#!/usr/bin/env python3 import argparse, re, random, string from scipy.constants import hbar, e as eV, pi, c def make_action_sharedlist(opname, listname): class opAction(argparse.Action): def __call__(self, parser, args, values, option_string=None): if (not hasattr(args, listname)) or getattr(args, listname) is None: setattr(args, listname, list()) getattr(args,listname).append((opname, values)) return opAction parser = argparse.ArgumentParser() #TODO? použít type=argparse.FileType('r') ? parser.add_argument('--TMatrix', action='store', required=True, help='Path to TMatrix file') parser.add_argument('--griddir', action='store', required=True, help='Path to the directory with precalculated translation operators') #sizepar = parser.add_mutually_exclusive_group(required=True) parser.add_argument('--hexside', action='store', type=float, required=True, help='Lattice hexagon size length') parser.add_argument('--output', action='store', help='Path to output PDF') parser.add_argument('--nSV', action='store', metavar='N', type=int, default=1, help='Store and draw N minimun singular values') parser.add_argument('--background_permittivity', action='store', type=float, default=1., help='Background medium relative permittivity (default 1)') parser.add_argument('--sparse', action='store', type=int, help='Skip frequencies for preview') parser.add_argument('--eVmax', action='store', type=float, help='Skip frequencies above this value') parser.add_argument('--eVmin', action='store', type=float, help='Skip frequencies below this value') parser.add_argument('--kdensity', action='store', type=int, default=66, help='Number of k-points per x-axis segment') #TODO some more sophisticated x axis definitions parser.add_argument('--gaussian', action='store', type=float, metavar='σ', help='Use a gaussian envelope for weighting the interaction matrix contributions (depending on the distance), measured in unit cell lengths (?) FIxME).') popgrp=parser.add_argument_group(title='Operations') popgrp.add_argument('--tr', dest='ops', action=make_action_sharedlist('tr', 'ops'), default=list()) # the default value for dest can be set once popgrp.add_argument('--tr0', dest='ops', action=make_action_sharedlist('tr0', 'ops')) popgrp.add_argument('--tr1', dest='ops', action=make_action_sharedlist('tr1', 'ops')) popgrp.add_argument('--sym', dest='ops', action=make_action_sharedlist('sym', 'ops')) popgrp.add_argument('--sym0', dest='ops', action=make_action_sharedlist('sym0', 'ops')) popgrp.add_argument('--sym1', dest='ops', action=make_action_sharedlist('sym1', 'ops')) #popgrp.add_argument('--mult', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult', 'ops')) #popgrp.add_argument('--mult0', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult0', 'ops')) #popgrp.add_argument('--mult1', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult1', 'ops')) popgrp.add_argument('--multl', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl', 'ops')) popgrp.add_argument('--multl0', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl0', 'ops')) popgrp.add_argument('--multl1', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl1', 'ops')) parser.add_argument('--frequency_multiplier', action='store', type=float, default=1., help='Multiplies the frequencies in the TMatrix file by a given factor.') # TODO enable more flexible per-sublattice specification pargs=parser.parse_args() print(pargs) translations_dir = pargs.griddir TMatrix_file = pargs.TMatrix pdfout = pargs.output if pargs.output else (''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(10)) + '.pdf') print(pdfout) hexside = pargs.hexside #375e-9 epsilon_b = pargs.background_permittivity #2.3104 gaussianSigma = pargs.gaussian if pargs.gaussian else None # hexside * 222 / 7 interpfreqfactor = pargs.frequency_multiplier kdensity = pargs.kdensity minfreq = pargs.eVmin*eV/hbar if pargs.eVmin else None maxfreq = pargs.eVmax*eV/hbar if pargs.eVmax else None skipfreq = pargs.sparse if pargs.sparse else None svn = pargs.nSV # TODO multiplier operation definitions and parsing #factor13inc = 10 #factor13scat=10 ops = list() opre = re.compile('(tr|sym|copy|multl|mult)(\d*)') for oparg in pargs.ops: opm = opre.match(oparg[0]) if opm: ops.append(((opm.group(2),) if opm.group(2) else (0,1), opm.group(1), oparg[1])) else: raise # should not happen print(ops) #ops = ( # # co, typ operace (symetrizace / transformace / kopie), specifikace (operace nebo zdroj), # # co: 0, 1, (0,1), (0,), (1,), #NI: 'all' # # typ operace: sym, tr, copy # # specifikace: # # sym, tr: 'σ_z', 'σ_y', 'C2'; sym: 'C3', # # copy: 0, 1 (zdroj) # ((0,1), 'sym', 'σ_z'), # #((0,1), 'sym', 'σ_x'), # #((0,1), 'sym', 'σ_y'), # ((0,1), 'sym', 'C3'), # ((1), 'tr', 'C2'), # #) # -----------------finished basic CLI parsing (except for op arguments) ------------------ import time begtime=time.time() from matplotlib.path import Path import matplotlib.patches as patches import matplotlib.pyplot as plt import qpms import numpy as np import os, sys, warnings, math from matplotlib import pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from scipy import interpolate nx = None s3 = math.sqrt(3) pdf = PdfPages(pdfout) # In[3]: # specifikace T-matice zde cdn = c/ math.sqrt(epsilon_b) TMatrices_orig, freqs_orig, freqs_weirdunits_orig, lMax = qpms.loadScuffTMatrices(TMatrix_file) my, ny = qpms.get_mn_y(lMax) nelem = len(my) ž = np.arange(2*nelem) tž = ž // nelem mž = my[ž%nelem] nž = ny[ž%nelem] TEž = ž[(mž+nž+tž) % 2 == 0] TMž = ž[(mž+nž+tž) % 2 == 1] č = np.arange(2*2*nelem) žč = č % (2* nelem) tč = tž[žč] mč = mž[žč] nč = nž[žč] TEč = č[(mč+nč+tč) % 2 == 0] TMč = č[(mč+nč+tč) % 2 == 1] TMatrices = np.array(np.broadcast_to(TMatrices_orig[:,nx,:,:,:,:],(len(freqs_orig),2,2,nelem,2,nelem)) ) #TMatrices[:,:,:,:,:,ny==3] *= factor13inc #TMatrices[:,:,:,ny==3,:,:] *= factor13scat xfl = qpms.xflip_tyty(lMax) yfl = qpms.yflip_tyty(lMax) zfl = qpms.zflip_tyty(lMax) c2rot = qpms.apply_matrix_left(qpms.yflip_yy(3),qpms.xflip_yy(3),-1) reCN = re.compile('(\d*)C(\d+)') #TODO C nekonečno for op in ops: if op[0] == 'all': targets = (0,1) elif isinstance(op[0],int): targets = (op[0],) else: targets = op[0] if op[1] == 'sym': mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions if op[2] == 'σ_z': for t in targets: TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2 elif op[2] == 'σ_y': for t in targets: TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2 elif op[2] == 'σ_x': for t in targets: TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2 elif op[2] == 'C2': # special case of the latter for t in targets: TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1))/2 elif mCN: rotN = int(mCN.group(2)) TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_) for t in targets: for i in range(rotN): rotangle = 2*np.pi*i / rotN rot = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,rotangle])) rotinv = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,-rotangle])) TMatrix_contribs[i] = qpms.apply_matrix_left(rot,qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1) TMatrices[:,t] = np.sum(TMatrix_contribs, axis=0) / rotN else: raise elif op[1] == 'tr': mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions if op[2] == 'σ_z': for t in targets: TMatrices[:,t] = qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1)) elif op[2] == 'σ_y': for t in targets: TMatrices[:,t] = qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1)) elif op[2] == 'σ_x': for t in targets: TMatrices[:,t] = qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1)) elif