#include "ewald.h" #include #include "indexing.h" #include "kahansum.h" #include #include #include #include "tiny_inlines.h" #include #include #include #include // parameters for the quadrature of integral in (4.6) #ifndef INTEGRATION_WORKSPACE_LIMIT #define INTEGRATION_WORKSPACE_LIMIT 30000 #endif #ifndef INTEGRATION_EPSABS #define INTEGRATION_EPSABS 1e-13 #endif #ifndef INTEGRATION_EPSREL #define INTEGRATION_EPSREL 1e-13 #endif #ifndef M_SQRTPI #define M_SQRTPI 1.7724538509055160272981674833411452 #endif // sloppy implementation of factorial static inline double factorial(const int n) { assert(n >= 0); if (n < 0) return 0; // should not happen in the functions below. (Therefore the assert above) else if (n <= 20) { double fac = 1; for (int i = 1; i <= n; ++i) fac *= i; return fac; } else return tgamma(n + 1); // hope it's precise and that overflow does not happen } static inline complex double csq(complex double x) { return x * x; } static inline double sq(double x) { return x * x; } typedef enum { EWALD32_CONSTANTS_ORIG, // As in [1, (4,5)], NOT USED right now. EWALD32_CONSTANTS_AGNOSTIC /* Not depending on the spherical harmonic sign/normalisation * convention – the $e^{im\alpha_pq}$ term in [1,(4.5)] being * replaced by the respective $Y_n^m(\pi/2,\alpha)$ * spherical harmonic. See notes/ewald.lyx. */ } ewald3_constants_option; static const ewald3_constants_option type = EWALD32_CONSTANTS_AGNOSTIC; qpms_ewald3_constants_t *qpms_ewald3_constants_init(const qpms_l_t lMax /*, const ewald3_constants_option type */, const int csphase) { qpms_ewald3_constants_t *c = malloc(sizeof(qpms_ewald3_constants_t)); //if (c == NULL) return NULL; // Do I really want to do this? c->lMax = lMax; c->nelem_sc = qpms_lMax2nelem_sc(lMax); c->s1_jMaxes = malloc(c->nelem_sc * sizeof(qpms_l_t)); c->s1_constfacs = malloc(c->nelem_sc * sizeof(complex double *)); //if (c->s1_jMaxes == NULL) return NULL; // ----- the "xy-plane constants" ------ //determine sizes size_t s1_constfacs_sz = 0; for (qpms_y_t y = 0; y < c->nelem_sc; ++y) { qpms_l_t n; qpms_m_t m; qpms_y2mn_sc_p(y, &m, &n); if ((m + n) % 2 == 0) s1_constfacs_sz += 1 + (c->s1_jMaxes[y] = (n-abs(m))/2); else c->s1_jMaxes[y] = -1; } c->s1_constfacs_base = malloc(s1_constfacs_sz * sizeof(complex double)); size_t s1_constfacs_sz_cumsum = 0; for (qpms_y_t y = 0; y < c->nelem_sc; ++y) { qpms_l_t n; qpms_m_t m; qpms_y2mn_sc_p(y, &m, &n); if ((m + n) % 2 == 0) { c->s1_constfacs[y] = c->s1_constfacs_base + s1_constfacs_sz_cumsum; // and here comes the actual calculation for (qpms_l_t j = 0; j <= c->s1_jMaxes[y]; ++j){ switch(type) { case EWALD32_CONSTANTS_ORIG: // NOT USED c->s1_constfacs[y][j] = -0.5 * ipow(n+1) * min1pow((n+m)/2) * sqrt((2*n + 1) * factorial(n-m) * factorial(n+m)) * min1pow(j) * pow(0.5, n-2*j) / (factorial(j) * factorial((n-m)/2-j) * factorial((n+m)/2-j)) * pow(0.5, 2*j-1); break; case EWALD32_CONSTANTS_AGNOSTIC: c->s1_constfacs[y][j] = -2 * ipow(n+1) * M_SQRTPI * factorial((n-m)/2) * factorial((n+m)/2) * min1pow(j) / (factorial(j) * factorial((n-m)/2-j) * factorial((n+m)/2-j)); break; default: abort(); } } s1_constfacs_sz_cumsum += 1 + c->s1_jMaxes[y]; } else c->s1_constfacs[y] = NULL; } // ------ the "z-axis constants" ----- // determine sizes size_t s1_constfacs_1Dz_sz; { const qpms_l_t sz_n_lMax = lMax/2 + 1; // number of different j's for n = lMax s1_constfacs_1Dz_sz = (lMax % 2) ? isq(sz_n_lMax) + sz_n_lMax : isq(sz_n_lMax); } c->s1_constfacs_1Dz_base = malloc(s1_constfacs_1Dz_sz * sizeof(complex double)); c->s1_constfacs_1Dz = malloc((lMax+1)*sizeof(complex double *)); size_t s1_constfacs_1Dz_sz_cumsum = 0; for (qpms_l_t n = 0; n <= lMax; ++n) { c->s1_constfacs_1Dz[n] = c->s1_constfacs_1Dz_base + s1_constfacs_1Dz_sz_cumsum; for (qpms_l_t j = 0; j <= n/2; ++j) { switch(type) { case EWALD32_CONSTANTS_AGNOSTIC: c->s1_constfacs_1Dz[n][j] = -ipow(n+1) * min1pow(j) * factorial(n) / (factorial(j) * pow(2, 2*j) * factorial(n - 2*j)); break; default: abort(); // wrong type argument or not implemented } } s1_constfacs_1Dz_sz_cumsum += 1 + n / 2; } assert(s1_constfacs_1Dz_sz == s1_constfacs_1Dz_sz_cumsum); c->legendre_csphase = csphase; c->legendre0 = malloc(gsl_sf_legendre_array_n(lMax) * sizeof(double)); c->legendre_plus1 = malloc(gsl_sf_legendre_array_n(lMax) * sizeof(double)); c->legendre_minus1 = malloc(gsl_sf_legendre_array_n(lMax) * sizeof(double)); // N.B. here I use the GSL_SF_LEGENRE_NONE, in order to be consistent with translations.c c->legendre_normconv = GSL_SF_LEGENDRE_NONE; // Moreover, using this approach (i.e. gsl) takes about 64kB extra memory if(GSL_SUCCESS != gsl_sf_legendre_array_e(c->legendre_normconv, lMax, 0, csphase, c->legendre0)) abort(); if(GSL_SUCCESS != gsl_sf_legendre_array_e(c->legendre_normconv, lMax, +1, csphase, c->legendre_plus1)) abort(); if(GSL_SUCCESS != gsl_sf_legendre_array_e(c->legendre_normconv, lMax, -1, csphase, c->legendre_minus1)) abort(); return c; } void qpms_ewald3_constants_free(qpms_ewald3_constants_t *c) { free(c->legendre0); free(c->legendre_plus1); free(c->legendre_minus1); free(c->s1_constfacs); free(c->s1_constfacs_base); free(c->s1_constfacs_1Dz_base); free(c->s1_constfacs_1Dz); free(c->s1_jMaxes); free(c); } int ewald3_sigma0(complex double *result, double *err, const qpms_ewald3_constants_t *c, const double eta, const complex double k) { qpms_csf_result gam; int retval = complex_gamma_inc_e(-0.5, -csq(k/(2*eta)), &gam); // FIXME DO THIS CORRECTLY gam.val = conj(gam.val); // We take the other branch, cf. [Linton, p. 642 in the middle] if (0 != retval) abort(); *result = gam.val * c->legendre0[gsl_sf_legendre_array_index(0,0)] / 2 / M_SQRTPI; if(err) *err = gam.err * fabs(c->legendre0[gsl_sf_legendre_array_index(0,0)] / 2 / M_SQRTPI); return 0; } int ewald3_21_xy_sigma_long ( complex double *target, // must be c->nelem_sc long double *err, const qpms_ewald3_constants_t *c, const double eta, const complex double k, const double unitcell_volume /* with the corresponding lattice dimensionality */, const LatticeDimensionality latdim, PGen *pgen_K, const bool pgen_generates_shifted_points /* If false, the behaviour corresponds to the old ewald32_sigma_long_points_and_shift, * so the function assumes that the generated points correspond to the unshifted reciprocal Bravais