gaunt[m_, n_, mu_, nu_, p_] := (-1)^(m + mu) (2 p + 1) Sqrt[ Factorial[n + m] Factorial[ nu + mu] Factorial[p - m - mu]/Factorial[n - m]/ Factorial[nu - mu] / Factorial[p + m + mu]] ThreeJSymbol[{n, 0}, {nu, 0}, {p, 0}] ThreeJSymbol[{n, m}, {nu, mu}, {p, -m - mu}] lMax := 100 For[n = 0, n <= lMax, n++, For[nu = 0, nu <= lMax, nu++, For[m = -n, m <= n, m++, For[mu = -nu, mu <= nu, mu++, For[q = 0, q <= Min[n, nu, (n + nu - Abs[m + mu])/2],q++, Print[StringForm["{`1`, `2`, `3`, `4`, `5`, `6`},",m,n,mu,nu,q,N[gaunt[m, n, mu, nu, n + nu - 2 q],32]]] ] ] ] ] ]