#include "lattices.h" #include #include // generic converting extractors PGenPolReturnData PGen_next_pol_from_cart2(PGen *g) { const PGenCart2ReturnData c = PGen_next_cart2(g); if (c.flags & PGEN_DONE) return PGenPolDoneVal; else { PGenPolReturnData p; p.flags = c.flags; p.point_pol = cart2pol(c.point_cart2); return p; } } PGenCart2ReturnData PGen_next_cart2_from_pol(PGen *g) { const PGenPolReturnData p = PGen_next_pol(g); if (p.flags & PGEN_DONE) return PGenCart2DoneVal; else { PGenCart2ReturnData c; c.flags = p.flags; c.point_cart2 = pol2cart(p.point_pol); return c; } } PGenSphReturnData PGen_next_sph_from_cart3(PGen *g) { const PGenCart3ReturnData c = PGen_next_cart3(g); if (c.flags & PGEN_DONE) return PGenSphDoneVal; else { PGenSphReturnData s; s.flags = c.flags; s.point_sph = cart2sph(c.point_cart3); return s; } } PGenCart3ReturnData PGen_next_cart3_from_cart2xy(PGen *g) { const PGenCart2ReturnData c2 = PGen_next_cart2(g); if (c2.flags & PGEN_DONE) return PGenCart3DoneVal; else { PGenCart3ReturnData c3; c3.flags = c2.flags; c3.point_cart3 = cart22cart3xy(c2.point_cart2); return c3; } } PGenSphReturnData PGen_next_sph_from_cart2(PGen *g) { const PGenCart2ReturnData c = PGen_next_cart2(g); if (c.flags & PGEN_DONE) return PGenSphDoneVal; else { PGenSphReturnData s; s.flags = c.flags; s.point_sph = cart22sph(c.point_cart2); return s; } } PGenCart3ReturnData PGen_next_cart3_from_sph(PGen *g) { const PGenSphReturnData s = PGen_next_sph(g); if (s.flags & PGEN_DONE) return PGenCart3DoneVal; else { PGenCart3ReturnData c; c.flags = s.flags; c.point_cart3 = sph2cart(s.point_sph); return c; } } // here, various "classes" of the PGenSph point generators are implemented. // const PGenSphReturnData PGenSphDoneVal = {PGEN_DONE, {0,0,0}}; // defined already in lattices.h // const PGenCart3ReturnData PGenCart3DoneVal = {PGEN_DONE, {0,0,0}}; // defined already in lattices.h // General structure of a generator implementation looks like this: #if 0 //==== PGen_NAME ==== extern const PGenClassInfo PGen_NAME; // forward declaration needed by constructor (may be placed in header file instead) // Internal state structure typedef struct PGen_NAME_StateData { ... } PGen_NAME_StateData; // Constructor PGenSph PGen_NAME_new(...) { g->stateData = malloc(sizeof(PGen_NAME_StateData)); ... PGenSph g = {&PGen_NAME, (void *) stateData}; return g; } // Dectructor void PGen_NAME_dectructor(PGen *g) { ... free(g->stateData); g->stateData = NULL; } // Extractor, spherical coordinate output PGenSphReturnData PGen_NAME_next_sph(PGen *g) { if (g->stateData == NULL) // already destroyed return PGenSphDoneVal; else { PGen_NAME_StateData *s = (PGen_NAME_StateData *) g->stateData; if (... /* there are still points to be generated */) { ... PGenSphReturnData retval = {.../*flags*/, .../*thePoint*/}; return retval; } else { PGen_destroy(g); return PGenSphDoneVal; } } } // Extractor, 3D cartesian coordinate output PGenCart3ReturnData PGen_NAME_next_cart3(PGen *g) { if (g->stateData == NULL) // already destroyed return PGenCart3DoneVal; else { PGen_NAME_StateData *s = (PGen_NAME_StateData *) g->stateData; if (... /* there are still points to be generated */) { ... PGenCart3ReturnData retval = {.../*flags*/, .../*thePoint*/}; return retval; } else { PGen_destroy(g); return PGenCart3DoneVal; } } } // Class metadata structure; TODO maybe this can rather be done by macro. const PGenClassInfo PGen_NAME = { "PGen_NAME", ?, //dimensionality PGEN_COORDS_????, // native coordinate system // some