lattice, * and adds beta to the generated points before calculations. * If true, it assumes that they are already shifted. */, const cart3_t beta, const cart3_t particle_shift ) { const bool k_is_real = (cimag(k) == 0); assert((latdim & LAT_XYONLY) && (latdim & SPACE3D)); assert((latdim & LAT1D) || (latdim & LAT2D)); const qpms_y_t nelem_sc = c->nelem_sc; const qpms_l_t lMax = c->lMax; // Manual init of the ewald summation targets complex double *target_c = calloc(nelem_sc, sizeof(complex double)); memset(target, 0, nelem_sc * sizeof(complex double)); double *err_c = NULL; if (err) { err_c = calloc(nelem_sc, sizeof(double)); memset(err, 0, nelem_sc * sizeof(double)); } const complex double commonfac = 1/(k*k*unitcell_volume); // used in the very end (CFC) if (k_is_real) assert(creal(commonfac) > 0); PGenSphReturnData pgen_retdata; #ifndef NDEBUG double rbeta_pq_prev; #endif // recycleable values if rbeta_pq stays the same: complex double gamma_pq; complex double z; complex double factor1d = 1; // the "additional" factor for the 1D case (then it is not 1) // space for Gamma_pq[j]'s qpms_csf_result Gamma_pq[lMax/2+1]; // CHOOSE POINT BEGIN // TODO mayby PGen_next_sph is not the best coordinate system choice here while ((pgen_retdata = PGen_next_sph(pgen_K)).flags & PGEN_NOTDONE) { // BEGIN POINT LOOP cart3_t K_pq_cart; sph_t beta_pq_sph; if (pgen_generates_shifted_points) { beta_pq_sph = pgen_retdata.point_sph; const cart3_t beta_pq_cart = sph2cart(beta_pq_sph); K_pq_cart = cart3_add(cart3_scale(-1, beta), beta_pq_cart); } else { // as in the old _points_and_shift functions const sph_t K_pq_sph = pgen_retdata.point_sph; K_pq_cart = sph2cart(K_pq_sph); const cart3_t beta_pq_cart = cart3_add(K_pq_cart, beta); beta_pq_sph = cart2sph(beta_pq_cart); } const double rbeta_pq = beta_pq_sph.r; const double arg_pq = beta_pq_sph.phi; const double beta_pq_theta = beta_pq_sph.theta; // CHOOSE POINT END const complex double phasefac = cexp(I*cart3_dot(K_pq_cart,particle_shift)); // POINT-DEPENDENT (PFC) // !!!CHECKSIGN!!! const bool new_rbeta_pq = (!pgen_generates_shifted_points) || (pgen_retdata.flags & PGEN_NEWR); if (!new_rbeta_pq) assert(rbeta_pq == rbeta_pq_prev); // R-DEPENDENT BEGIN if (new_rbeta_pq) { gamma_pq = clilgamma(rbeta_pq/k); z = csq(gamma_pq*k/(2*eta)); for(qpms_l_t j = 0; j <= lMax/2; ++j) { // TODO COMPLEX FIXME check the branches in the old lilgamma case int retval = complex_gamma_inc_e(0.5-j, z, Gamma_pq+j); // we take the other branch, cf. [Linton, p. 642 in the middle]: FIXME instead use the C11 CMPLX macros and fill in -O*I part to z in the line above //if(creal(z) < 0) // Gamma_pq[j].val = conj(Gamma_pq[j].val); //FIXME as noted above if(!