#!/usr/bin/env python3 import math from qpms.argproc import ArgParser ap = ArgParser(['rectlattice2d_finite', 'background_analytical', 'single_particle', 'single_lMax', ]) ap.add_argument("-t", "--rank-tolerance", type=float, default=1e11) ap.add_argument("-c", "--min-candidates", type=int, default=1, help='always try at least this many eigenvalue candidates, even if their SVs in the rank tests are lower than rank_tolerance') ap.add_argument("-T", "--residual-tolerance", type=float, default=0.) ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)') #ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)") #ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path") #ap.add_argument("-g", "--save-gradually", action='store_true', help="saves the partial result after computing each irrep") ap.add_argument("-f", "--centre", type=complex, required=True, help='Contour centre in eV') ap.add_argument("--ai", type=float, default=0.05, help="Contour imaginary half-axis in eV") ap.add_argument("--ar", type=float, default=0.05, help="Contour real half-axis in eV") ap.add_argument("-N", type=int, default="150", help="Integration contour discretisation size") ap.add_argument("--D2", action='store_true', help="Use D2h symmetry even if the array has square symmetry") ap.add_argument("--irrep", type=str, default="none", help="Irrep subspace (irrep index from 0 to 7 (9 for D4h), irrep label, or 'none' for no irrep decomposition") a=ap.parse_args() import logging logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO) Nx, Ny = a.size px, py = a.period thegroup = 'D4h' if px == py and Nx == Ny and not a.D2 else 'D2h' particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9)) if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9) defaultprefix = "%s_p%gnmx%gnm_%dx%d_m%s_B%s_L%d_c(%s±%g±%gj)eV_cn%d_%s" % ( particlestr, px*1e9, py*1e9, Nx, Ny, str(a.material), str(a.background), a.lMax, str(a.centre), a.ar, a.ai, a.N, thegroup, ) logging.info("Default file prefix: %s" % defaultprefix) def inside_ellipse(point_xy, centre_xy, halfaxes_xy): x = point_xy[0] - centre_xy[0] y = point_xy[1] - centre_xy[1] ax = halfaxes_xy[0] ay = halfaxes_xy[1] return ((x/ax)**2 + (y/ay)**2) <= 1 import numpy as np import qpms from qpms.cybspec import BaseSpec from qpms.cytmatrices import CTMatrix, TMatrixGenerator from qpms.qpms_c import Particle from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude from qpms.cycommon import DebugFlags, dbgmsg_enable from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar from qpms.symmetries import point_group_info eh = eV/hbar dbgmsg_enable(DebugFlags.INTEGRATION) #Particle positions orig_x = (np.arange(Nx/2) + (0 if (Nx % 2) else .5)) * px orig_y = (np.arange(Ny/2) + (0 if (Ny % 2) else .5)) * py orig_xy = np.stack(np.meshgrid(orig_x, orig_y), axis = -1) bspec = BaseSpec(lMax = a.lMax) medium = EpsMuGenerator(ap.background_epsmu) particles= [Particle(orig_xy[i], ap.tmgen, bspec) for i in np.ndindex(orig_xy.shape[:-1])] sym = FinitePointGroup(point_group_info[thegroup]) logging.info("Creating scattering system object") ss, ssw = ScatteringSystem.create(particles, medium, a.centre * eh, sym=sym) if a.irrep == 'none': iri = None # no irrep decomposition irname = 'full' logging.info("Not performing irrep decomposition and working with the full space of dimension %d." % ss.fecv_size) else: try: iri = int(a.irrep) except ValueError: iri = ss.irrep_names.index(a.irrep) irname = ss.irrep_names[iri] logging.info("Using irrep subspace %s (iri = %d) of dimension %d." % (irname, iri, ss.saecv_sizes[iri])) outfile_tmp = defaultprefix + ".tmp" if a.output is None else a.output + ".tmp" logging.info("Starting Beyn's algorithm") results = ss.find_modes(iri=iri, omega_centre = a.centre*eh, omega_rr=a.ar*eh, omega_ri=a.ai*eh, contour_points=a.N, rank_tol=a.rank_tolerance, rank_min_sel=a.min_candidates, res_tol=a.residual_tolerance) results['inside_contour'] = inside_ellipse((results['eigval'].real, results['eigval'].imag), (a.centre.real*eh, a.centre.imag*eh), (a.ar*eh, a.ai*eh)) results['refractive_index_internal'] = [medium(om).n for om in results['eigval']] outfile = defaultprefix + (('_ir%s_%s.npz' % (str(iri), irname)) if iri is not None else '.npz') if a.output is None else a.output np.savez(outfile, meta=vars(a), **results) logging.info("Saved to %s" % outfile) exit(0) # TODO plots. if a.plot or (a.plot_out is not None): import matplotlib matplotlib.use('pdf') from matplotlib import pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) ax.plot(sinalpha_list, σ_ext*1e12,label='$\sigma_\mathrm{ext}$') ax.plot(sinalpha_list, σ_scat*1e12, label='$\sigma_\mathrm{scat}$') ax.plot(sinalpha_list, σ_abs*1e12, label='$\sigma_\mathrm{abs}$') ax.legend() ax.set_xlabel('$\sin\\alpha$') ax.set_ylabel('$\sigma/\mathrm{\mu m^2}$') plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out fig.savefig(plotfile) exit(0)