op[2] == 'C2': for t in targets: TMatrices[:,t] = qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1) elif mCN: rotN = int(mCN.group(2)) power = int(mCN.group(1)) if mCN.group(1) else 1 TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_) for t in targets: rotangle = 2*np.pi*power/rotN rot = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,rotangle])) rotinv = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,-rotangle])) TMatrices[:,t] = qpms.apply_matrix_left(rot, qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1) else: raise elif op[1] == 'copy': raise # not implemented elif op[1] == 'mult': raise # not implemented elif op[1] == 'multl': incy = np.full((nelem,), False, dtype=bool) for incl in op[2][0].split(','): l = int(incl) incy += (l == ny) scaty = np.full((nelem,), False, dtype=bool) for scatl in op[2][1].split(','): l = int(scatl) scaty += (l == ny) for t in targets: TMatrices[:,t,:,scaty,:,incy] *= float(op[2][2]) else: raise #unknown operation; should not happen TMatrices_interp = interpolate.interp1d(freqs_orig*interpfreqfactor, TMatrices, axis=0, kind='linear',fill_value="extrapolate") # In[4]: om = np.linspace(np.min(freqs_orig), np.max(freqs_orig),100) TMatrix0ip = np.reshape(TMatrices_interp(om)[:,0], (len(om), 2*nelem*2*nelem)) f, axa = plt.subplots(2, 2, figsize=(15,15)) #print(TMatrices.shape) #plt.plot(om, TMatrices[:,0,0,0,0].imag,'r',om, TMatrices[:,0,0,0,0].real,'r--',om, TMatrices[:,0,2,0,2].imag,'b',om, TMatrices[:,0,2,0,2].real,'b--')) ax = axa[0,0] ax2 = ax.twiny() ax2.set_xlim([ax.get_xlim()[0]/eV*hbar,ax.get_xlim()[1]/eV*hbar]) ax.plot( om, TMatrix0ip[:,:].imag,'-',om, TMatrix0ip[:,:].real,'--', ) ax = axa[0,1] ax2 = ax.twiny() ax2.set_xlim([ax.get_xlim()[0]/eV*hbar,ax.get_xlim()[1]/eV*hbar]) ax.plot( om, abs(TMatrix0ip[:,:]),'-' ) ax.set_yscale('log') ax = axa[1,1] ax2 = ax.twiny() ax2.set_xlim([ax.get_xlim()[0]/eV*hbar,ax.get_xlim()[1]/eV*hbar]) ax.plot( om, np.unwrap(np.angle(TMatrix0ip[:,:]),axis=0),'-' ) ax = axa[1,0] ax.text(0.5,0.5,str(pargs).replace(',',',\n'),horizontalalignment='center',verticalalignment='center',transform=ax.transAxes) pdf.savefig(f) # In[ ]: #kdensity = 66 #defined from cl arguments bz_0 = np.array((0,0,0.,)) bz_K1 = np.array((1.,0,0))*4*np.pi/3/hexside/s3 bz_K2 = np.array((1./2.,s3/2,0))*4*np.pi/3/hexside/s3 bz_M = np.array((3./4, s3/4,0))*4*np.pi/3/hexside/s3 k0Mlist = bz_0 + (bz_M-bz_0) * np.linspace(0,1,kdensity)[:,nx] kMK1list = bz_M + (bz_K1-bz_M) * np.linspace(0,1,kdensity)[:,nx] kK10list = bz_K1 + (bz_0-bz_K1) * np.linspace(0,1,kdensity)[:,nx] k0K2list = bz_0 + (bz_K2-bz_0) * np.linspace(0,1,kdensity)[:,nx] kK2Mlist = bz_K2 + (bz_M-bz_K2) * np.linspace(0,1,kdensity)[:,nx] B1 = 2* bz_K1 - bz_K2 B2 = 2* bz_K2 - bz_K1 klist = np.concatenate((k0Mlist,kMK1list,kK10list,k0K2list,kK2Mlist), axis=0) kxmaplist = np.concatenate((np.array([0]),np.cumsum(np.linalg.norm(np.diff(klist, axis=0), axis=-1)))) # In[ ]: n2id = np.identity(2*nelem) n2id.shape = (2,nelem,2,nelem) extlistlist = list() leftmatrixlistlist = list() minsvTElistlist=list() minsvTMlistlist=list() nan = float('nan') omegalist = list() filecount = 0 for trfile in os.scandir(translations_dir): filecount += 1 if (skipfreq and filecount % skipfreq): continue try: npz = np.load(trfile.path, mmap_mode='r') k_0 = npz['precalc_params'][()]['k_hexside'] / hexside omega = k_0 * c / math.sqrt(epsilon_b) if((minfreq and omega < minfreq) or (maxfreq and omega > maxfreq)): continue except: print ("Unexpected error, trying to continue with another file:", sys.exc_info()[0]) continue try: tdic = qpms.hexlattice_precalc_AB_loadunwrap(trfile.path, return_points=True) except: print ("Unexpected error, trying to continue with another file:", sys.exc_info()[0]) continue k_0 = tdic['k_hexside'] / hexside omega = k_0 * c / math.sqrt(epsilon_b) omegalist.append(omega) print(filecount, omega/eV*hbar) a_self = tdic['a_self'][:,:nelem,:nelem] b_self = tdic['b_self'][:,:nelem,:nelem] a_u2d = tdic['a_u2d'][:,:nelem,:nelem] b_u2d = tdic['b_u2d'][:,:nelem,:nelem] a_d2u = tdic['a_d2u'][:,:nelem,:nelem] b_d2u = tdic['b_d2u'][:,:nelem,:nelem] unitcell_translations = tdic['self_tr']*hexside*s3 u2d_translations = tdic['u2d_tr']*hexside*s3 d2u_translations = tdic['d2u_tr']*hexside*s3 if gaussianSigma: unitcell_envelope = np.exp(-np.sum(tdic['self_tr']**2,axis=-1)/(2*gaussianSigma**2)) u2d_envelope = np.exp(-np.sum(tdic['u2d_tr']**2,axis=-1)/(2*gaussianSigma**2)) d2u_envelope = np.exp(-np.sum(tdic['d2u_tr']**2,axis=-1)/(2*gaussianSigma**2)) TMatrices_om = TMatrices_interp(omega) minsvTElist = np.full((klist.shape[0], svn),np.nan) minsvTMlist = np.full((klist.shape[0], svn),np.nan) leftmatrixlist = np.full((klist.shape[0],2,2,nelem,2,2,nelem),np.nan,dtype=complex) isNaNlist = np.zeros((klist.shape[0]), dtype=bool) # sem nějaká rozumná smyčka for ki in range(klist.shape[0]): k = klist[ki] if (k_0*k_0 - k[0]*k[0] - k[1]*k[1] < 0): isNaNlist[ki] = True continue phases_self = np.exp(1j*np.tensordot(k,unitcell_translations,axes=(0,-1))) phases_u2d = np.exp(1j*np.tensordot(k,u2d_translations,axes=(0,-1))) phases_d2u = np.exp(1j*np.tensordot(k,d2u_translations,axes=(0,-1))) if gaussianSigma: phases_self *= unitcell_envelope phases_u2d *= u2d_envelope phases_d2u *= d2u_envelope leftmatrix = np.zeros((2,2,nelem, 2,2,nelem), dtype=complex) leftmatrix[0,0,:,0,0,:] = np.tensordot(a_self,phases_self, axes=(0,-1)) # u2u, E2E leftmatrix[1,0,:,1,0,:] = leftmatrix[0,0,:,0,0,:] # d2d, E2E leftmatrix[0,1,:,0,1,:] = leftmatrix[0,0,:,0,0,:] # u2u, M2M leftmatrix[1,1,:,1,1,:] = leftmatrix[0,0,:,0,0,:] # d2d, M2M leftmatrix[0,0,:,0,1,:] = np.tensordot(b_self,phases_self, axes=(0,-1)) # u2u, M2E leftmatrix[0,1,:,0,0,:] = leftmatrix[0,0,:,0,1,:] # u2u, E2M leftmatrix[1,1,:,1,0,:] = leftmatrix[0,0,:,0,1,:] # d2d, E2M leftmatrix[1,0,:,1,1,:] = leftmatrix[0,0,:,0,1,:] # d2d, M2E leftmatrix[0,0,:,1,0,:] = np.tensordot(a_d2u, phases_d2u,axes=(0,-1)) #d2u,E2E leftmatrix[0,1,:,1,1,:] = leftmatrix[0,0,:,1,0,:] #d2u, M2M leftmatrix[0,0,:,1,1,:] = np.tensordot(b_d2u, phases_d2u,axes=(0,-1)) #d2u,M2E leftmatrix[0,1,:,1,0,:] = leftmatrix[0,0,:,1,1,:] #d2u, E2M leftmatrix[1,0,:,0,1,:] = np.tensordot(b_u2d, phases_u2d,axes=(0,-1)) #u2d,M2E leftmatrix[1,1,:,0,0,:] = leftmatrix[1,0,:,0,1,:] #u2d, E2M #leftmatrix is now the translation matrix T for j in range(2): leftmatrix[j] = -np.tensordot(TMatrices_om[j], leftmatrix[j], axes=([-2,-1],[0,1])) # at this point, jth row of leftmatrix is that of -MT leftmatrix[j,:,:,j,:,:] += n2id #now we are done, 1-M leftmatrixlist[ki] = leftmatrix nnlist = np.logical_not(isNaNlist) leftmatrixlist_s = np.reshape(leftmatrixlist,(klist.shape[0], 2*2*nelem,2*2*nelem))[nnlist] leftmatrixlist_TE = leftmatrixlist_s[np.ix_(np.arange(leftmatrixlist_s.shape[0]),TEč,TEč)] leftmatrixlist_TM = leftmatrixlist_s[np.ix_(np.arange(leftmatrixlist_s.shape[0]),TMč,TMč)] #svarr = np.linalg.svd(leftmatrixlist_TE, compute_uv=False) #argsortlist = np.argsort(svarr, axis=-1)[...,:svn] #minsvTElist[nnlist] = svarr[...,argsortlist] #minsvTElist[nnlist] = np.amin(np.linalg.svd(leftmatrixlist_TE, compute_uv=False), axis=-1) minsvTElist[nnlist] = np.linalg.svd(leftmatrixlist_TE, compute_uv=False)[...,-svn:] #svarr = np.linalg.svd(leftmatrixlist_TM, compute_uv=False) #argsortlist = np.argsort(svarr, axis=-1)[...,:svn] #minsvTMlist[nnlist] = svarr[...,argsortlist] #minsvTMlist[nnlist] = np.amin(np.linalg.svd(leftmatrixlist_TM, compute_uv=False), axis=-1) minsvTMlist[nnlist] = np.linalg.svd(leftmatrixlist_TM, compute_uv=False)[...,-svn:] minsvTMlistlist.append(minsvTMlist) minsvTElistlist.append(minsvTElist) # In[ ]: minsvTElistarr = np.array(minsvTElistlist) minsvTMlistarr = np.array(minsvTMlistlist) omegalist = np.array(omegalist) # order to make the scatter plots "nice" omegaorder = np.argsort(omegalist) omegalist = omegalist[omegaorder] minsvTElistarr = minsvTElistarr[omegaorder] minsvTMlistarr = minsvTMlistarr[omegaorder] omlist = np.broadcast_to(omegalist[:,nx], minsvTElistarr[...,0].shape) kxmlarr = np.broadcast_to(kxmaplist[nx,:], minsvTElistarr[...,0].shape) klist = np.concatenate((k0Mlist,kMK1list,kK10list,k0K2list,kK2Mlist), axis=0) # In[ ]: for minN in reversed(range(svn)): f, ax = plt.subplots(1, figsize=(20,15)) sc = ax.scatter(kxmlarr, omlist/eV*hbar, c = np.sqrt(minsvTMlistarr[...,minN]), s =40, lw=0) ax.plot(kxmaplist, np.linalg.norm(klist,axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist+B1, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist+B2, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist-B2, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist-B1, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist+B2-B1, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist-B2+B1, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist-B2-B1, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist+B2+B1, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist-2*B1, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist-2*B2, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist-2*B2-B1, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist-2*B1-B2, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist-2*B1-2*B2, axis=-1)*cdn/eV*hbar, '-', # kxmaplist, np.linalg.norm(klist+2*B2-B1, axis=-1)*cdn, '-', # kxmaplist, np.linalg.norm(klist+2*B1-B2, axis=-1)*cdn, '-', ) ax.set_xlim([np.min(kxmlarr),np.max(kxmlarr)]) #ax.set_ylim([2.15,2.30]) ax.set_ylim([np.min(omlist/eV*hbar),np.max(omlist/eV*hbar)]) ax.set_xticks([0, kxmaplist[len(k0Mlist)-1], kxmaplist[len(k0Mlist)+len(kMK1list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)+len(kK2Mlist)-1]]) ax.set_xticklabels(['Γ', 'M', 'K', 'Γ', 'K\'','M']) f.colorbar(sc) pdf.savefig(f) # In[ ]: f, ax = plt.subplots(1, figsize=(20,15)) sc = ax.scatter(kxmlarr, omlist/eV*hbar, c = np.sqrt(minsvTElistarr[...,minN]), s =40, lw=0) ax.plot(kxmaplist, np.linalg.norm(klist,axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist+B1, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist+B2, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist-B2, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist-B1, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist+B2-B1, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist-B2+B1, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist-B2-B1, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist+B2+B1, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist-2*B1, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist-2*B2, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist-2*B2-B1, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist-2*B1-B2, axis=-1)*cdn/eV*hbar, '-', kxmaplist, np.linalg.norm(klist-2*B1-2*B2, axis=-1)*cdn/eV*hbar, '-', # kxmaplist, np.linalg.norm(klist+2*B2-B1, axis=-1)*cdn, '-', # kxmaplist, np.linalg.norm(klist+2*B1-B2, axis=-1)*cdn, '-', ) ax.set_xlim([np.min(kxmlarr),np.max(kxmlarr)]) #ax.set_ylim([2.15,2.30]) ax.set_ylim([np.min(omlist/eV*hbar),np.max(omlist/eV*hbar)]) ax.set_xticks([0, kxmaplist[len(k0Mlist)-1], kxmaplist[len(k0Mlist)+len(kMK1list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)+len(kK2Mlist)-1]]) ax.set_xticklabels(['Γ', 'M', 'K', 'Γ', 'K\'','M']) f.colorbar(sc) pdf.savefig(f) pdf.close() print(time.strftime("%H.%M:%S",time.gmtime(time.time()-begtime)))