// c99 -ggdb -Wall -I ../ ewalds.c ../qpms/ewald.c ../qpms/ewaldgammas.c ../qpms/lattices2d.c -lgsl -lm -lblas // implementation of the [LT(4.16)] test #include #define M_SQRTPI 1.7724538509055160272981674833411452 #include #include #include #include #include #include #include typedef struct ewaldtest_triang_params { qpms_l_t lMax; point2d beta; double k; double a; double eta; double maxR; double maxK; double csphase; TriangularLatticeOrientation orientation; } ewaldtest_triang_params; typedef struct ewaldtest_triang_results { ewaldtest_triang_params p; complex double *sigmas_short, *sigmas_long, sigma0, *sigmas_total; double *err_sigmas_short, *err_sigmas_long, err_sigma0, *err_sigmas_total; complex double *regsigmas_416; } ewaldtest_triang_results; ewaldtest_triang_params paramslist[] = { { 3, {1.1, 0.23}, 2.3, 0.97, 0.5, 20, 20, 1., TRIANGULAR_HORIZONTAL}, { 3, {1.1, 0.23}, 2.3, 0.97, 0.5, 20, 20, 1., TRIANGULAR_VERTICAL}, { 3, {1.1, 0.23}, 2.3, 0.97, 0.5, 30, 30, 1., TRIANGULAR_VERTICAL}, // end: // { 0, {0, 0}, 0, 0, 0, 0, 0, 0, 0} }; void ewaldtest_triang_results_free(ewaldtest_triang_results *r) { free(r->sigmas_short); free(r->sigmas_long); free(r->sigmas_total); free(r->err_sigmas_long); free(r->err_sigmas_total); free(r->err_sigmas_short); free(r->regsigmas_416); free(r); } ewaldtest_triang_results *ewaldtest_triang(const ewaldtest_triang_params p); int main() { for (size_t i = 0; i < sizeof(paramslist)/sizeof(ewaldtest_triang_params); ++i) { ewaldtest_triang_params p = paramslist[i]; ewaldtest_triang_results *r = ewaldtest_triang(p); // TODO print per-test header here printf("===============================\n"); printf("Kmax = %g, Rmax = %g, lMax = %d, eta = %g, k = %g, beta = (%g,%g)\n", p.maxK, p.maxR, p.lMax, p.eta, p.k, p.beta.x, p.beta.y); for (qpms_l_t n = 0; n <= p.lMax; ++n) { for (qpms_m_t m = -n; m <= n; ++m){ qpms_y_t y = qpms_mn2y_sc(m,n); qpms_y_t y_conj = qpms_mn2y_sc(-m,n); // y n m sigma_total (err), regsigmas_416 regsigmas_415_recon printf("%zd %d %d: %.16g%+.16gj (%.3g) %.16g%+.16gj %.16g%+.16gj\n", y, n, m, creal(r->sigmas_total[y]), cimag(r->sigmas_total[y]), r->err_sigmas_total[y], creal(r->regsigmas_416[y]), cimag(r->regsigmas_416[y]), creal(r->sigmas_total[y])+creal(r->sigmas_total[y_conj]), cimag(r->sigmas_total[y])-cimag(r->sigmas_total[y_conj]) ); } } ewaldtest_triang_results_free(r); } return 0; } ewaldtest_triang_results *ewaldtest_triang(const ewaldtest_triang_params p) { const double a = p.a; //const double a = p.h * sqrt(3); const double A = sqrt(3) * a * a / 2.; // unit cell size const double K_len = 4*M_PI/a/sqrt(3); // reciprocal vector length ewaldtest_triang_results *results = malloc(sizeof(ewaldtest_triang_results)); results->p = p; triangular_lattice_gen_t *Rlg = triangular_lattice_gen_init(a, p.orientation, false, 0); // N.B. orig is not included (not directly usable for the honeycomb lattice) triangular_lattice_gen_extend_to_r(Rlg, p.maxR + a); triangular_lattice_gen_t *Klg = triangular_lattice_gen_init(K_len, reverseTriangularLatticeOrientation(p.orientation), true, 0); triangular_lattice_gen_extend_to_r(Klg, p.maxK + K_len); point2d *Rpoints = Rlg->ps.base, *Kpoints = Klg->ps.base; size_t nR = Rlg->ps.r_offsets[Rlg->ps.nrs], nK = Klg->ps.r_offsets[Klg->ps.nrs]; qpms_y_t nelem_sc = qpms_lMax2nelem_sc(p.lMax); results->sigmas_short = malloc(sizeof(complex double)*nelem_sc); results->sigmas_long = malloc(sizeof(complex double)*nelem_sc); results->sigmas_total = malloc(sizeof(complex double)*nelem_sc); results->err_sigmas_short = malloc(sizeof(double)*nelem_sc); results->err_sigmas_long = malloc(sizeof(double)*nelem_sc); results->err_sigmas_total = malloc(sizeof(double)*nelem_sc); qpms_ewald32_constants_t *c = qpms_ewald32_constants_init(p.lMax, p.csphase); points2d_rordered_t *Kpoints_plus_beta = points2d_rordered_shift(&(Klg->ps), p.beta, 8*DBL_EPSILON, 8*DBL_EPSILON); point2d particle_shift = {0,0}; // TODO make this a parameter if (0!=ewald32_sigma_long_shiftedpoints(results->sigmas_long, results->err_sigmas_long, c, p.eta, p.k, A, nK, Kpoints_plus_beta->base, //p.beta, particle_shift)) abort(); if (0!=ewald32_sigma_short_shiftedpoints( results->sigmas_short, results->err_sigmas_short, c, p.eta, p.k, nR, Rpoints, p.beta, particle_shift)) abort(); if (0!=ewald32_sigma0(&(results->sigma0), &(results->err_sigma0), c, p.eta, p.k)) abort(); for(qpms_y_t y = 0; y < nelem_sc; ++y) { results->sigmas_total[y] = results->sigmas_short[y] + results->sigmas_long[y]; results->err_sigmas_total[y] = results->err_sigmas_short[y] + results->err_sigmas_long[y]; } results->sigmas_total[0] += results->sigma0; results->err_sigmas_total[0] += results->err_sigma0; // Now calculate the reference values [LT(4.16)] results->regsigmas_416 = calloc(nelem_sc, sizeof(complex double)); results->regsigmas_416[0] = -1/M_SQRTPI; { double legendres[gsl_sf_legendre_array_n(p.lMax)]; points2d_rordered_t sel = points2d_rordered_annulus(Kpoints_plus_beta, 0, true, p.k, false); point2d *beta_pq_lessthan_k = sel.base + sel.r_offsets[0]; size_t beta_pq_lessthan_k_count = sel.r_offsets[sel.nrs] - sel.r_offsets[0]; for(size_t i = 0; i < beta_pq_lessthan_k_count; ++i) { point2d beta_pq = beta_pq_lessthan_k[i]; double rbeta_pq = cart2norm(beta_pq); double arg_pq = atan2(beta_pq.y, beta_pq.x); double denom = sqrt(p.k*p.k - rbeta_pq*rbeta_pq); if( gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE, p.lMax, denom/p.k, p.csphase, legendres) != 0) abort(); for (qpms_y_t y = 0; y < nelem_sc; ++y) { qpms_l_t n; qpms_m_t m; qpms_y2mn_sc_p(y, &m, &n); if ((m+n)%2 != 0) continue; complex double eimf = cexp(I*m*arg_pq); results->regsigmas_416[y] += 4*M_PI*ipow(n)/p.k/A * eimf * legendres[gsl_sf_legendre_array_index(n,m)] / denom; } } } points2d_rordered_free(Kpoints_plus_beta); qpms_ewald32_constants_free(c); triangular_lattice_gen_free(Klg); triangular_lattice_gen_free(Rlg); return results; }