Physics 139, 137–165 (1998) */ /* * GENERAL TODO: use normalised Legendre functions for Kristensson and Taylor conventions directly * instead of normalising them here (the same applies for csphase). */ static const double sqrtpi = 1.7724538509055160272981674833411451827975494561223871; //static const double ln2 = 0.693147180559945309417232121458176568075500134360255254120; // Associated Legendre polynomial at zero argument (DLMF 14.5.1) double qpms_legendre0(int m, int n) { return pow(2,m) * sqrtpi / tgamma(.5*n - .5*m + .5) / tgamma(.5*n-.5*m); } // Derivative of associated Legendre polynomial at zero argument (DLMF 14.5.2) double qpms_legendreD0(int m, int n) { return -2 * qpms_legendre0(m, n); } static inline int imin(int x, int y) { return x > y ? y : x; } // The uppermost value of q index for the B coefficient terms from [Xu](60). // N.B. this is different from [Xu_old](79) due to the n vs. n+1 difference. // However, the trailing terms in [Xu_old] are analytically zero (although // the numerical values will carry some non-zero rounding error). static inline int gauntB_Q_max(int M, int n, int mu, int nu) { return imin(n, imin(nu, (n+nu+1-abs(M+mu))/2)); } static inline double qpms_trans_normlogfac(qpms_normalisation_t norm, int m, int n, int mu, int nu) { return -0.5*(lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1)); } static inline double qpms_trans_normfac(qpms_normalisation_t norm, int m, int n, int mu, int nu) { int csphase = qpms_normalisation_t_csphase(norm); /* Account for csphase here. Alternatively, this could be done by * using appropriate csphase in the legendre polynomials when calculating * the translation operator. */ double normfac = (1 == csphase) ? min1pow(m-mu) : 1.; normfac *= sqrt((n*(n+1.))/(nu*(nu+1.))); normfac *= sqrt((2.*n+1)/(2.*nu+1)); return normfac; } complex double qpms_trans_single_A(qpms_normalisation_t norm, int m, int n, int mu, int nu, csph_t kdlj, bool r_ge_d, qpms_bessel_t J) { TROPS_ONLY_EIMF_IMPLEMENTED(norm); if(r_ge_d) J = QPMS_BESSEL_REGULAR; double costheta = cos(kdlj.theta); int qmax = gaunt_q_max(-m,n,mu,nu); // nemá tu být +m? // N.B. -m !!!!!! double a1q[qmax+1]; int err; gaunt_xu(-m,n,mu,nu,qmax,a1q,&err); QPMS_ENSURE_SUCCESS(err); double a1q0 = a1q[0]; double leg[gsl_sf_legendre_array_n(n+nu)]; QPMS_ENSURE_SUCCESS(gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu,costheta,-1,leg)); complex double bes[n+nu+1]; QPMS_ENSURE_SUCCESS(qpms_sph_bessel_fill(J, n+nu, kdlj.r, bes)); complex double sum = 0; for(int q = 0; q <= qmax; ++q) { int p = n+nu-2*q; int Pp_order = mu-m; //if(p < abs(Pp_order)) continue; // FIXME raději nastav lépe meze assert(p >= abs(Pp_order)); double a1q_n = a1q[q] / a1q0; double Pp = leg[gsl_sf_legendre_array_index(p, abs(Pp_order))]; if (Pp_order < 0) Pp *= min1pow(mu-m) * exp(lgamma(1+p+Pp_order)-lgamma(1+p-Pp_order)); complex double zp = bes[p]; complex double summandq = (n*(n+1) + nu*(nu+1) - p*(p+1)) * min1pow(q) * a1q_n * zp * Pp; sum += summandq; // TODO KAHAN } double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2) +lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1) +lgamma(n+nu+1) - lgamma(2*(n+nu)+1)); complex double presum = exp(exponent); presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n) / (4*n); double normlogfac = qpms_trans_normlogfac(norm,m,n,mu,nu); double normfac = qpms_trans_normfac(norm,m,n,mu,nu); /// N<-N type coefficients w.r.t. Kristensson's convention. Csphase has been already taken into acct ^^^. normfac *= qpms_normalisation_factor_N_noCS(norm, nu, mu) / qpms_normalisation_factor_N_noCS(norm, n, m); // ipow(n-nu) is the difference from the Taylor formula! presum *= /*ipow(n-nu) * */ (normfac * exp(normlogfac)) #ifdef AN1 * ipow(n-nu) #elif defined AN2 * min1pow(-n+nu) #elif defined AN3 * ipow (nu - n) #endif #ifdef AM1 * ipow(-m+mu) #endif //NNU #ifdef AM2 * min1pow(-m+mu) #endif //NNU #ifdef AM3 * ipow(m-mu) #endif //NNU ; return presum * sum; } complex double qpms_trans_single_B(qpms_normalisation_t norm, int m, int n, int mu, int nu, csph_t kdlj, bool r_ge_d, qpms_bessel_t J) { TROPS_ONLY_EIMF_IMPLEMENTED(norm); if(r_ge_d) J = QPMS_BESSEL_REGULAR; double costheta = cos(kdlj.theta); int q2max = gaunt_q_max(-m-1,n+1,mu+1,nu); int Qmax = gaunt_q_max(-m,n+1,mu,nu); int realQmax = gauntB_Q_max(-m,n,mu,nu); double a2q[q2max+1], a3q[Qmax+1], a2q0, a3q0; int err; if (mu == nu) { for (int q = 0; q <= q2max; ++q) a2q[q] = 0; a2q0 = 1; } else { gaunt_xu(-m-1,n+1,mu+1,nu,q2max,a2q,&err); QPMS_ENSURE_SUCCESS(err); a2q0 = a2q[0]; } gaunt_xu(-m,n+1,mu,nu,Qmax,a3q,&err); QPMS_ENSURE_SUCCESS(err); a3q0 = a3q[0]; double leg[gsl_sf_legendre_array_n(n+nu+1)]; QPMS_ENSURE_SUCCESS(gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,costheta,-1,leg)); complex double bes[n+nu+2]; QPMS_ENSURE_SUCCESS(qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bes)); complex double sum = 0; for (int q = 0; q <= realQmax; ++q) { int p = n+nu-2*q; double a2q_n = a2q[q]/a2q0; double a3q_n = a3q[q]/a3q0; complex double zp_ = bes[p+1]; int Pp_order_ = mu-m; //if(p+1 < abs(Pp_order_)) continue; // FIXME raději nastav lépe meze assert(p+1 >= abs(Pp_order_)); double Pp_ = leg[gsl_sf_legendre_array_index(p+1, abs(Pp_order_))]; if (Pp_order_ < 0) Pp_ *= min1pow(mu-m) * exp(lgamma(1+1+p+Pp_order_)-lgamma(1+1+p-Pp_order_)); complex double summandq = ((2*(n+1)*(nu-mu)*a2q_n -(-nu*(nu+1) - n*(n+3) - 2*mu*(n+1)+p*(p+3))* a3q_n) *min1pow(q) * zp_ * Pp_); sum += summandq; //TODO KAHAN } double exponent=(lgamma(2*n+3)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2) +lgamma(n+nu+m-mu+2)-lgamma(n-m+1)-lgamma(nu+mu+1) +lgamma(n+nu+2) - lgamma(2*(n+nu)+3)); complex double presum = exp(exponent); presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n+1) / ( (4*n)*(n+1)*(n+m+1)); double normlogfac = qpms_trans_normlogfac(norm,m,n,mu,nu); double normfac = qpms_trans_normfac(norm,m,n,mu,nu); /// N<-M type coefficients w.r.t. Kristensson's convention. Csphase has been already taken into acct ^^^. normfac *= qpms_normalisation_factor_M_noCS(norm, nu, mu) / qpms_normalisation_factor_N_noCS(norm, n, m); // ipow(n-nu) is the difference from the "old Taylor" formula presum *= /*ipow(n-nu) * */(exp(normlogfac) * normfac) #ifdef AN1 * ipow(n-nu) #elif defined AN2 * min1pow(-n+nu) #elif defined AN3 * ipow (nu - n) #endif #ifdef AM1 * ipow(-m+mu) #endif //NNU #ifdef AM2 * min1pow(-m+mu) #endif //NNU #ifdef AM3 * ipow(m-mu) #endif //NNU ; return presum * sum; } void qpms_trans_calculator_free(qpms_trans_calculator *c) { free(c->A_multipliers[0]); free(c->A_multipliers); free(c->B_multipliers[0]); free(c->B_multipliers); #ifdef LATTICESUMS32 qpms_ewald3_constants_free(c->e3c); #endif free(c->legendre0); free(c); } static inline size_t qpms_trans_calculator_index_mnmunu(const qpms_trans_calculator *c, int m, int n, int mu, int nu){ return c->nelem * qpms_mn2y(m,n) + qpms_mn2y(mu,nu); } static inline size_t qpms_trans_calculator_index_yyu(const qpms_trans_calculator *c, size_t y, size_t yu) { return c->nelem * y + yu; } static inline double fsq(double x) {return x * x; } static void qpms_trans_calculator_multipliers_A( qpms_normalisation_t norm, complex double *dest, int m, int n, int mu, int nu, int qmax) { assert(qmax == gaunt_q_max(-m,n,mu,nu)); double a1q[qmax+1]; int err; gaunt_xu(-m,n,mu,nu,qmax,a1q,&err); QPMS_ENSURE_SUCCESS(err); double a1q0 = a1q[0]; double normlogfac = qpms_trans_normlogfac(norm,m,n,mu,nu); double normfac = qpms_trans_normfac(norm,m,n,mu,nu); /// N<-N type coefficients w.r.t. Kristensson's convention. Csphase has been already taken into acct ^^^. normfac *= qpms_normalisation_factor_N_noCS(norm, nu, mu) / qpms_normalisation_factor_N_noCS(norm, n, m); normfac *= min1pow(m); //different from old Taylor double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2) +lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1) +lgamma(n+nu+1) - lgamma(2*(n+nu)+1)) + normlogfac; complex double presum = exp(exponent); presum *= normfac / (4.*n); presum *= ipow(n+nu); // different from old Taylor for(int q = 0; q <= qmax; q++) { int p = n+nu-2*q; int Pp_order = mu - m; assert(p >= abs(Pp_order)); double a1q_n = a1q[q] / a1q0; // Assuming non_normalized legendre polynomials (normalisation done here by hand)! double Ppfac = (Pp_order >= 0) ? 1 : min1pow(mu-m) * exp(lgamma(1+p+Pp_order)-lgamma(1+p-Pp_order)); double summandfac = (n*(n+1) + nu*(nu+1) - p*(p+1)) * min1pow(q) * a1q_n; dest[q] = presum * summandfac * Ppfac #ifdef AN1 * ipow(n-nu) #elif defined AN2 * min1pow(-n+nu) #elif defined AN3 * ipow (nu - n) #endif #ifdef AM1 * ipow(-m+mu) #endif //NNU #ifdef AM2 * min1pow(-m+mu) #endif //NNU #ifdef AM3 * ipow(m-mu) #endif //NNU ; // FIXME I might not need complex here } } // as in [Xu](61) static double cruzan_bfactor(int M, int n, int mu, int nu, int p) { double logprefac = lgamma(n+M+1) - lgamma(n-M+1) + lgamma(nu+mu+1) - lgamma(nu-mu+1) + lgamma(p-M-mu+2) - lgamma(p+M+mu+2); logprefac *= 0.5; return min1pow(mu+M) * (2*p+3) * exp(logprefac) * gsl_sf_coupling_3j(2*n, 2*nu, 2*(p+1), 2*M, 2*mu, 2*(-M-mu)) * gsl_sf_coupling_3j(2*n, 2*nu, 2*p, 0, 0, 0); } void qpms_trans_calculator_multipliers_B( qpms_normalisation_t norm, complex double *dest, int m, int n, int mu, int nu, int Qmax){ // This is according to the Cruzan-type formula [Xu](59) assert(Qmax == gauntB_Q_max(-m,n,mu,nu)); double normlogfac= qpms_trans_normlogfac(norm,m,n,mu,nu); double normfac = qpms_trans_normfac(norm,m,n,mu,nu); /// N<-M type coefficients w.r.t. Kristensson's convention. Csphase has been already taken into acct ^^^. normfac *= qpms_normalisation_factor_M_noCS(norm, nu, mu) / qpms_normalisation_factor_N_noCS(norm, n, m); double presum = min1pow(1-m) * (2*nu+1)/(2.