#!/usr/bin/env python3 import argparse, re, random, string import subprocess from scipy.constants import hbar, e as eV, pi, c def make_action_sharedlist(opname, listname): class opAction(argparse.Action): def __call__(self, parser, args, values, option_string=None): if (not hasattr(args, listname)) or getattr(args, listname) is None: setattr(args, listname, list()) getattr(args,listname).append((opname, values)) return opAction parser = argparse.ArgumentParser() #TODO? použít type=argparse.FileType('r') ? parser.add_argument('--TMatrix', action='store', required=True, help='Path to TMatrix file') #parser.add_argument('--griddir', action='store', required=True, help='Path to the directory with precalculated translation operators') parser.add_argument('--output_prefix', action='store', required=True, help='Prefix to the pdf and/or npz output (will be appended frequency and hexside)') #sizepar = parser.add_mutually_exclusive_group(required=True) parser.add_argument('--hexside', action='store', type=float, required=True, help='Lattice hexagon size length') parser.add_argument('--output', action='store', help='Path to output PDF') parser.add_argument('--store_SVD', action='store_false', help='If specified without --SVD_output, it will save the data in a file named as the PDF output, but with .npz extension instead') parser.add_argument('--plot_TMatrix', action='store_true', help='Visualise TMatrix on the first page of the output') #parser.add_argument('--SVD_output', action='store', help='Path to output singular value decomposition result') parser.add_argument('--nSV', action='store', metavar='N', type=int, default=1, help='Store and draw N minimun singular values') parser.add_argument('--maxlayer', action='store', type=int, default=100, help='How far to sum the lattice points to obtain the dispersion') parser.add_argument('--scp_to', action='store', metavar='N', type=str, help='SCP the output files to a given destination') parser.add_argument('--background_permittivity', action='store', type=float, default=1., help='Background medium relative permittivity (default 1)') parser.add_argument('--eVfreq', action='store', required=True, type=float, help='Frequency in eV') parser.add_argument('--kdensity', action='store', type=int, default=33, help='Number of k-points per x-axis segment') parser.add_argument('--lMax', action='store', type=int, help='Override lMax from the TMatrix file') #TODO some more sophisticated x axis definitions parser.add_argument('--gaussian', action='store', type=float, metavar='σ', help='Use a gaussian envelope for weighting the interaction matrix contributions (depending on the distance), measured in unit cell lengths (?) FIxME).') popgrp=parser.add_argument_group(title='Operations') popgrp.add_argument('--tr', dest='ops', action=make_action_sharedlist('tr', 'ops'), default=list()) # the default value for dest can be set once popgrp.add_argument('--tr0', dest='ops', action=make_action_sharedlist('tr0', 'ops')) popgrp.add_argument('--tr1', dest='ops', action=make_action_sharedlist('tr1', 'ops')) popgrp.add_argument('--sym', dest='ops', action=make_action_sharedlist('sym', 'ops')) popgrp.add_argument('--sym0', dest='ops', action=make_action_sharedlist('sym0', 