(retval==0 || retval==GSL_EUNDRFLW)) abort(); } if (latdim & LAT1D) factor1d = M_SQRT1_2 * .5 * k * gamma_pq; } // R-DEPENDENT END // TODO optimisations: all the j-dependent powers can be done for each j only once, stored in array // and just fetched for each n, m pair for(qpms_l_t n = 0; n <= lMax; ++n) for(qpms_m_t m = -n; m <= n; ++m) { if((m+n) % 2 != 0) // odd coefficients are zero. continue; const qpms_y_t y = qpms_mn2y_sc(m, n); const complex double e_imalpha_pq = cexp(I*m*arg_pq); complex double jsum, jsum_c; ckahaninit(&jsum, &jsum_c); double jsum_err, jsum_err_c; kahaninit(&jsum_err, &jsum_err_c); // TODO do I really need to kahan sum errors? assert((n-abs(m))/2 == c->s1_jMaxes[y]); for(qpms_l_t j = 0; j <= c->s1_jMaxes[y]/*(n-abs(m))/2*/; ++j) { // FIXME legendre0[gsl_sf_legendre_array_index(n,abs(m))] * min1pow_m_neg(m) // This line can actually go outside j-loop * cpow(gamma_pq, 2*j-1) // * Gamma_pq[j] bellow (GGG) after error computation * c->s1_constfacs[y][j]; if(err) { // FIXME include also other errors than Gamma_pq's relative error kahanadd(&jsum_err, &jsum_err_c, Gamma_pq[j].err * cabs(summand)); } summand *= Gamma_pq[j].val; // GGG ckahanadd(&jsum, &jsum_c, summand); } jsum *= phasefac * factor1d; // PFC ckahanadd(target + y, target_c + y, jsum); if(err) kahanadd(err + y, err_c + y, jsum_err); } #ifndef NDEBUG rbeta_pq_prev = rbeta_pq; #endif } // END POINT LOOP free(err_c); free(target_c); for(qpms_y_t y = 0; y < nelem_sc; ++y) // CFC common factor from above target[y] *= commonfac; if(err) for(qpms_y_t y = 0; y < nelem_sc; ++y) err[y] *= commonfac; return 0; } // 1D chain along the z-axis; not many optimisations here as the same // shifted beta radius could be recycled only once anyways int ewald3_1_z_sigma_long ( complex double *target, // must be c->nelem_sc long double *err, const qpms_ewald3_constants_t *c, const double eta, const complex double k, const double unitcell_volume /* length (periodicity) in this case */, const LatticeDimensionality latdim, PGen *pgen_K, const bool pgen_generates_shifted_points /* If false, the behaviour corresponds to the old ewald32_sigma_long_points_and_shift, * so the function assumes that the generated points correspond to the unshifted reciprocal Bravais lattice, * and adds beta to the generated points before calculations. * If true, it assumes that they are already shifted. */, const cart3_t beta, const cart3_t particle_shift ) { assert(LatticeDimensionality_checkflags(latdim, LAT_1D_IN_3D_ZONLY)); assert(beta.x == 0 && beta.y == 0); assert(particle_shift.x == 0 && particle_shift.y == 0); const double beta_z = beta.z; const double particle_shift_z = particle_shift_z; const qpms_y_t nelem_sc = c->nelem_sc; const qpms_l_t lMax = c->lMax; // Manual init of the ewald summation targets complex double *target_c = calloc(nelem_sc, sizeof(complex double)); memset(target, 0, nelem_sc * sizeof(complex double)); double *err_c = NULL; if (err) { err_c = calloc(nelem_sc, sizeof(double)); memset(err, 0, nelem_sc * sizeof(double)); } const double commonfac = 1/(k*unitcell_volume); // multiplied in the very end (CFC) assert(commonfac > 0); // space for Gamma_pq[j]'s (I rewrite the exp. ints. E_n in terms of Gamma fns., cf. my ewald.lyx notes, (eq:1D_z_LRsum). qpms_csf_result Gamma_pq[lMax/2+1]; PGenSphReturnData pgen_retdata; // CHOOSE POINT BEGIN // TODO FIXME USE PGen_next_z while ((pgen_retdata = PGen_next_sph(pgen_K)).flags & PGEN_NOTDONE) { // BEGIN POINT LOOP assert(pgen_retdata.flags & PGEN_AT_Z); double K_z, beta_mu_z; if (pgen_generates_shifted_points) { beta_mu_z = ((pgen_retdata.point_sph.theta == 0) ? pgen_retdata.point_sph.r : -pgen_retdata.point_sph.r); //!!!CHECKSIGN!!! K_z = beta_mu_z - beta_z; } else { // as in the old _points_and_shift functions K_z = ((pgen_retdata.point_sph.theta == 0) ? pgen_retdata.point_sph.r : -pgen_retdata.point_sph.r); // !!!CHECKSIGN!!! beta_mu_z = K_z + beta_z; } double rbeta_mu = fabs(beta_mu_z); // CHOOSE POINT END const complex double phasefac = cexp(I * K_z * particle_shift_z); // POINT-DEPENDENT (PFC) // !!!CHECKSIGN!!! // R-DEPENDENT BEGIN complex double gamma_pq = clilgamma(rbeta_mu/k); // For real beta and k this is real or pure imaginary ... const complex double z = csq(gamma_pq*k/(2*eta));// ... so the square (this) is in fact real. for(qpms_l_t j = 0; j <= lMax/2; ++j) { int retval = complex_gamma_inc_e(0.5-j, z, Gamma_pq+j); // we take the other branch, cf. [Linton, p. 642 in the middle]: FIXME instead use the C11 CMPLX macros and fill in -O*I part to z in the line above //if(creal(z) < 0) // Gamma_pq[j].val = conj(Gamma_pq[j].val); //FIXME as noted above if(!(retval==0 || retval==GSL_EUNDRFLW)) abort(); } // R-DEPENDENT END // TODO optimisations: all the j-dependent powers can be done for each j only once, stored in array // and just fetched for each n for(qpms_l_t n = 0; n <= lMax; ++n) { const qpms_y_t y = qpms_mn2y_sc(0, n); complex double jsum, jsum_c; ckahaninit(&jsum, &jsum_c); double jsum_err, jsum_err_c; kahaninit(&jsum_err, &jsum_err_c); // TODO do I really need to kahan sum errors? for(qpms_l_t j = 0; j <= n/2; ++j) { complex double summand = pow(rbeta_mu/k, n-2*j) * ((beta_mu_z > 0) ? // TODO this can go outsize the j-loop c->legendre_plus1[gsl_sf_legendre_array_index(n,0)] : (c->legendre_minus1[gsl_sf_legendre_array_index(n,0)] * min1pow(n)) ) // * min1pow_m_neg(m) // not needed as m == 0 * cpow(gamma_pq, 2*j) // * Gamma_pq[j] bellow (GGG) after error computation * c->s1_constfacs_1Dz[n][j]; /* s1_consstfacs_1Dz[n][j] = * * -I**(n+1) (-1)**j * n! * -------------------------- * j! * 2**(2*j) * (n - 2*j)! */ if(err) { // FIXME include also other errors than Gamma_pq's relative error kahanadd(&jsum_err, &jsum_err_c, Gamma_pq[j].err * cabs(summand)); } summand *= Gamma_pq[j].val; // GGG ckahanadd(&jsum, &jsum_c, summand); } jsum *= phasefac; // PFC ckahanadd(target + y, target_c + y, jsum); if(err) kahanadd(err + y, err_c + y, jsum_err); } } // END POINT LOOP free(err_c); free(target_c); for(qpms_y_t y = 0; y < nelem_sc; ++y) // CFC common factor from above target[y] *= commonfac; if(err) for(qpms_y_t y = 0; y < nelem_sc; ++y) err[y] *= commonfac; return 0; } int ewald3_sigma_long ( complex double *target, // must be c->nelem_sc long double *err, const qpms_ewald3_constants_t *c, const double eta, const complex double k, const double unitcell_volume /* with the corresponding lattice dimensionality */, const LatticeDimensionality latdim, PGen *pgen_K, const bool pgen_generates_shifted_points /* If false, the behaviour corresponds to the old ewald32_sigma_long_points_and_shift, * so the function assumes that the generated points correspond to the unshifted reciprocal Bravais lattice, * and