*(n*(n+1))) * exp(lgamma(n+m+1) - lgamma(n-m+1) + lgamma(nu-mu+1) - lgamma(nu+mu+1) + normlogfac) * normfac; for(int q = BQ_OFFSET; q <= Qmax; ++q) { int p = n+nu-2*q; int Pp_order = mu - m; // Assuming non-normalised Legendre polynomials, normalise here by hand. // Ppfac_ differs from Ppfac in the A-case by the substitution p->p+1 double Ppfac_ = (Pp_order >= 0)? 1 : min1pow(mu-m) * exp(lgamma(1+1+p+Pp_order)-lgamma(1+1+p-Pp_order)); double t = sqrt( (isq(p+1)-isq(n-nu)) * (isq(n+nu+1)-isq(p+1)) ); dest[q-BQ_OFFSET] = presum * t * Ppfac_ * cruzan_bfactor(-m,n,mu,nu,p) * ipow(p+1) #ifdef BN1 * ipow(n-nu) #elif defined BN2 * min1pow(-n+nu) #elif defined BN3 * ipow (nu - n) #endif #ifdef BM1 * ipow(-m+mu) #endif #ifdef BM2 * min1pow(-m+mu) #endif #ifdef BM3 * ipow(m-mu) #endif #ifdef BF1 * I #elif defined BF2 * (-1) #elif defined BF3 * (-I) #endif ;// NNU } } qpms_trans_calculator *qpms_trans_calculator_init (const int lMax, const qpms_normalisation_t normalisation) { TROPS_ONLY_EIMF_IMPLEMENTED(normalisation); assert(lMax > 0); qpms_trans_calculator *c = malloc(sizeof(qpms_trans_calculator)); c->lMax = lMax; c->nelem = lMax * (lMax+2); c->A_multipliers = malloc((1+SQ(c->nelem)) * sizeof(complex double *)); c->B_multipliers = malloc((1+SQ(c->nelem)) * sizeof(complex double *)); c->normalisation = normalisation; size_t *qmaxes = malloc(SQ(c->nelem) * sizeof(size_t)); size_t qmaxsum = 0; for(size_t y = 0; y < c->nelem; y++) for(size_t yu = 0; yu < c->nelem; yu++) { int m,n, mu, nu; qpms_y2mn_p(y,&m,&n); qpms_y2mn_p(yu,&mu,&nu); qmaxsum += 1 + ( qmaxes[qpms_trans_calculator_index_yyu(c,y,yu)] = gaunt_q_max(-m,n,mu,nu)); } c->A_multipliers[0] = malloc(qmaxsum * sizeof(complex double)); // calculate multiplier beginnings for(size_t i = 0; i < SQ(c->nelem); ++i) c->A_multipliers[i+1] = c->A_multipliers[i] + qmaxes[i] + 1; // calculate the multipliers for(size_t y = 0; y < c->nelem; ++y) for(size_t yu = 0; yu < c->nelem; ++yu) { size_t i = y * c->nelem + yu; int m, n, mu, nu; qpms_y2mn_p(y, &m, &n); qpms_y2mn_p(yu, &mu, &nu); qpms_trans_calculator_multipliers_A(normalisation, c->A_multipliers[i], m, n, mu, nu, qmaxes[i]); } qmaxsum = 0; for(size_t y=0; y < c->nelem; y++) for(size_t yu = 0; yu < c->nelem; yu++) { int m, n, mu, nu; qpms_y2mn_p(y,&m,&n); qpms_y2mn_p(yu,&mu,&nu); qmaxsum += (1 - BQ_OFFSET) + ( qmaxes[qpms_trans_calculator_index_yyu(c,y,yu)] = gauntB_Q_max(-m,n,mu,nu)); } c->B_multipliers[0] = malloc(qmaxsum * sizeof(complex double)); // calculate multiplier beginnings for(size_t i = 0; i < SQ(c->nelem); ++i) c->B_multipliers[i+1] = c->B_multipliers[i] + qmaxes[i] + (1 - BQ_OFFSET); // calculate the multipliers for(size_t y = 0; y < c->nelem; ++y) for(size_t yu = 0; yu < c->nelem; ++yu) { size_t i = y * c->nelem + yu; int m, n, mu, nu; qpms_y2mn_p(y, &m, &n); qpms_y2mn_p(yu, &mu, &nu); qpms_trans_calculator_multipliers_B(normalisation, c->B_multipliers[i], m, n, mu, nu, qmaxes[i]); } free(qmaxes); #ifdef LATTICESUMS32 c->e3c = qpms_ewald3_constants_init(2 * lMax + 1, /*csphase*/ qpms_normalisation_t_csphase(normalisation)); #endif c->legendre0 = malloc(gsl_sf_legendre_array_n(2*lMax+1) * sizeof(double)); QPMS_ENSURE_SUCCESS(gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,2*lMax+1, 0,-1,c->legendre0)); // TODO maybe use some "precise" analytical formula instead? return c; } static inline complex double qpms_trans_calculator_get_A_precalcbuf(const qpms_trans_calculator *c, int m, int n, int mu, int nu, double kdlj_phi, const complex double *bessel_buf, const double *legendre_buf) { TROPS_ONLY_EIMF_IMPLEMENTED(c->normalisation); size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu); size_t qmax = c->A_multipliers[i+1] - c->A_multipliers[i] - 1; assert(qmax == gaunt_q_max(-m,n,mu,nu)); complex double sum, kahanc; ckahaninit(&sum, &kahanc); for(size_t q = 0; q <= qmax; ++q) { int p = n+nu-2*q; double Pp = legendre_buf[gsl_sf_legendre_array_index(p, abs(mu-m))]; complex double zp = bessel_buf[p]; complex double multiplier = c->A_multipliers[i][q]; ckahanadd(&sum, &kahanc, Pp * zp * multiplier); } complex double eimf = cexp(I*(mu-m)*kdlj_phi); return sum * eimf; } complex double qpms_trans_calculator_get_A_buf(const qpms_trans_calculator *c, int m, int n, int mu, int nu, csph_t kdlj, bool r_ge_d, qpms_bessel_t J, complex double *bessel_buf, double *legendre_buf) { // This functions gets preallocated memory for bessel and legendre functions, but computes them itself if (r_ge_d) J = QPMS_BESSEL_REGULAR; if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) // TODO warn? return NAN+I*NAN; int csphase = qpms_normalisation_t_csphase(c->normalisation); double costheta = cos(kdlj.theta); QPMS_ENSURE_SUCCESS(gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu, costheta,csphase,legendre_buf)); QPMS_ENSURE_SUCCESS(qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bessel_buf)); return qpms_trans_calculator_get_A_precalcbuf(c,m,n,mu,nu, kdlj.phi,bessel_buf,legendre_buf); } static inline complex double qpms_trans_calculator_get_B_precalcbuf(const qpms_trans_calculator *c, int m, int n, int mu, int nu, double kdlj_phi, const complex double *bessel_buf, const double *legendre_buf) { TROPS_ONLY_EIMF_IMPLEMENTED(c->normalisation); size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu); size_t qmax = c->B_multipliers[i+1] - c->B_multipliers[i] - (1 - BQ_OFFSET); assert(qmax == gauntB_Q_max(-m,n,mu,nu)); complex double sum, kahanc; ckahaninit(&sum, &kahanc); for(int q = BQ_OFFSET; q <= qmax; ++q) { int p = n+nu-2*q; double Pp_ = legendre_buf[gsl_sf_legendre_array_index(p+1, abs(mu-m))]; complex double zp_ = bessel_buf[p+1]; complex double multiplier = c->B_multipliers[i][q-BQ_OFFSET]; ckahanadd(&sum, &kahanc, Pp_ * zp_ * multiplier); } complex double eimf = cexp(I*(mu-m)*kdlj_phi); return sum * eimf; } complex double qpms_trans_calculator_get_B_buf(const qpms_trans_calculator *c, int m, int n, int mu, int nu, csph_t kdlj, bool r_ge_d, qpms_bessel_t J, complex double *bessel_buf, double *legendre_buf) { // This functions gets preallocated memory for bessel and legendre functions, but computes them itself if (r_ge_d) J = QPMS_BESSEL_REGULAR; if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) // TODO warn? return NAN+I*NAN; int csphase = qpms_normalisation_t_csphase(c->normalisation); double costheta = cos(kdlj.theta); QPMS_ENSURE_SUCCESS(gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1, costheta,csphase,legendre_buf)); QPMS_ENSURE_SUCCESS(qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bessel_buf)); return qpms_trans_calculator_get_B_precalcbuf(c,m,n,mu,nu, kdlj.phi,bessel_buf,legendre_buf); } int qpms_trans_calculator_get_AB_buf_p(const qpms_trans_calculator *c, complex double *Adest, complex double *Bdest, int m, int n, int mu, int nu, csph_t kdlj, bool r_ge_d, qpms_bessel_t J, complex double *bessel_buf, double *legendre_buf) { if (r_ge_d) J = QPMS_BESSEL_REGULAR; if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) { *Adest = NAN+I*NAN; *Bdest = NAN+I*NAN; // TODO warn? different return value? return 0; } double costheta = cos(kdlj.theta); QPMS_ENSURE_SUCCESS(gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1, costheta,-1,legendre_buf)); QPMS_ENSURE_SUCCESS(qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bessel_buf)); *Adest = qpms_trans_calculator_get_A_precalcbuf(c,m,n,mu,nu, kdlj.phi,bessel_buf,legendre_buf); *Bdest = qpms_trans_calculator_get_B_precalcbuf(c,m,n,mu,nu, kdlj.phi,bessel_buf,legendre_buf); return 0; } int qpms_trans_calculator_get_AB_arrays_precalcbuf(const qpms_trans_calculator *c, complex double *Adest, complex double *Bdest, size_t deststride, size_t srcstride, double kdlj_phi, const complex double *bessel_buf, const double *legendre_buf) { size_t desti = 0, srci = 0; for (int n = 1; n <= c->lMax; ++n) for (int m = -n; m <= n; ++m) { for (int nu = 1; nu <= c->lMax; ++nu) for (int mu = -nu; mu <= nu; ++mu) { #ifndef NDEBUG size_t assertindex = qpms_trans_calculator_index_mnmunu(c,m,n,mu,nu); #endif assert(assertindex == desti*c->nelem + srci); *(Adest + deststride * desti + srcstride * srci) = qpms_trans_calculator_get_A_precalcbuf(c,m,n,mu,nu, kdlj_phi, bessel_buf, legendre_buf); *(Bdest + deststride * desti + srcstride * srci) = qpms_trans_calculator_get_B_precalcbuf(c,m,n,mu,nu, kdlj_phi,bessel_buf,legendre_buf); ++srci; } ++desti; srci = 0; } return 0; } int qpms_trans_calculator_get_AB_arrays_buf(const qpms_trans_calculator *c, complex double *Adest, complex double *Bdest, size_t deststride, size_t srcstride, csph_t kdlj, bool r_ge_d, qpms_bessel_t J, complex double *bessel_buf, double *legendre_buf) { if (r_ge_d) J = QPMS_BESSEL_REGULAR; if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) { for (size_t i = 0; i < c->nelem; ++i) for (size_t j = 0; j < c->nelem; ++j) { *(Adest + i*srcstride + j*deststride) = NAN+I*NAN; *(Bdest + i*srcstride + j*deststride) = NAN+I*NAN; } // TODO warn? different return value? return 0; } { double costheta = cos(kdlj.theta); QPMS_ENSURE_SUCCESS(gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,2*c->lMax+1, costheta,-1,legendre_buf)); QPMS_ENSURE_SUCCESS(qpms_sph_bessel_fill(J, 2*c->lMax+1, kdlj.r, bessel_buf)); } return qpms_trans_calculator_get_AB_arrays_precalcbuf(c, Adest, Bdest, deststride, srcstride, kdlj.phi, bessel_buf, legendre_buf); } complex double qpms_trans_calculator_get_A(const qpms_trans_calculator *c, int m, int n, int mu, int nu, csph_t kdlj, bool r_ge_d, qpms_bessel_t J) { double leg[gsl_sf_legendre_array_n(n+nu)]; complex double bes[n+nu+1]; // maximum order is 2n for A coeffs, plus the zeroth. return qpms_trans_calculator_get_A_buf(c,m,n,mu,nu,kdlj,r_ge_d,J, bes,leg); } complex double qpms_trans_calculator_get_B(const qpms_trans_calculator *c, int m, int n, int mu, int nu, csph_t kdlj, bool r_ge_d, qpms_bessel_t J) { double leg[gsl_sf_legendre_array_n(n+nu+1)]; complex double bes[n+nu+2]; // maximum order is 2n+1 for B coeffs, plus the zeroth. return qpms_trans_calculator_get_B_buf(c,m,n,mu,nu,kdlj,r_ge_d,J, bes,leg); } int qpms_trans_calculator_get_AB_p(const qpms_trans_calculator *c, complex double *Adest, complex double *Bdest, int m, int n, int mu, int nu, csph_t kdlj, bool r_ge_d, qpms_bessel_t J) { double leg[gsl_sf_legendre_array_n(2*c->lMax+1)]; complex double bes[2*c->lMax+2]; // maximum order is 2n+1 for B coeffs, plus the zeroth. return qpms_trans_calculator_get_AB_buf_p(c,Adest, Bdest,m,n,mu,nu,kdlj,r_ge_d,J, bes,leg); } int qpms_trans_calculator_get_AB_arrays(const qpms_trans_calculator *c, complex double *Adest, complex double *Bdest, size_t deststride, size_t srcstride, csph_t kdlj, bool r_ge_d, qpms_bessel_t J) { double leg[gsl_sf_legendre_array_n(c->lMax+c->lMax+1)]; complex double bes[2*c->lMax+2]; // maximum order is 2n+1 for B coeffs, plus the zeroth. return qpms_trans_calculator_get_AB_arrays_buf(c, Adest, Bdest, deststride, srcstride, kdlj, r_ge_d, J, bes, leg); } // Convenience functions using VSWF base specs qpms_errno_t qpms_trans_calculator_get_trans_array(const qpms_trans_calculator *c, complex double *target, /// Must be destspec->lMax <= c-> lMax && destspec->norm == c->norm. const qpms_vswf_set_spec_t *destspec, size_t deststride, /// Must be srcspec->lMax <= c-> lMax && srcspec->norm == c->norm. const qpms_vswf_set_spec_t *srcspec, size_t srcstride, csph_t kdlj, bool r_ge_d, qpms_bessel_t J) { TROPS_ONLY_AB_SYMMETRIC_NORMS_IMPLEMENTED(c->normalisation); assert(c->normalisation == destspec->norm && c->normalisation == srcspec->norm); assert(c->lMax >= destspec->lMax && c->lMax >= srcspec->lMax); assert(destspec->lMax_L < 0 && srcspec->lMax_L < 0); // TODO don't use c->lMax etc. if both destspec->lMax and srcspec->lMax are smaller complex double A[c->nelem][c->nelem]; complex double B[c->nelem][c->nelem]; qpms_errno_t retval = qpms_trans_calculator_get_AB_arrays(c, A[0], B[0], c->nelem, 1, kdlj, r_ge_d, J); qpms_trans_array_from_AB(target, destspec, deststride, srcspec, srcstride, A[0], B[0], c->lMax); return retval; } qpms_errno_t qpms_trans_calculator_get_trans_array_e32_e(const qpms_trans_calculator *c, complex double *target, double *err, /// Must be destspec->lMax <= c-> lMax && destspec->norm == c->norm. const qpms_vswf_set_spec_t *destspec, size_t deststride, /// Must be srcspec->lMax <= c-> lMax && srcspec->norm == c->norm. const qpms_vswf_set_spec_t *srcspec, size_t srcstride, const double eta, const complex double k, cart2_t b1, cart2_t b2, const cart2_t beta, const cart3_t particle_shift, double maxR, double maxK, const qpms_ewald_part parts ) { TROPS_ONLY_AB_SYMMETRIC_NORMS_IMPLEMENTED(c->normalisation); QPMS_ENSURE(c->normalisation == destspec->norm && c->normalisation == srcspec->norm, "The normalisation conventions must be the same"); assert(c->lMax >= destspec->lMax && c->lMax >= srcspec->lMax); assert(destspec->lMax_L < 0 && srcspec->lMax_L < 0); // TODO don't use c->lMax etc. if both destspec->lMax and srcspec->lMax are smaller const ptrdiff_t ldAB = c->nelem; complex double *A, *B; double *Aerr = NULL, *Berr = NULL; QPMS_CRASHING_MALLOC(A, c->nelem*c->nelem*sizeof(complex double)); QPMS_CRASHING_MALLOC(B, c->nelem*c->nelem*sizeof(complex