'ops')) popgrp.add_argument('--sym1', dest='ops', action=make_action_sharedlist('sym1', 'ops')) #popgrp.add_argument('--mult', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult', 'ops')) #popgrp.add_argument('--mult0', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult0', 'ops')) #popgrp.add_argument('--mult1', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult1', 'ops')) popgrp.add_argument('--multl', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl', 'ops')) popgrp.add_argument('--multl0', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl0', 'ops')) popgrp.add_argument('--multl1', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl1', 'ops')) parser.add_argument('--frequency_multiplier', action='store', type=float, default=1., help='Multiplies the frequencies in the TMatrix file by a given factor.') # TODO enable more flexible per-sublattice specification pargs=parser.parse_args() print(pargs) maxlayer=pargs.maxlayer hexside=pargs.hexside eVfreq = pargs.eVfreq freq = eVfreq*eV/hbar TMatrix_file = pargs.TMatrix pdfout = pargs.output if pargs.output else ( '%s_%dnm_%.4f.pdf' % (pargs.output_prefix,hexside/1e-9,eVfreq) if pargs.output_prefix else (''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(10)) + '.pdf')) print(pdfout) if(pargs.store_SVD): if re.search('.pdf$', pdfout): svdout = re.sub('.pdf$', r'.npz', pdfout) else: svdout = pdfout + '.npz' else: svdout = None epsilon_b = pargs.background_permittivity #2.3104 gaussianSigma = pargs.gaussian if pargs.gaussian else None # hexside * 222 / 7 interpfreqfactor = pargs.frequency_multiplier scp_dest = pargs.scp_to if pargs.scp_to else None kdensity = pargs.kdensity svn = pargs.nSV # TODO multiplier operation definitions and parsing #factor13inc = 10 #factor13scat=10 ops = list() opre = re.compile('(tr|sym|copy|multl|mult)(\d*)') for oparg in pargs.ops: opm = opre.match(oparg[0]) if opm: ops.append(((opm.group(2),) if opm.group(2) else (0,1), opm.group(1), oparg[1])) else: raise # should not happen print(ops) #ops = ( # # co, typ operace (symetrizace / transformace / kopie), specifikace (operace nebo zdroj), # # co: 0, 1, (0,1), (0,), (1,), #NI: 'all' # # typ operace: sym, tr, copy # # specifikace: # # sym, tr: 'σ_z', 'σ_y', 'C2'; sym: 'C3', # # copy: 0, 1 (zdroj) # ((0,1), 'sym', 'σ_z'), # #((0,1), 'sym', 'σ_x'), # #((0,1), 'sym', 'σ_y'), # ((0,1), 'sym', 'C3'), # ((1), 'tr', 'C2'), # #) # -----------------finished basic CLI parsing (except for op arguments) ------------------ import time begtime=time.time() from matplotlib.path import Path import matplotlib.patches as patches import matplotlib.pyplot as plt import qpms import numpy as np import os, sys, warnings, math from matplotlib import pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from scipy import interpolate nx = None s3 = math.sqrt(3) pdf = PdfPages(pdfout) # In[3]: # specifikace T-matice zde cdn = c/ math.sqrt(epsilon_b) TMatrices_orig, freqs_orig, freqs_weirdunits_orig, lMaxTM = qpms.loadScuffTMatrices(TMatrix_file) lMax = lMaxTM if pargs.lMax: lMax = pargs.lMax if pargs.lMax else lMaxTM my, ny = qpms.get_mn_y(lMax) nelem = len(my) if pargs.lMax: #force commandline specified lMax TMatrices_orig = TMatrices_orig[...,0:nelem,:,0:nelem] ž = np.arange(2*nelem) tž = ž // nelem mž = my[ž%nelem] nž = ny[ž%nelem] TEž = ž[(mž+nž+tž) % 2 == 0] TMž = ž[(mž+nž+tž) % 2 == 1] č = np.arange(2*2*nelem) žč = č % (2* nelem) tč = tž[žč] mč = mž[žč] nč = nž[žč] TEč = č[(mč+nč+tč) % 2 == 0] TMč = č[(mč+nč+tč) % 2 == 1] TMatrices = np.array(np.broadcast_to(TMatrices_orig[:,nx,:,:,:,:],(len(freqs_orig),2,2,nelem,2,nelem)) ) #TMatrices[:,:,:,:,:,ny==3] *= factor13inc #TMatrices[:,:,:,ny==3,:,:] *= factor13scat xfl = qpms.xflip_tyty(lMax) yfl = qpms.yflip_tyty(lMax) zfl = qpms.zflip_tyty(lMax) c2rot = qpms.apply_matrix_left(qpms.yflip_yy(3),qpms.xflip_yy(3),-1) reCN = re.compile('(\d*)C(\d+)') #TODO C nekonečno for op in ops: if op[0] == 'all': targets = (0,1) elif isinstance(op[0],int): targets = (op[0],) else: targets = op[0] if op[1] == 'sym': mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions if op[2] == 'σ_z': for t in targets: TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2 elif op[2] == 'σ_y': for t in targets: TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2 elif op[2] == 'σ_x': for t in targets: TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2 elif op[2] == 'C2': # special case of the latter for t in targets: TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1))/2 elif mCN: rotN = int(mCN.group(2)) TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_) for t in targets: for i in range(rotN): rotangle = 2*np.pi*i / rotN rot = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,rotangle])) rotinv = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,-rotangle])) TMatrix_contribs[i] = qpms.apply_matrix_left(rot,qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1) TMatrices[:,t] = np.sum(TMatrix_contribs, axis=0) / rotN else: raise elif op[1] == 'tr': mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions if op[2] == 'σ_z': for t in targets: TMatrices[:,t] = qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1)) elif op[2] == 'σ_y': for t in targets: TMatrices[:,t] = qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1)) elif op[2] == 'σ_x': for t in targets: TMatrices[:,t] = qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1)) elif op[2] == 'C2': for t in targets: TMatrices[:,t] = qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1) elif mCN: rotN = int(mCN.group(2)) power = int(mCN.group(1)) if mCN.group(1) else 1 TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_) for t in targets: rotangle = 2*np.pi*power/rotN rot = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,rotangle])) rotinv = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,-rotangle])) TMatrices[:,t] = qpms.apply_matrix_left(rot, qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1) else: raise elif op[1] == 'copy': raise # not implemented elif op[1] == 'mult': raise # not implemented elif op[1] == 'multl': incy = np.full((nelem,), False, dtype=bool) for incl in op[2][0].split(','): l = int(incl) incy += (l == ny) scaty = np.full((nelem,), False, dtype=bool) for scatl in op[2][1].split(','): l = int(scatl) scaty += (l == ny) for t in targets: TMatrices[np.ix_(np.arange(TMatrices.shape[0]),np.array([t]),np.array([0,1]),scaty,np.array([0,1]),incy)] *= float(op[2][2]) else: raise #unknown operation; should not happen TMatrices_interp = interpolate.interp1d(freqs_orig*interpfreqfactor, TMatrices, axis=0, kind='linear',fill_value="extrapolate") # In[4]: if(pargs.plot_TMatrix): om = np.linspace(np.min(freqs_orig), np.max(freqs_orig),100) TMatrix0ip = np.reshape(TMatrices_interp(om)[:,0], (len(om), 2*nelem*2*nelem)) f, axa = plt.subplots(2, 2, figsize=(15,15)) #print(TMatrices.shape) #plt.plot(om, TMatrices[:,0,0,0,0].imag,'r',om, TMatrices[:,0,0,0,0].real,'r--',om, TMatrices[:,0,2,0,2].imag,'b',om, TMatrices[:,0,2,0,2].real,'b--')) ax = axa[0,0] ax2 = ax.twiny() ax2.set_xlim([ax.get_xlim()[0]/eV*hbar,ax.get_xlim()[1]/eV*hbar]) ax.plot( om, TMatrix0ip[:,:].imag,'-',om, TMatrix0ip[:,:].real,'--', ) ax = axa[0,1] ax2 = ax.twiny() ax2.set_xlim([ax.get_xlim()[0]/eV*hbar,ax.get_xlim()[1]/eV*hbar]) ax.plot( om, abs(TMatrix0ip[:,:]),'-' ) ax.set_yscale('log') ax = axa[1,1] ax2 = ax.twiny() ax2.set_xlim([ax.get_xlim()[0]/eV*hbar,ax.get_xlim()[1]/eV*hbar]) ax.plot( om, np.unwrap(np.angle(TMatrix0ip[:,:]),axis=0),'-' ) ax = axa[1,0] ax.text(0.5,0.5,str(pargs).replace(',',',\n'),horizontalalignment='center',verticalalignment='center',transform=ax.transAxes) pdf.savefig(f) # In[ ]: ''' #kdensity = 66 #defined from cl arguments bz_0 = np.array((0,0,0.,)) bz_K1 = np.array((1.,0,0))*4*np.pi/3/hexside/s3 bz_K2 = np.array((1./2.,s3/2,0))*4*np.pi/3/hexside/s3 bz_M = np.array((3./4, s3/4,0))*4*np.pi/3/hexside/s3 k0Mlist = bz_0 + (bz_M-bz_0) * np.linspace(0,1,kdensity)[:,nx] kMK1list = bz_M + (bz_K1-bz_M) * np.linspace(0,1,kdensity)[:,nx] kK10list = bz_K1 + (bz_0-bz_K1) * np.linspace(0,1,kdensity)[:,nx] k0K2list = bz_0 + (bz_K2-bz_0) * np.linspace(0,1,kdensity)[:,nx] kK2Mlist = bz_K2 + (bz_M-bz_K2) * np.linspace(0,1,kdensity)[:,nx] B1 = 2* bz_K1 - bz_K2 B2 = 2* bz_K2 - bz_K1 klist = np.concatenate((k0Mlist,kMK1list,kK10list,k0K2list,kK2Mlist), axis=0) kxmaplist = np.concatenate((np.array([0]),np.cumsum(np.linalg.norm(np.diff(klist, axis=0), axis=-1)))) ''' klist = qpms.generate_trianglepoints(kdensity, v3d=True, include_origin=True)*3*math.pi/(3*kdensity*hexside) TMatrices_om = TMatrices_interp(freq) svdres = qpms.hexlattice_zsym_getSVD(lMax=lMax, TMatrices_om=TMatrices_om, epsilon_b=epsilon_b, hexside=hexside, maxlayer=maxlayer, omega=freq, klist=klist, gaussianSigma=gaussianSigma, onlyNmin=(0 if svdout else svn)) if svdout: ((svUfullTElist, svSfullTElist, svVfullTElist), (svUfullTMlist, svSfullTMlist, svVfullTMlist)) = svdres (minsvElist, minsvTMlist) = (svSfullTElist[...,-svn:], svSfullTMlist[...,-svn:]) else: minsvTElist, minsvTMlist = svdres ''' The new pretty diffracted order drawing ''' maxlayer_reciprocal=4 cdn = c/ math.sqrt(epsilon_b) bz_0 = np.array((0,0,)) bz_K1 = np.array((1.,0))*4*np.pi/3/hexside/s3 bz_K2 = np.array((1./2.,s3/2))*4*np.pi/3/hexside/s3 bz_M = np.array((3./4, s3/4))*4*np.pi/3/hexside/s3 # reciprocal lattice basis B1 = 2* bz_K1 - bz_K2 B2 = 2* bz_K2 - bz_K1 if svdout: np.savez(svdout, omega = freq, klist = klist, bzpoints = np.array([bz_0, bz_K1, bz_K2, bz_M, B1, B2]), uTE = svUfullTElist, vTE = svVfullTElist, sTE = svSfullTElist, uTM = svUfullTMlist, vTM = svVfullTMlist, sTM = svSfullTMlist, ) k2density = 100 k0Mlist = bz_0 + (bz_M-bz_0) * np.linspace(0,1,k2density)[:,nx] kMK1list = bz_M + (bz_K1-bz_M) * np.linspace(0,1,k2density)[:,nx] kK10list = bz_K1 + (bz_0-bz_K1) * np.linspace(0,1,k2density)[:,nx] k0K2list = bz_0 + (bz_K2-bz_0) * np.linspace(0,1,k2density)[:,nx] kK2Mlist = bz_K2 + (bz_M-bz_K2) * np.linspace(0,1,k2density)[:,nx] k2list = np.concatenate((k0Mlist,kMK1list,kK10list,k0K2list,kK2Mlist), axis=0) kxmaplist = np.concatenate((np.array([0]),np.cumsum(np.linalg.norm(np.diff(k2list, axis=0), axis=-1)))) centers2=qpms.generate_trianglepoints(maxlayer_reciprocal, v3d = False, include_origin= True)*4*np.pi/3/hexside rot90 = np.array([[0,-1],[1,0]]) centers2=np.dot(centers2,rot90) import matplotlib.pyplot as plt import matplotlib from matplotlib.path import Path import matplotlib.patches as patches cmap = matplotlib.cm.prism colormax = np.amax(np.linalg.norm(centers2,axis=0)) # In[ ]: for minN in reversed(range(svn)): f, axes = plt.subplots(1,3, figsize=(20,4.8)) ax = axes[0] sc = ax.scatter(klist[:,0], klist[:,1], c = np.clip(np.abs(minsvTElist[:,minN]),0,1), lw=0) for center in centers2: circle=plt.Circle((center[0],center[1]),omega/cdn, facecolor='none', edgecolor=cmap(np.linalg.norm(center)/colormax),lw=0.5) ax.add_artist(circle) verts = [(math.cos(math.pi*i/3)*4*np.pi/3/hexside/s3,math.sin(math.pi*i/3)*4*np.pi/3/hexside/s3) for i in range(6 +1)] codes = [Path.MOVETO,Path.LINETO,Path.LINETO,Path.LINETO,Path.LINETO,Path.LINETO,Path.CLOSEPOLY,] path = Path(verts, codes) patch = patches.PathPatch(path, facecolor='none', edgecolor='black', lw=1) ax.add_patch(patch) ax.set_xticks([]) ax.set_yticks([]) ax.title.set_text('E in-plane ("TE")') f.colorbar(sc,ax=ax) ax = axes[1] sc = ax.scatter(klist[:,0], klist[:,1], c = np.clip(np.abs(minsvTMlist[:,minN]),0,1), lw=0) for center in centers2: circle=plt.Circle((center[0],center[1]),omega/cdn, facecolor='none', edgecolor=cmap(np.linalg.norm(center)/colormax),lw=0.5) ax.add_artist(circle) verts = [(math.cos(math.pi*i/3)*4*np.pi/3/hexside/s3,math.sin(math.pi*i/3)*4*np.pi/3/hexside/s3) for i in range(6 +1)] codes = [Path.MOVETO,Path.LINETO,Path.LINETO,Path.LINETO,Path.LINETO,Path.LINETO,Path.CLOSEPOLY,] path = Path(verts, codes) patch = patches.PathPatch(path, facecolor='none', edgecolor='black', lw=1) ax.add_patch(patch) ax.set_xticks([]) ax.set_yticks([]) ax.title.set_text('E perpendicular ("TM")') f.colorbar(sc,ax=ax) ax = axes[2] for center in centers2: ax.plot(kxmaplist, np.linalg.norm(k2list-center,axis=-1)*cdn, '-', color=cmap(np.linalg.norm(center)/colormax)) #ax.set_xlim([np.min(kxmlarr),np.max(kxmlarr)]) #ax.set_ylim([np.min(omegalist),np.max(omegalist)]) xticklist = [0, kxmaplist[len(k0Mlist)-1], kxmaplist[len(k0Mlist)+len(kMK1list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)+len(kK2Mlist)-1]] ax.set_xticks(xticklist) for xt in xticklist: ax.axvline(xt, ls='dotted', lw=0.3,c='k') ax.set_xticklabels(['Γ', 'M', 'K', 'Γ', 'K\'','M']) ax.axhline(omega, c='black') ax.set_ylim([0,5e15]) ax2 = ax.twinx() ax2.set_ylim([ax.get_ylim()[0]/eV*hbar,ax.get_ylim()[1]/eV*hbar]) pdf.savefig(f) pdf.close() if scp_dest: subprocess.run(['scp', pdfout, scp_dest]) if svdout: subprocess.run(['scp', svdout, scp_dest]) print(time.strftime("%H.%M:%S",time.gmtime(time.time()-begtime)))