of the _next_... fun pointers can be NULL PGen_NAME_next, PGen_NAME_next_z, PGen_NAME_next_pol, PGen_NAME_next_sph, PGen_NAME_next_cart2, PGen_NAME_next_cart3, PGen_NAME_destructor }; #endif // 0 //==== PGenSph_FromPoint2DArray ==== // Internal state structure typedef struct PGen_FromPoint2DArray_StateData { const point2d *base; size_t len; size_t currentIndex; }PGen_FromPoint2DArray_StateData; // Constructor PGen PGen_FromPoint2DArray_new(const point2d *points, size_t len) { PGen_FromPoint2DArray_StateData *stateData = malloc(sizeof(PGen_FromPoint2DArray_StateData)); stateData->base = points; stateData->len = len; stateData->currentIndex = 0; PGen g = {&PGen_FromPoint2DArray, (void *) stateData}; return g; } // Destructor void PGen_FromPoint2DArray_destructor(PGen *g) { free(g->stateData); g->stateData = NULL; } // Extractor, 2D cartesian (native) PGenCart2ReturnData PGen_FromPoint2DArray_next_cart2(PGen *g) { if (g->stateData == NULL) // already destroyed return PGenCart2DoneVal; else { PGen_FromPoint2DArray_StateData *s = (PGen_FromPoint2DArray_StateData *) g->stateData; if (s->currentIndex < s->len) { cart2_t thePoint = s->base[s->currentIndex]; ++(s->currentIndex); PGenCart2ReturnData retval = {(PGEN_NOTDONE | PGEN_AT_XY | PGEN_NEWR | PGEN_COORDS_CART2), thePoint}; return retval; } else { PGen_destroy(g); return PGenCart2DoneVal; } } } // Extractor, spherical PGenSphReturnData PGen_FromPoint2DArray_next_sph(PGen *g) { if (g->stateData == NULL) // already destroyed return PGenSphDoneVal; else { PGen_FromPoint2DArray_StateData *s = (PGen_FromPoint2DArray_StateData *) g->stateData; if (s->currentIndex < s->len) { sph_t thePoint = cart22sph(s->base[s->currentIndex]); ++(s->currentIndex); PGenSphReturnData retval = {(PGEN_AT_XY | PGEN_NEWR | PGEN_COORDS_SPH), thePoint}; return retval; } else { PGen_destroy(g); return PGenSphDoneVal; } } } const PGenClassInfo PGen_FromPoint2DArray = { "PGen_FromPoint2DArray", 2, // dimensionality PGEN_COORDS_CART2, NULL,//PGen_FromPoint2DArray_next, NULL, NULL,//PGen_FromPoint2DArray_next_pol, PGen_FromPoint2DArray_next_sph, PGen_FromPoint2DArray_next_cart2, NULL,//PGen_FromPoint2DArray_next_cart3, PGen_FromPoint2DArray_destructor, }; //==== PGen_1D ==== //equidistant points along the z-axis; extern const PGenClassInfo PGen_1D; // forward declaration needed by constructor (may be placed in header file instead) /* // This had to go to the header file: enum PGen_1D_incrementDirection{ //PGEN1D_POSITIVE_INC, // not implemented //PGEN1D_NEGATIVE_INC, // not implemented PGEN1D_INC_FROM_ORIGIN, PGEN1D_INC_TOWARDS_ORIGIN }; */ // Internal state structure typedef struct PGen_1D_StateData { long ptindex; //long stopindex; double minR, maxR; bool inc_minR, inc_maxR; double a; // lattice period double offset; // offset of the zeroth lattice point from origin (will be normalised to interval [-a/2,a/2] enum PGen_1D_incrementDirection incdir; //bool skip_origin; } PGen_1D_StateData; static inline long ptindex_inc(long i) { if (i > 0) return -i; else return -i + 1; } static inline long ptindex_dec(long i) { if (i > 0) return -i + 1; else return -i; } // Constructor, specified by maximum and maximum absolute value PGen PGen_1D_new_minMaxR(double period, double offset, double minR, bool inc_minR, double maxR, bool inc_maxR, PGen_1D_incrementDirection incdir) { PGen_1D_StateData *s = malloc(sizeof(PGen_1D_StateData)); s->minR = minR; s->maxR = maxR; s->inc_minR = inc_minR; s->inc_maxR = inc_maxR; s->incdir = incdir; period = fabs(period); double offset_normalised = offset - period * floor(offset / period); // shift to interval [0, period] if (offset_normalised > period / 2) offset_normalised -= period; // and to interval [-period/2, period/2] s->offset = offset_normalised; if (offset_normalised > 0) // reverse the direction so that the conditions in _next() are hit in correct order period *= -1; switch(s->incdir) { double curR; case PGEN_1D_INC_FROM_ORIGIN: s->ptindex = floor(minR / fabs(period)); while ( (curR = fabs(s->offset + s->ptindex * period)) < minR || (!inc_minR && curR <= minR)) s->ptindex = ptindex_inc(s->ptindex); break; case PGEN_1D_INC_TOWARDS_ORIGIN: s->ptindex = - ceil(maxR / fabs(period)); while ( (curR = fabs(s->offset + s->ptindex * period)) > maxR || (!inc_minR && curR >= maxR)) s->ptindex = ptindex_dec(s->ptindex); break; default: abort(); // invalid argument / not implemented } s->a = period; PGen g = {&PGen_1D, (void *) s}; return g; } // Dectructor void PGen_1D_destructor(PGen *g) { free(g->stateData); g->stateData = NULL; } // Extractor 1D number PGenZReturnData PGen_1D_next_z(PGen *g) { if (g->stateData == NULL) // already destroyed return PGenZDoneVal; PGen_1D_StateData *s = (PGen_1D_StateData *) g->stateData; const double zval = s->ptindex * s->a + s->offset; const double r = fabs(zval); bool theEnd = false; switch (s->incdir) { case PGEN_1D_INC_FROM_ORIGIN: if (r < s->maxR || (s->inc_maxR && r == s->maxR)) s->ptindex = ptindex_inc(s->ptindex); else theEnd = true; break; case PGEN_1D_INC_TOWARDS_ORIGIN: if (r > s->minR || (s->inc_minR && r == s->minR)) { if (s->ptindex == 0) // handle "underflow" s->minR = INFINITY; else s->ptindex = ptindex_dec(s->ptindex); } else theEnd = true; break; default: abort(); // invalid value } if (!theEnd) { const PGenZReturnData retval = {PGEN_NOTDONE | PGEN_NEWR | PGEN_AT_Z, zval}; return retval; } else { PGen_destroy(g); return PGenZDoneVal; } } // Extractor spherical coordinates // TODO remove/simplify PGenSphReturnData PGen_1D_next_sph(PGen *g) { if (g->stateData == NULL) // already destroyed return PGenSphDoneVal; PGen_1D_StateData *s = (PGen_1D_StateData *) g->stateData; const double zval = s->ptindex * s->a + s->offset; const double r = fabs(zval); bool theEnd = false; switch (s->incdir) { case PGEN_1D_INC_FROM_ORIGIN: if (r < s->maxR || (s->inc_maxR && r == s->maxR)) s->ptindex = ptindex_inc(s->ptindex); else theEnd = true; break; case PGEN_1D_INC_TOWARDS_ORIGIN: if (r > s->minR || (s->inc_minR && r == s->minR)) { if (s->ptindex == 0) // handle "underflow" s->minR = INFINITY; else s->ptindex = ptindex_dec(s->ptindex); } else theEnd = true; break; default: abort(); // invalid value } if (!theEnd) { const PGenSphReturnData retval = {PGEN_NOTDONE | PGEN_NEWR | PGEN_AT_Z | PGEN_COORDS_SPH, {r, zval >= 0 ? 0 : M_PI, 0}}; return retval; } else { PGen_destroy(g); return PGenSphDoneVal; } } // Class metadata structure; TODO maybe this can rather be done by macro. const PGenClassInfo PGen_1D = { "PGen_1D", 1, // dimensionality PGEN_COORDS_CART1, NULL, //PGen_1D_next, PGen_1D_next_z, NULL,//PGen_1D_next_pol, PGen_1D_next_sph, NULL,//PGen_1D_next_cart2, NULL,//PGen_1D_next_cart3, PGen_1D_destructor }; //==== PGen_xyWeb ==== // 2D lattice generator in the "spiderweb" style, generated in the "perimetre" order, // not strictly ordered (or limited) by distance from origin. // The minR and maxR here refer to the TODO WWHAT extern const PGenClassInfo PGen_xyWeb; // forward declaration needed by constructor (may be placed