#include "bessels.h" #include <stdlib.h> #include <math.h> #include <stdio.h> #include <string.h> static const double ln2 = 0.693147180559945309417; // general; gives an array of size xxx with TODODESC complex double * hankelcoefftable_init(size_t maxn) { complex double *hct = malloc((maxn+1)*(maxn+2)/2 * sizeof(complex double)); for(size_t n = 0; n <= maxn; ++n) { complex double *hcs = hankelcoeffs_get(hct,n); for (size_t k = 0; k <= n; ++k) { double lcoeff = lgamma(n+k+1) - lgamma(n-k+1) - lgamma(k+1) - k*ln2; // for some reason, casting k-n to double does not work,so // cpow (I, k-n-1) cannot be used... complex double ifactor; switch ((n+1-k) % 4) { case 0: ifactor = 1; break; case 1: ifactor = -I; break; case 2: ifactor = -1; break; case 3: ifactor = I; break; } // the result should be integer, so round to remove inaccuracies hcs[k] = round(exp(lcoeff)) * ifactor; } } return hct; } void hankelparts_fill(complex double *lrt, complex double *srt, size_t maxn, size_t lrk_cutoff, complex double *hct, unsigned kappa, double c, double x) { if (lrt) memset(lrt, 0, (maxn+1)*sizeof(complex double)); memset(srt, 0, (maxn+1)*sizeof(complex double)); double regularisator = pow(1. - exp(-c * x), (double) kappa); double antiregularisator = 1. - regularisator; double xfrac = 1.; // x ** (-1-k) for (size_t k = 0; k <= maxn; ++k) { xfrac /= x; for(size_t n = k; n <= maxn; ++n) srt[n] += ((k<lrk_cutoff) ? antiregularisator : 1) * xfrac * hankelcoeffs_get(hct,n)[k]; if (lrt && k < lrk_cutoff) for (size_t n = k; n <= maxn; ++n) lrt[n] += regularisator * xfrac * hankelcoeffs_get(hct,n)[k]; } complex double expix = cexp(I * x); for(size_t n = 0; n <= maxn; ++n) srt[n] *= expix; if (lrt) for(size_t n = 0; n <= maxn; ++n) srt[n] *= expix; }