adds beta to the generated points before calculations. * If true, it assumes that they are already shifted. */, const cart3_t beta, const cart3_t particle_shift ) { assert(latdim & SPACE3D); if (latdim & LAT_XYONLY) return ewald3_21_xy_sigma_long(target, err, c, eta, k, unitcell_volume, latdim, pgen_K, pgen_generates_shifted_points, beta, particle_shift); else if (latdim & LAT_ZONLY) return ewald3_1_z_sigma_long(target, err, c, eta, k, unitcell_volume, latdim, pgen_K, pgen_generates_shifted_points, beta, particle_shift); // TODO 3D case and general 2D case else abort(); // NOT IMPLEMENTED } struct sigma2_integrand_params { int n; double k, R; }; static double sigma2_integrand(double ksi, void *params) { struct sigma2_integrand_params *p = (struct sigma2_integrand_params *) params; return exp(-sq(p->R * ksi) + sq(p->k / ksi / 2)) * pow(ksi, 2*p->n); } static int ewald32_sr_integral(double r, double k, int n, double eta, double *result, double *err, gsl_integration_workspace *workspace) { struct sigma2_integrand_params p; const double R0 = r; // Maybe could be chosen otherwise, but fuck it for now. p.n = n; eta *= R0; p.k = k * R0; p.R = r / R0; // i.e. p.R = 1 gsl_function F; F.function = sigma2_integrand; F.params = &p; int retval = gsl_integration_qagiu(&F, eta, INTEGRATION_EPSABS, INTEGRATION_EPSREL, INTEGRATION_WORKSPACE_LIMIT, workspace, result, err); double normfac = pow(R0, -2*p.n - 1); *result *= normfac; *err *= normfac; return retval; } // a version allowing complex k struct sigma2_integrand_params_ck { int n; complex double k; double R; }; // TODO ther might be some space for optimisation if needed, as now we calculate everything twice // including the whole complex exponential (throwing the imaginary/real part away) static double sigma2_integrand_ck_real(double ksi, void *params) { struct sigma2_integrand_params_ck *p = (struct sigma2_integrand_params_ck *) params; return creal(cexp(-csq(p->R * ksi) + csq(p->k / ksi / 2))) * pow(ksi, 2*p->n); } static double sigma2_integrand_ck_imag(double ksi, void *params) { struct sigma2_integrand_params_ck *p = (struct sigma2_integrand_params_ck *) params; return cimag(cexp(-csq(p->R * ksi) + csq(p->k / ksi / 2))) * pow(ksi, 2*p->n); } static int ewald32_sr_integral_ck(double r, complex double k, int n, double eta, complex double *result, double *err, gsl_integration_workspace *workspace) { struct sigma2_integrand_params_ck p; const double R0 = r; // Maybe could be chosen otherwise, but fuck it for now. p.n = n; eta *= R0; p.k = k * R0; p.R = r / R0; // i.e. p.R = 1 gsl_function F; F.params = &p; double result_real, result_imag, err_real, err_imag; F.function = sigma2_integrand_ck_real; // TODO check return values int retval = gsl_integration_qagiu(&F, eta, INTEGRATION_EPSABS, INTEGRATION_EPSREL, INTEGRATION_WORKSPACE_LIMIT, workspace, &result_real, &err_real); F.function = sigma2_integrand_ck_imag; // TODO check return values retval = gsl_integration_qagiu(&F, eta, INTEGRATION_EPSABS, INTEGRATION_EPSREL, INTEGRATION_WORKSPACE_LIMIT, workspace, &result_imag, &err_imag); *result = result_real + I*result_imag; *err = sqrt(sq(err_real) + sq(err_imag)); double normfac = pow(R0, -2*p.n - 1); *result *= normfac; *err *= normfac; return retval; } int ewald3_sigma_short( complex double *target, // must be c->nelem_sc long double *err, // must be c->nelem_sc long or NULL const qpms_ewald3_constants_t *c, const double eta, const complex double k /* TODO COMPLEX */, const LatticeDimensionality latdim, // apart from asserts and possible optimisations ignored, as the SR formula stays the same PGen *pgen_R, const bool pgen_generates_shifted_points /* If false, the behaviour corresponds to the old ewald32_sigma_short_points_and_shift, * so the function assumes that the generated points correspond to the unshifted Bravais lattice, * and adds particle_shift to the generated points before calculations. * If true, it assumes that they are already shifted (if calculating interaction between * different particles in the unit cell). */, const cart3_t beta, const cart3_t particle_shift ) { const bool k_is_real = (cimag(k) == 0); // TODO check how the compiler optimises the loops const double kreal = creal(k); const qpms_y_t nelem_sc = c->nelem_sc; const qpms_l_t lMax = c->lMax; gsl_integration_workspace *workspace = gsl_integration_workspace_alloc(INTEGRATION_WORKSPACE_LIMIT); double legendre_buf[gsl_sf_legendre_array_n(c->lMax)]; // work space for the legendre polynomials (used only in the general case) // Manual init of the ewald summation targets complex double * const target_c = calloc(nelem_sc, sizeof(complex double)); memset(target, 0, nelem_sc * sizeof(complex double)); double *err_c = NULL; if (err) { err_c = calloc(nelem_sc, sizeof(double)); memset(err, 0, nelem_sc * sizeof(double)); } PGenSphReturnData pgen_retdata; #ifndef NDEBUG double r_pq_shifted_prev; #endif // recyclable variables if r_pq_shifted stays the same: double intres[lMax+1], interr[lMax+1]; complex double cintres[lMax+1]; // CHOOSE POINT BEGIN // TODO check whether _next_sph is the optimal coordinate system choice here while ((pgen_retdata = PGen_next_sph(pgen_R)).flags & PGEN_NOTDONE) { // BEGIN POINT LOOP // CHOOSE POINT END cart3_t Rpq_shifted_cart; // I will need both sph and cart representations anyway... sph_t Rpq_shifted_sph; if (pgen_generates_shifted_points) { Rpq_shifted_sph = pgen_retdata.point_sph; Rpq_shifted_cart = sph2cart(Rpq_shifted_sph); } else { // as in the old _points_and_shift functions //const point2d Rpq_shifted = Rpoints_plus_particle_shift[i]; const sph_t bravais_point_sph = pgen_retdata.point_sph; const cart3_t bravais_point_cart = sph2cart(bravais_point_sph); Rpq_shifted_cart = cart3_add(bravais_point_cart, cart3_scale(-1, particle_shift)); // CHECKSIGN!!! Rpq_shifted_sph = cart2sph(Rpq_shifted_cart); } // TODO eliminate and use the Rpq_shifted_sph members directly (but in compiler optimizations we trust) const double Rpq_shifted_arg = Rpq_shifted_sph.phi; //atan2(Rpq_shifted.y, Rpq_shifted.x); // POINT-DEPENDENT const double Rpq_shifted_theta = Rpq_shifted_sph.theta; // POINT-DEPENDENT const double r_pq_shifted = Rpq_shifted_sph.r; // if the radius is the same as in previous cycle, most of the calculations can be recycled