#!/usr/bin/env python3 import math from qpms.argproc import ArgParser figscale=2 ap = ArgParser(['rectlattice2d_finite', 'single_particle', 'single_lMax', 'single_omega']) ap.add_argument("-k", '--wavevector', nargs=2, type=float, required=True, help='"Bloch" vector, modulating phase of the driving', metavar=('KX', 'KY'), default=(0., 0.)) # ap.add_argument("--kpi", action='store_true', help="Indicates that the k vector is given in natural units instead of SI, i.e. the arguments given by -k shall be automatically multiplied by pi / period (given by -p argument)") ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)') ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)") ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path") ap.add_argument("-g", "--save-gradually", action='store_true', help="saves the partial result after computing each irrep") ap.add_argument("-S", "--symmetry-adapted", default=None, help="Use a symmetry-adapted basis of a given point group instead of individual spherical harmonics") ap.add_argument("-d", "--ccd-distance", type=float, default=math.nan, help='Far-field "CCD" distance from the sample') ap.add_argument("-D", "--ccd-size", type=float, default=math.nan, help='Far-field "CCD" width and heighth') ap.add_argument("-R", "--ccd-resolution", type=int, default=101, help='Far-field "CCD" resolution') #ap.add_argument("--irrep", type=str, default="none", help="Irrep subspace (irrep index from 0 to 7, irrep label, or 'none' for no irrep decomposition") a=ap.parse_args() import logging logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO) Nx, Ny = a.size px, py = a.period particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9)) if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9) defaultprefix = "cd_%s_p%gnmx%gnm_%dx%d_m%s_n%g_k_%g_%g_f%geV_L%d" % ( particlestr, px*1e9, py*1e9, Nx, Ny, str(a.material), a.refractive_index, a.wavevector[0], a.wavevector[1], a.eV, a.lMax,) logging.info("Default file prefix: %s" % defaultprefix) import numpy as np import qpms from qpms.cybspec import BaseSpec from qpms.cytmatrices import CTMatrix, TMatrixGenerator from qpms.qpms_c import Particle from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude from qpms.cycommon import DebugFlags, dbgmsg_enable from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar from qpms.symmetries import point_group_info eh = eV/hbar def cleanarray(a, atol=1e-10, copy=True): a = np.array(a, copy=copy) sieve = abs(a.real) < atol a[sieve] = 1j * a[sieve].imag sieve = abs(a.imag) < atol a[sieve] = a[sieve].real return a def nicerot(a, atol=1e-10, copy=True): #gives array a "nice" phase a = np.array(a, copy=copy) i = np.argmax(abs(a)) a = a / a[i] * abs(a[i]) return a dbgmsg_enable(DebugFlags.INTEGRATION) #Particle positions orig_x = (np.arange(Nx/2) + (0 if (Nx % 2) else .5)) * px orig_y = (np.arange(Ny/2) + (0 if (Ny % 2) else .5)) * py orig_xy = np.stack(np.meshgrid(orig_x, orig_y), axis = -1) omega = ap.omega bspec = BaseSpec(lMax = a.lMax) medium = EpsMuGenerator(ap.background_epsmu) particles= [Particle(orig_xy[i], ap.tmgen, bspec) for i in np.ndindex(orig_xy.shape[:-1])] sym = FinitePointGroup(point_group_info['D2h']) ss, ssw = ScatteringSystem.create(particles=particles, medium=medium, omega=omega, sym=sym) wavenumber = ap.background_epsmu.k(omega) # Currently, ScatteringSystem does not "remember" frequency nor wavenumber outfile_tmp = defaultprefix + ".tmp" if a.output is None else a.output + ".tmp" nelem = len(bspec) phases = np.exp(1j*np.dot(ss.positions[:,:2], np.array(a.wavevector))) driving_full = np.zeros((nelem, ss.fecv_size),dtype=complex) if a.symmetry_adapted is not None: ss1, ssw1 = ScatteringSystem.create(particles=[Particle((0,0,0), ap.tmgen, bspec)], medium=medium, omega=omega, sym=FinitePointGroup(point_group_info[a.symmetry_adapted])) fvcs1 = np.empty((nelem, nelem), dtype=complex) y = 0 iris1 = [] for iri1 in range(ss1.nirreps): for j in range(ss1.saecv_sizes[iri1]): pvc1 = np.zeros((ss1.saecv_sizes[iri1],), dtype=complex) fvcs1[y] = ss1.unpack_vector(pvc1, iri1) fvcs1[y] = cleanarray(nicerot(fvcs1[y], copy=False), copy=False) driving_full[y] = (phases[:, None] * fvcs1[y][None,:]).flatten() y += 1 iris1.append(iri1) iris1 = np.array(iris1) else: for y in range(nelem): driving_full[y,y::nelem] = phases scattered_full = np.zeros((nelem, ss.fecv_size),dtype=complex) scattered_ir = [None for iri in range(ss.nirreps)] ir_contained = np.ones((nelem, ss.nirreps), dtype=bool) for iri in range(ss.nirreps): logging.info("processing irrep %d/%d" % (iri, ss.nirreps)) LU = None # to trigger garbage collection before the next call translation_matrix = None LU = ssw.scatter_solver(iri) logging.info("LU solver created") #translation_matrix = ss.translation_matrix_packed(wavenumber, iri, BesselType.REGULAR) + np.eye(ss.saecv_sizes[iri]) #logging.info("auxillary translation matrix created") scattered_ir[iri] = np.zeros((nelem, ss.saecv_sizes[iri]), dtype=complex) scattered_ir_unpacked = np.zeros((nelem, ss.fecv_size), dtype=complex) for y in range(nelem): ã = driving_full[y] ãi = cleanarray(ss.pack_vector(ã, iri), copy=False) if np.all(ãi == 0): ir_contained[y, iri] = False continue Tã = ssw.apply_Tmatrices_full(ã) Tãi = ss.pack_vector(Tã, iri) fi = LU(Tãi) scattered_ir[iri][y] = fi scattered_ir_unpacked[y] = ss.unpack_vector(fi, iri) scattered_full[y] += scattered_ir_unpacked[y] if a.save_gradually: iriout = outfile_tmp + ".%d" % iri np.savez(iriout, iri=iri, meta=vars(a), omega=omega, wavenumber=wavenumber, nelem=nelem, wavevector=np.array(a.wavevector), phases=phases, positions = ss.positions[:,:2], scattered_ir_packed = scattered_ir[iri], scattered_ir_full = scattered_ir_unpacked, ) logging.info("partial results saved to %s"%iriout) t, l, m = bspec.tlm() if not math.isnan(a.ccd_distance): logging.info("Computing the far fields") ccd_size = (20 * a.ccd_distance / (max(Nx*px, Ny*py) * ssw.wavenumber.real)) if math.isnan(a.ccd_size) else a.ccd_size ccd_x = np.linspace(-ccd_size/2, ccd_size/2, a.ccd_resolution) ccd_y = np.linspace(-ccd_size/2, ccd_size/2, a.ccd_resolution) ccd_grid = np.meshgrid(ccd_x, ccd_y, (a.ccd_distance,), indexing='ij') ccd_points = np.stack(ccd_grid, axis=-1).squeeze(axis=-2) print(ccd_points.shape) ccd_fields = np.empty((nelem,) + ccd_points.shape, dtype=complex) for y in range(nelem): ccd_fields[y] = ssw.scattered_E(scattered_full[y], ccd_points, btyp=BesselType.HANKEL_PLUS) print(ccd_fields.shape) logging.info("Far fields done") outfile = defaultprefix + ".npz" if a.output is None else a.output np.savez(outfile, meta=vars(a), omega=omega, wavenumber=wavenumber, nelem=nelem, wavevector=np.array(a.wavevector), phases=phases, positions = ss.positions[:,:2], scattered_ir_packed = scattered_ir, scattered_full = scattered_full, ir_contained = ir_contained, t=t, l=l, m=m, iris1 = iris1 if (a.symmetry_adapted is not None) else None, irnames1 = ss1.irrep_names if (a.symmetry_adapted is not None) else None, fvcs1 = fvcs1 if (a.symmetry_adapted is not None) else None, #ccd_size = ccd_size if not math.isnan(a.ccd_distance) else None, ccd_points = ccd_points if not math.isnan(a.ccd_distance) else None, ccd_fields = ccd_fields if not math.isnan(a.ccd_distance) else None, ) logging.info("Saved to %s" % outfile) if a.plot or (a.plot_out is not None): positions = ss.positions xpositions = np.unique(positions[:,0]) assert(len(xpositions) == Nx) ypositions = np.unique(positions[:,1]) assert(len(ypositions == Ny)) # particle positions as integer indices posmap = np.empty((positions.shape[0],2), dtype=int) for i, pos in enumerate(positions): posmap[i,0] = np.searchsorted(xpositions, positions[i,0]) posmap[i,1] = np.searchsorted(ypositions, positions[i,1]) def fullvec2grid(fullvec): arr = np.empty((Nx,Ny,nelem), dtype=complex) for pi, offset in enumerate(ss.fullvec_poffsets): ix, iy = posmap[pi] arr[ix, iy] = fullvec[offset:offset+nelem] return arr import matplotlib matplotlib.use('pdf') from matplotlib import pyplot as plt, cm t, l, m = bspec.tlm() phasecm = cm.twilight pmcm = cm.bwr abscm = cm.plasma fig, axes = plt.subplots(nelem, 12 if math.isnan(a.ccd_distance) else 15, figsize=(figscale*(12 if math.isnan(a.ccd_distance) else 15), figscale*nelem)) for yp in range(0,3): # TODO xy-dipoles instead? axes[0,4*yp+0].set_title("abs / %s,%d,%+d"%('E' if t[yp]==2 else 'M', l[yp], m[yp],)) axes[0,4*yp+1].set_title("arg / %s,%d,%+d"%('E' if t[yp]==2 else 'M', l[yp], m[yp],)) axes[0,4*yp+2].set_title("Fabs / %s,%d,%+d"%('E' if t[yp]==2 else 'M', l[yp], m[yp],)) axes[0,4*yp+3].set_title("Farg / %s,%d,%+d"%('E' if t[yp]==2 else 'M', l[yp], m[yp],)) if not math.isnan(a.ccd_distance): axes[0,12].set_title("$E_{xy}$ @ $z = %g; \phi$" % a.ccd_distance) axes[0,13].set_title("$E_{xy}$ @ $z = %g; \phi + \pi/2$" % a.ccd_distance) axes[0,14].set_title("$E_{z}$ @ $z = %g$" % a.ccd_distance) for y in range(nelem): fulvec = scattered_full[y] if a.symmetry_adapted is not None: driving_nonzero_y = [j for j in range(nelem) if abs(fvcs1[y,j]) > 1e-5] driving_descr = ss1.irrep_names[iris1[y]].join((str(fvcs[y,j]) + "(%s, %d, %+d) " % (("E" if t[j] == 2 else "M"), l[j], m[j]) for j in driving_nonzero_y)) # TODO shorten the complex number precision else: driving_descr = "%s,%d,%+d"%('E' if t[y]==2 else 'M', l[y], m[y],) axes[y,0].set_ylabel(driving_descr) vecgrid = fullvec2grid(fulvec) vecgrid_ff = np.fft.fftshift(np.fft.fft2(vecgrid, axes=(0,1)),axes=(0,1)) lemax = np.amax(abs(vecgrid)) for yp in range(0,3): if(np.amax(abs(vecgrid[...,yp])) > lemax*1e-5): axes[y,yp*4].imshow(abs(vecgrid[...,yp]), vmin=0) axes[y,yp*4].text(0.5, 0.5, '%g' % np.amax(abs(vecgrid[...,yp])), horizontalalignment='center', verticalalignment='center', transform=axes[y,yp*4].transAxes) axes[y,yp*4+1].imshow(np.angle(vecgrid[...,yp]), vmin=-np.pi, vmax=np.pi, cmap=phasecm) axes[y,yp*4+2].imshow(abs(vecgrid_ff[...,yp]), vmin=0) axes[y,yp*4+3].imshow(np.angle(vecgrid_ff[...,yp]), vmin=-np.pi, vmax=np.pi, cmap=phasecm) else: for c in range(0,4): axes[y,yp*4+c].tick_params(bottom=False, left=False, labelbottom=False, labelleft=False) if not math.isnan(a.ccd_distance): fxye=(-ccd_size/2, ccd_size/2, -ccd_size/2, ccd_size/2) e2vmax = np.amax(np.linalg.norm(ccd_fields[y], axis=-1)**2) print(np.sum(abs(ccd_fields[y,...,:2].real)**2).shape) axes[y, 12].imshow(np.sum(abs(ccd_fields[y,...,:2].real)**2, axis=-1), origin="lower",vmax=e2vmax, extent=fxye, cmap=abscm) axes[y, 12].streamplot(ccd_points[...,1], ccd_points[...,0], ccd_fields[y,...,1].real, ccd_fields[y,...,0].real) axes[y, 13].imshow(np.sum(abs(ccd_fields[y,...,:2].imag)**2, axis=-1) , origin="lower",vmax=e2vmax, extent=fxye, cmap=abscm) axes[y, 13].streamplot(ccd_points[...,1], ccd_points[...,0], ccd_fields[y,...,1].imag, ccd_fields[y,...,0].imag) zplot = abs(ccd_fields[y,...,2])**2 axes[y, 14].imshow(zplot, origin='lower', extent=fxye, cmap=abscm) axes[y, 14].text(0.5, 0.5, '%g' % np.amax(zplot)/e2vmax, horizontalalignment='center', verticalalignment='center', transform=axes[y,14].transAxes) plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out fig.savefig(plotfile) exit(0)