#!/usr/bin/env python3 import math from qpms.argproc import ArgParser, annotate_pdf_metadata ap = ArgParser(['rectlattice2d', 'single_particle', 'single_lMax', 'omega_seq']) ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)') ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)") ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path") ap.add_argument("-s", "--singular_values", type=int, default=10, help="Number of singular values to plot") ap.add_argument("--D2", action='store_true', help="Use D2h symmetry even if the x and y periods are equal") a=ap.parse_args() import logging logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO) px, py = a.period #Important! The particles are supposed to be of D2h/D4h symmetry thegroup = 'D4h' if px == py and not a.D2 else 'D2h' particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9)) if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9) defaultprefix = "%s_p%gnmx%gnm_m%s_bg%s_f(%g..%g..%g)eV_L%d_SVGamma" % ( particlestr, px*1e9, py*1e9, str(a.material), str(a.background), *(a.eV_seq), a.lMax) logging.info("Default file prefix: %s" % defaultprefix) import numpy as np import qpms import warnings from qpms.cybspec import BaseSpec from qpms.cytmatrices import CTMatrix, TMatrixGenerator from qpms.qpms_c import Particle, pgsl_ignore_error from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude from qpms.cycommon import DebugFlags, dbgmsg_enable from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar from qpms.symmetries import point_group_info eh = eV/hbar # not used; TODO: irrep_labels = {"B2''":"$B_2''$", "B2'":"$B_2'$", "A1''":"$A_1''$", "A1'":"$A_1'$", "A2''":"$A_2''$", "B1''":"$B_1''$", "A2'":"$A_2'$", "B1'":"$B_1'$", "E'":"$E'$", "E''":"$E''$",} dbgmsg_enable(DebugFlags.INTEGRATION) a1 = ap.direct_basis[0] a2 = ap.direct_basis[1] #Particle positions orig_x = [0] orig_y = [0] orig_xy = np.stack(np.meshgrid(orig_x,orig_y),axis=-1) omegas = ap.omegas logging.info("%d frequencies from %g to %g eV" % (len(omegas), omegas[0]/eh, omegas[-1]/eh)) bspec = BaseSpec(lMax = a.lMax) nelem = len(bspec) # The parameters here should probably be changed (needs a better qpms_c.Particle implementation) pp = Particle(orig_xy[0][0], ap.tmgen, bspec=bspec) ss, ssw = ScatteringSystem.create([pp], ap.background_emg, omegas[0], latticebasis=ap.direct_basis) k = np.array([0.,0.,0]) # Auxillary finite scattering system for irrep decomposition, quite a hack ss1, ssw1 = ScatteringSystem.create([pp], ap.background_emg, omegas[0],sym=FinitePointGroup(point_group_info[thegroup])) wavenumbers = np.empty(omegas.shape) SVs = [None] * ss1.nirreps for iri in range(ss1.nirreps): SVs[iri] = np.empty(omegas.shape+(ss1.saecv_sizes[iri],)) for i, omega in enumerate(omegas): ssw = ss(omega) wavenumbers[i] = ssw.wavenumber.real if ssw.wavenumber.imag: warnings.warn("Non-zero imaginary wavenumber encountered") with pgsl_ignore_error(15): # avoid gsl crashing on underflow; maybe not needed ImTW = ssw.modeproblem_matrix_full(k) for iri in range(ss1.nirreps): if ss1.saecv_sizes[iri] == 0: continue ImTW_packed = ss1.pack_matrix(ImTW, iri) SVs[iri][i] = np.linalg.svd(ImTW_packed, compute_uv = False) outfile = defaultprefix + ".npz" if a.output is None else a.output np.savez(outfile, meta={**vars(a), 'qpms_version' : qpms.__version__()}, omegas=omegas, wavenumbers=wavenumbers, SVs=np.concatenate(SVs, axis=-1), irrep_names=ss1.irrep_names, irrep_sizes=ss1.saecv_sizes, unitcell_area=ss.unitcell_volume ) logging.info("Saved to %s" % outfile) if a.plot or (a.plot_out is not None): import matplotlib matplotlib.use('pdf') from matplotlib import pyplot as plt from matplotlib.backends.backend_pdf import PdfPages fig = plt.figure() ax = fig.add_subplot(111) cc = plt.rcParams['axes.prop_cycle']() for iri in range(ss1.nirreps): cargs = next(cc) nlines = min(a.singular_values, ss1.saecv_sizes[iri]) for i in range(nlines): ax.plot(omegas/eh, SVs[iri][:,-1-i], label= None if i else irrep_labels[ss1.irrep_names[iri]], **cargs) ax.set_ylim([0,1.1]) ax.set_xlabel('$\hbar \omega / \mathrm{eV}$') ax.set_ylabel('Singular values') ax.legend() plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out with PdfPages(plotfile) as pdf: pdf.savefig(fig) annotate_pdf_metadata(pdf, scriptname='infiniterectlat-k0realfreqsvd.py') exit(0)