double)); if(err) { QPMS_CRASHING_MALLOC(Aerr, c->nelem*c->nelem*sizeof(double)); QPMS_CRASHING_MALLOC(Berr, c->nelem*c->nelem*sizeof(double)); } qpms_errno_t retval = qpms_trans_calculator_get_AB_arrays_e32_e(c, A, Aerr, B, Berr, ldAB, 1, eta, k, b1, b2, beta, particle_shift, maxR, maxK, parts); for (size_t desti = 0; desti < destspec->n; ++desti) { // TODO replace with (modified) qpms_trans_array_from_AB() qpms_y_t desty; qpms_vswf_type_t destt; if(QPMS_SUCCESS != qpms_uvswfi2ty(destspec->ilist[desti], &destt, &desty)) qpms_pr_error_at_flf(__FILE__,__LINE__,__func__, "Invalid u. vswf index %llx.", destspec->ilist[desti]); for (size_t srci = 0; srci < srcspec->n; ++srci){ qpms_y_t srcy; qpms_vswf_type_t srct; if(QPMS_SUCCESS != qpms_uvswfi2ty(srcspec->ilist[srci], &srct, &srcy)) qpms_pr_error_at_flf(__FILE__,__LINE__,__func__, "Invalid u. vswf index %llx.", srcspec->ilist[srci]); target[srci * srcstride + desti * deststride] = (srct == destt) ? A[ldAB*desty + srcy] : B[ldAB*desty + srcy]; if(err) err[srci * srcstride + desti * deststride] = (srct == destt) ? Aerr[ldAB*desty + srcy] : Berr[ldAB*desty + srcy]; } } free(A); free(B); if (err) { free(Aerr); free(Berr); } return retval; } qpms_errno_t qpms_trans_calculator_get_trans_array_e32(const qpms_trans_calculator *c, complex double *target, double *err, /// Must be destspec->lMax <= c-> lMax && destspec->norm == c->norm. const qpms_vswf_set_spec_t *destspec, size_t deststride, /// Must be srcspec->lMax <= c-> lMax && srcspec->norm == c->norm. const qpms_vswf_set_spec_t *srcspec, size_t srcstride, const double eta, const complex double k, cart2_t b1, cart2_t b2, const cart2_t beta, const cart3_t particle_shift, double maxR, double maxK ) { return qpms_trans_calculator_get_trans_array_e32_e(c, target, err, destspec, deststride, srcspec, srcstride, eta, k, b1, b2, beta, particle_shift, maxR, maxK, QPMS_EWALD_FULL); } qpms_errno_t qpms_trans_calculator_get_trans_array_lc3p( const qpms_trans_calculator *c, complex double *target, /// Must be destspec->lMax <= c-> lMax && destspec->norm == c->norm. const qpms_vswf_set_spec_t *destspec, size_t deststride, /// Must be srcspec->lMax <= c-> lMax && srcspec->norm == c->norm. const qpms_vswf_set_spec_t *srcspec, size_t srcstride, complex double k, cart3_t destpos, cart3_t srcpos, qpms_bessel_t J /// Workspace has to be at least 2 * c->neleme**2 long ) { csph_t kdlj = cart2csph(cart3_substract(destpos, srcpos)); kdlj.r *= k; return qpms_trans_calculator_get_trans_array(c, target, destspec, deststride, srcspec, srcstride, kdlj, false, J); } #ifdef LATTICESUMS31 int qpms_trans_calculator_get_AB_arrays_e31z_both_points_and_shift(const qpms_trans_calculator *c, complex double * const Adest, double * const Aerr, complex double * const Bdest, double * const Berr, const ptrdiff_t deststride, const ptrdiff_t srcstride, /* qpms_bessel_t J*/ // assume QPMS_HANKEL_PLUS const double eta, const double k, const double unitcell_area, const size_t nRpoints, const cart2_t *Rpoints, // n.b. can't contain 0; TODO automatic recognition and skip const size_t nKpoints, const cart2_t *Kpoints, const double beta,//DIFF21 const double particle_shift//DIFF21 ) { const qpms_y_t nelem2_sc = qpms_lMax2nelem_sc(c->e3c->lMax); //const qpms_y_t nelem = qpms_lMax2nelem(c->lMax); const bool doerr = Aerr || Berr; const bool do_sigma0 = (particle_shift == 0)//DIFF21((particle_shift.x == 0) && (particle_shift.y == 0)); // FIXME ignoring the case where particle_shift equals to lattice vector complex double *sigmas_short = malloc(sizeof(complex double)*nelem2_sc); complex double *sigmas_long = malloc(sizeof(complex double)*nelem2_sc); complex double *sigmas_total = malloc(sizeof(complex double)*nelem2_sc); double *serr_short, *serr_long, *serr_total; if(doerr) { serr_short = malloc(sizeof(double)*nelem2_sc); serr_long = malloc(sizeof(double)*nelem2_sc); serr_total = malloc(sizeof(double)*nelem2_sc); } else serr_short = serr_long = serr_total = NULL; QPMS_ENSURE_SUCCESS(ewald31z_sigma_long_points_and_shift(sigmas_long, serr_long, //DIFF21 c->e3c, eta, k, unitcell_area, nKpoints, Kpoints, beta, particle_shift)); QPMS_ENSURE_SUCCESS(ewald31z_sigma_short_points_and_shift(sigmas_short, serr_short, //DIFF21 c->e3c, eta, k, nRpoints, Rpoints, beta, particle_shift)); for(qpms_y_t y = 0; y < nelem2_sc; ++y) sigmas_total[y] = sigmas_short[y] + sigmas_long[y]; if (doerr) for(qpms_y_t y = 0; y < nelem2_sc; ++y) serr_total[y] = serr_short[y] + serr_long[y]; complex double sigma0 = 0; double sigma0_err = 0; if (do_sigma0) { QPMS_ENSURE_SUCCESS(ewald31z_sigma0(&sigma0, &sigma0_err, c->e3c, eta, k)); const qpms_l_t y = qpms_mn2y_sc(0,0); sigmas_total[y] += sigma0; if(doerr) serr_total[y] += sigma0_err; } { ptrdiff_t desti = 0, srci = 0; for (qpms_l_t n = 1; n <= c->lMax; ++n) for (qpms_m_t m = -n; m <= n; ++m) { for (qpms_l_t nu = 1; nu <= c->lMax; ++nu) for (qpms_m_t mu = -nu; mu <= nu; ++mu){ const size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu); const size_t qmax = c->A_multipliers[i+1] - c->A_multipliers[i] - 1; complex double Asum, Asumc; ckahaninit(&Asum, &Asumc); double Asumerr, Asumerrc; if(Aerr) kahaninit(&Asumerr, &Asumerrc); const qpms_m_t mu_m = mu - m; // TODO skip if ... (N.B. skip will be different for 31z and 32) for(qpms_l_t q = 0; q <= qmax; ++q) { const qpms_l_t p = n + nu - 2*q; const qpms_y_t y_sc = qpms_mn2y_sc(mu_m, p); const complex double multiplier = c->A_multipliers[i][q]; complex double sigma = sigmas_total[y_sc]; ckahanadd(&Asum, &Asumc, multiplier * sigma); if (Aerr) kahanadd(&Asumerr, &Asumerrc, multiplier * serr_total[y_sc]); } *(Adest + deststride * desti + srcstride * srci) = Asum; if (Aerr) *(Aerr + deststride * desti + srcstride * srci) = Asumerr; // TODO skip if ... complex double Bsum, Bsumc; ckahaninit(&Bsum, &Bsumc); double Bsumerr, Bsumerrc; if(Berr) kahaninit(&Bsumerr, &Bsumerrc); for(qpms_l_t q = 0; q <= qmax; ++q) { const qpms_l_t p_ = n + nu - 2*q + 1; const qpms_y_t y_sc = qpms_mn2y_sc(mu_m, p_); const complex double multiplier = c->B_multipliers[i][q-BQ_OFFSET]; complex double sigma = sigmas_total[y_sc]; ckahanadd(&Bsum, &Bsumc, multiplier * sigma); if (Berr) kahanadd(&Bsumerr, &Bsumerrc, multiplier * serr_total[y_sc]); } *(Bdest + deststride * desti + srcstride * srci) = Bsum; if (Berr) *(Berr + deststride * desti + srcstride * srci) = Bsumerr; ++srci; } ++desti; srci = 0; } } free(sigmas_short); free(sigmas_long); free(sigmas_total); if(doerr) { free(serr_short); free(serr_long); free(serr_total); } return 0; } #endif // LATTICESUMS_31 #ifdef LATTICESUMS32 // N.B. alternative point generation strategy toggled by macro GEN_RSHIFTEDPOINTS // and GEN_KSHIFTEDPOINTS. // The results should be the same. The performance can slightly differ (especially // if some optimizations in the point generators are implemented.) int qpms_trans_calculator_get_AB_arrays_e32_e(const qpms_trans_calculator *c, complex double * const Adest, double * const Aerr, complex double * const Bdest, double * const Berr, const ptrdiff_t deststride, const ptrdiff_t srcstride, /* qpms_bessel_t J*/ // assume QPMS_HANKEL_PLUS const double eta, const complex double k, const cart2_t b1, const cart2_t b2, const cart2_t beta, const cart3_t particle_shift, double maxR, double maxK, const qpms_ewald_part parts ) { const qpms_y_t nelem2_sc = qpms_lMax2nelem_sc(c->e3c->lMax); //const qpms_y_t nelem = qpms_lMax2nelem(c->lMax); const bool doerr = Aerr || Berr; const bool do_sigma0 = ((particle_shift.x == 0) && (particle_shift.y == 0) && (particle_shift.z == 0)); // FIXME ignoring the case where particle_shift equals to lattice vector complex double *sigmas_short = malloc(sizeof(complex double)*nelem2_sc); complex double *sigmas_long = malloc(sizeof(complex double)*nelem2_sc); complex double *sigmas_total = malloc(sizeof(complex double)*nelem2_sc); double *serr_short, *serr_long, *serr_total; if(doerr) { serr_short = malloc(sizeof(double)*nelem2_sc); serr_long = malloc(sizeof(double)*nelem2_sc); serr_total = malloc(sizeof(double)*nelem2_sc); } else serr_short = serr_long = serr_total = NULL; const double unitcell_area = l2d_unitcell_area(b1, b2); cart2_t rb1, rb2; // reciprocal basis QPMS_ENSURE_SUCCESS(l2d_reciprocalBasis2pi(b1, b2, &rb1, &rb2)); if (parts & QPMS_EWALD_LONG_RANGE) { PGen Kgen = PGen_xyWeb_new(rb1, rb2, BASIS_RTOL, #ifdef GEN_KSHIFTEDPOINTS beta, #else CART2_ZERO, #endif 0, true, maxK, false); QPMS_ENSURE_SUCCESS(ewald3_sigma_long(sigmas_long, serr_long, c->e3c, eta, k, unitcell_area, LAT_2D_IN_3D_XYONLY, &Kgen, #ifdef GEN_KSHIFTEDPOINTS true, #else false, #endif cart22cart3xy(beta), particle_shift)); if(Kgen.stateData) // PGen not consumed entirely (converged earlier) PGen_destroy(&Kgen); } if (parts & QPMS_EWALD_SHORT_RANGE) { PGen Rgen = PGen_xyWeb_new(b1, b2, BASIS_RTOL, #ifdef GEN_RSHIFTEDPOINTS cart2_scale(-1 /*CHECKSIGN*/, cart3xy2cart2(particle_shift)), #else CART2_ZERO, #endif 0, !do_sigma0, maxR, false); #ifdef GEN_RSHIFTEDPOINTS // rather ugly hacks, LPTODO cleanup if (particle_shift.z != 0) { const cart3_t zshift = {0, 0, -particle_shift.z /*CHECKSIGN*/}; Rgen = Pgen_shifted_new(Rgen, zshift); } #endif QPMS_ENSURE_SUCCESS(ewald3_sigma_short(sigmas_short, serr_short, c->e3c, eta, k, particle_shift.z ? LAT_2D_IN_3D : LAT_2D_IN_3D_XYONLY, &Rgen, #ifdef GEN_RSHIFTEDPOINTS true, #else false, #endif cart22cart3xy(beta), particle_shift)); if(Rgen.stateData) // PGen not consumed entirely (converged earlier) PGen_destroy(&Rgen); } for(qpms_y_t y = 0; y < nelem2_sc; ++y) sigmas_total[y] = ((parts & QPMS_EWALD_SHORT_RANGE) ? sigmas_short[y] : 0) + ((parts & QPMS_EWALD_LONG_RANGE) ? sigmas_long[y] : 0); if (doerr) for(qpms_y_t y = 0; y < nelem2_sc; ++y) serr_total[y] = ((parts & QPMS_EWALD_SHORT_RANGE) ? serr_short[y] : 0) + ((parts & QPMS_EWALD_LONG_RANGE) ? serr_long[y] : 0); complex double sigma0 = 0; double sigma0_err = 0; if (do_sigma0 && (parts & QPMS_EWALD_0TERM)) { QPMS_ENSURE_SUCCESS(ewald3_sigma0(&sigma0, &sigma0_err, c->e3c, eta, k)); const qpms_l_t y = qpms_mn2y_sc(0,0); sigmas_total[y] += sigma0; if(doerr) serr_total[y] += sigma0_err; } { ptrdiff_t desti = 0, srci = 0; for (qpms_l_t n = 1; n <= c->lMax; ++n) for (qpms_m_t m = -n; m <= n; ++m) { for (qpms_l_t nu = 1; nu <= c->lMax; ++nu) for (qpms_m_t mu = -nu; mu <= nu; ++mu){ const size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu); const size_t qmax = c->A_multipliers[i+1] - c->A_multipliers[i] - 1; complex double Asum, Asumc; ckahaninit(&Asum, &Asumc); double Asumerr, Asumerrc; if(Aerr) kahaninit(&Asumerr, &Asumerrc); const qpms_m_t mu_m = mu - m; // TODO skip if ... for(qpms_l_t q = 0; q <= qmax; ++q) { const qpms_l_t p = n + nu - 2*q; const qpms_y_t y_sc = qpms_mn2y_sc(mu_m, p); const complex double multiplier = c->A_multipliers[i][q]; complex double sigma = sigmas_total[y_sc]; ckahanadd(&Asum, &Asumc, multiplier * sigma); if (Aerr) kahanadd(&Asumerr, &Asumerrc, multiplier * serr_total[y_sc]); } *(Adest + deststride * desti + srcstride * srci) = Asum; if (Aerr) *(Aerr + deststride * desti + srcstride * srci) = Asumerr; // TODO skip if ... complex double Bsum, Bsumc; ckahaninit(&Bsum, &Bsumc); double Bsumerr, Bsumerrc; if(Berr) kahaninit(&Bsumerr, &Bsumerrc); for(qpms_l_t q = 0; q <= qmax; ++q) { const qpms_l_t p_ = n + nu - 2*q + 1; const qpms_y_t y_sc = qpms_mn2y_sc(mu_m, p_); const complex double multiplier = c->B_multipliers[i][q-BQ_OFFSET]; complex double sigma = sigmas_total[y_sc]; ckahanadd(&Bsum, &Bsumc, multiplier * sigma); if (Berr) kahanadd(&Bsumerr, &Bsumerrc, multiplier * serr_total[y_sc]); } *(Bdest + deststride * desti + srcstride * srci) = Bsum; if (Berr) *(Berr + deststride * desti + srcstride * srci) = Bsumerr; ++srci; } ++desti; srci = 0; } } free(sigmas_short); free(sigmas_long); free(sigmas_total); if(doerr) { free(serr_short); free(serr_long); free(serr_total); } return 0; } int qpms_trans_calculator_get_AB_arrays_e32(const qpms_trans_calculator *c, complex double * const Adest, double * const Aerr, complex double * const Bdest, double * const Berr, const ptrdiff_t deststride, const ptrdiff_t srcstride, /* qpms_bessel_t J*/ // assume QPMS_HANKEL_PLUS const double eta, const complex double k, const cart2_t b1, const cart2_t b2, const cart2_t beta, const cart3_t particle_shift, double maxR, double maxK) { return qpms_trans_calculator_get_AB_arrays_e32_e( c, Adest, Aerr, Bdest, Berr, deststride, srcstride, eta, k, b1, b2, beta, particle_shift, maxR, maxK, QPMS_EWALD_FULL); } #endif // LATTICESUMS32 complex double qpms_trans_calculator_get_A_ext(const qpms_trans_calculator *c, int m, int n, int mu, int nu, complex double kdlj_r, double kdlj_theta, double kdlj_phi, int r_ge_d, int J) { csph_t kdlj = {kdlj_r, kdlj_theta, kdlj_phi}; return qpms_trans_calculator_get_A(c,m,n,mu,nu,kdlj,r_ge_d,J); } complex double qpms_trans_calculator_get_B_ext(const qpms_trans_calculator *c, int m, int n, int mu, int nu, complex double kdlj_r, double kdlj_theta, double kdlj_phi, int r_ge_d, int J) { csph_t kdlj = {kdlj_r, kdlj_theta, kdlj_phi}; return qpms_trans_calculator_get_B(c,m,n,mu,nu,kdlj,r_ge_d,J); } int qpms_trans_calculator_get_AB_p_ext(const qpms_trans_calculator *c, complex double *Adest, complex double *Bdest, int m, int n, int mu, int nu, complex double kdlj_r, double kdlj_theta, double kdlj_phi, int r_ge_d, int J) { csph_t kdlj = {kdlj_r, kdlj_theta, kdlj_phi}; return qpms_trans_calculator_get_AB_p(c,Adest,Bdest,m,n,mu,nu,kdlj,r_ge_d,J); } int qpms_trans_calculator_get_AB_arrays_ext(const qpms_trans_calculator *c, complex double *Adest, complex double *Bdest, size_t deststride, size_t srcstride, complex double kdlj_r, double kdlj_theta, double kdlj_phi, int r_ge_d, int J) { csph_t kdlj = {kdlj_r, kdlj_theta, kdlj_phi}; return qpms_trans_calculator_get_AB_arrays(c,Adest,Bdest,deststride,srcstride, kdlj, r_ge_d, J); }