((k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^4)/(k^4*Sqrt[1 + k^2/(c - I*k0)^2]*(c - I*k0)) - (6*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^4))/(k^4*Sqrt[1 + k^2/(2*c - I*k0)^2]*(2*c - I*k0)) + (15*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^4))/(k^4*Sqrt[1 + k^2/(3*c - I*k0)^2]*(3*c - I*k0)) - (20*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^4))/(k^4*Sqrt[1 + k^2/(4*c - I*k0)^2]*(4*c - I*k0)) + (15*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^4))/(k^4*Sqrt[1 + k^2/(5*c - I*k0)^2]*(5*c - I*k0)) - (6*(k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^4))/(k^4*Sqrt[1 + k^2/(6*c - I*k0)^2]*(6*c - I*k0)) + (k^4 - 4*k^2*(-2 + Sqrt[1 + k^2/(7*c - I*k0)^2])*(7*c - I*k0)^2 - 8*(-1 + Sqrt[1 + k^2/(7*c - I*k0)^2])*(7*c - I*k0)^4)/(k^4*Sqrt[1 + k^2/(7*c - I*k0)^2]*(7*c - I*k0)))/k0
SeriesData[k, Infinity, {(-945*c^6)/(k*k0), 0, (31185*(33*c^8 - (16*I)*c^7*k0 - 2*c^6*k0^2))/(4*k*k0), 0, (-135135*(3047*c^10 - (2800*I)*c^9*k0 - 990*c^8*k0^2 + (160*I)*c^7*k0^3 + 10*c^6*k0^4))/(16*k*k0)}, 6, 11, 1]