const bool new_r_pq_shifted = (!pgen_generates_shifted_points) || (pgen_retdata.flags & PGEN_NEWR); if (!new_r_pq_shifted) assert(r_pq_shifted_prev == r_pq_shifted); const complex double e_beta_Rpq = cexp(I*cart3_dot(beta, Rpq_shifted_cart)); // POINT-DEPENDENT LatticeDimensionality speedup_regime = 0; if ((latdim & LAT_2D_IN_3D_XYONLY) == LAT_2D_IN_3D_XYONLY) speedup_regime = LAT_2D_IN_3D_XYONLY; if ((latdim & LAT_1D_IN_3D_ZONLY) == LAT_1D_IN_3D_ZONLY) speedup_regime = LAT_1D_IN_3D_ZONLY; const double * legendre_array; switch(speedup_regime) { // speedup checks for special geometries and Legendre polynomials case LAT_1D_IN_3D_ZONLY: assert((pgen_retdata.flags & PGEN_AT_Z) == PGEN_AT_Z); assert(Rpq_shifted_theta == M_PI || Rpq_shifted_theta == 0); legendre_array = (Rpq_shifted_theta == 0) ? c->legendre_plus1 : c->legendre_minus1; // CHECKSIGN break; case LAT_2D_IN_3D_XYONLY: assert((pgen_retdata.flags &PGEN_AT_XY) == PGEN_AT_XY); assert(fabs(Rpq_shifted_theta - M_PI_2) < DBL_EPSILON * 1024); // assert(Rpq_shifted_theta == M_PI_2); // FIXME this should work as well legendre_array = c->legendre0; break; default: if(GSL_SUCCESS != gsl_sf_legendre_array_e(c->legendre_normconv, lMax, cos(Rpq_shifted_theta), c->legendre_csphase, legendre_buf)) abort(); legendre_array = legendre_buf; break; } for(qpms_l_t n = 0; n <= lMax; ++n) { const double complex prefacn = - I * (k_is_real ? pow(2./creal(k),n+1) : cpow(2./k, n+1)) * M_2_SQRTPI / 2; // profiling TODO put outside the R-loop and multiply in the end? const double R_pq_pown = pow(r_pq_shifted, n); // profiling TODO: maybe put this into the new_r_pq_shifted condition as well? if (new_r_pq_shifted) { int retval; if (k_is_real) { double intres_real; retval = ewald32_sr_integral(r_pq_shifted, kreal, n, eta, &intres_real, interr + n, workspace); cintres[n] = intres_real; } else retval = ewald32_sr_integral_ck(r_pq_shifted, k, n, eta, cintres+n, interr + n, workspace); if (retval) abort(); } // otherwise recycle the integrals for (qpms_m_t m = -n; m <= n; ++m){ complex double e_imf; // SPEEDUPS for some special geometries if(speedup_regime == LAT_2D_IN_3D_XYONLY) { //2D lattice inside the xy plane if((m+n) % 2 != 0) // odd coefficients are zero. continue; // nothing needed, already done by memset e_imf = cexp(I*m*Rpq_shifted_arg); // profiling TODO: calculate outside the n-loop? } else if (speedup_regime == LAT_1D_IN_3D_ZONLY) { // 1D lattice along the z axis if (m != 0) // m-non-zero coefficients are zero continue; // nothing needed, already done by memset e_imf = 1; } else { // general 1D/2D/3D lattice in 3D space e_imf = cexp(I*m*Rpq_shifted_arg); } const double leg = legendre_array[gsl_sf_legendre_array_index(n, abs(m))]; const qpms_y_t y = qpms_mn2y_sc(m,n); if(err) kahanadd(err + y, err_c + y, cabs(leg * (prefacn / I) * R_pq_pown * interr[n])); // TODO include also other errors ckahanadd(target + y, target_c + y, prefacn * R_pq_pown * leg * cintres[n] * e_beta_Rpq * e_imf * min1pow_m_neg(m)); } } #ifndef NDEBUG r_pq_shifted_prev = r_pq_shifted; #endif } gsl_integration_workspace_free(workspace); if(err) free(err_c); free(target_c); return 0; }