in header file instead) // Internal state structure typedef struct PGen_xyWeb_StateData { long i, j; unsigned short phase; // 0 to 5 long layer; long last_layer; // generation stops when layer > last_layer double layer_min_height; // this * layer is what minR and maxR are compared to double minR, maxR; bool inc_minR, inc_maxR; cart2_t b1, b2; // lattice vectors cart2_t offset; // offset of the zeroth lattice point from origin (TODO will be normalised to the WS cell) // TODO type rectangular vs. triangular LatticeType2 lt; } PGen_xyWeb_StateData; // Constructor PGen PGen_xyWeb_new(cart2_t b1, cart2_t b2, double rtol, cart2_t offset, double minR, bool inc_minR, double maxR, bool inc_maxR) { PGen_xyWeb_StateData *s = malloc(sizeof(PGen_xyWeb_StateData)); s->minR = minR; s->maxR = maxR; s->inc_minR = inc_minR; s->inc_maxR = inc_maxR; l2d_reduceBasis(b1, b2, &(s->b1), &(s->b2)); s->offset = offset; // TODO shorten into the WS cell ? s->lt = l2d_classifyLattice(s->b1, s->b2, rtol); s->layer_min_height = l2d_hexWebInCircleRadius(s->b1, s->b2); s->layer = ceil(s->minR/s->layer_min_height); if(!inc_minR && (s->layer * s->layer_min_height) <= minR) ++(s->layer); s->i = s->layer; s->j = 0; s->phase = 0; // init indices s->last_layer = floor(s->maxR/s->layer_min_height); if(!inc_maxR && (s->last_layer * s->layer_min_height) >= maxR) --(s->last_layer); PGen g = {&PGen_xyWeb, (void *) s}; return g; } // Destructor void PGen_xyWeb_destructor(PGen *g) { free(g->stateData); g->stateData = NULL; } // Extractor (2D cartesian, native) PGenCart2ReturnData PGen_xyWeb_next_cart2(PGen *g) { if (g->stateData == NULL) // already destroyed return PGenCart2DoneVal; else { PGen_xyWeb_StateData * const s = (PGen_xyWeb_StateData *) g->stateData; assert(s->layer >= 0); if (s->layer <= s->last_layer) { const cart2_t thePoint = cart2_add(s->offset, cart2_add(cart2_scale(s->i, s->b1), cart2_scale(s->j, s->b2))); if(s->layer == 0) { // origin is unique, proceed with next layer ++s->layer; s->phase = 0; s->i = s->layer; s->j = 0; } else if(s->lt & (SQUARE | RECTANGULAR)) { // rectangular or square lattice, four perimeters switch(s->phase) { case 0: // initial i = l, j = 0 --s->i; ++s->j; if(s->i <= 0) ++s->phase; break; case 1: // initial i = 0, j = l --s->i; --s->j; if(s->j <= 0) ++s->phase; break; case 2: // initial i = -l, j = 0 ++s->i; --s->j; if(s->i >= 0) ++s->phase; break; case 3: // initial i = 0, j = -l ++s->i; ++s->j; if(s->j >= 0) ++s->phase; break; default: abort(); } if(s->phase == 4) { // phase overflow, start new layer ++s->layer; s->phase = 0; s->i = s->layer; s->j = 0; } } else { // non-rectangular lattice, six perimeters switch(s->phase) { case 0: --s->i; ++s->j; if(s->i <= 0) ++s->phase; break; case 1: --s->i; if(s->i + s->j <= 0) ++s->phase; break; case 2: --s->j; if(s->j <= 0) ++s->phase; break; case 3: ++s->i; --s->j; if(s->i >= 0) ++s->phase; break; case 4: ++s->i; if(s->i + s->j >= 0) ++s->phase; break; case 5: ++s->j; if(s->j >= 0) ++s->phase; break; default: abort(); } if(s->phase == 6) { // phase overflow, start next layer ++s->layer; s->phase = 0; s->i = s->layer; s->j = 0; } } PGenCart2ReturnData retval = {(PGEN_NOTDONE | PGEN_AT_XY | PGEN_NEWR | PGEN_COORDS_CART2), thePoint}; return retval; } else { PGen_destroy(g); return PGenCart2DoneVal; } } } // Class metadata structure; TODO maybe this can rather be done by macro. const PGenClassInfo PGen_xyWeb = { "PGen_xyWeb", 2, PGEN_COORDS_CART2, NULL,//PGen_xyWeb_next, NULL,//PGen_xyWeb_next_z, PGen_next_pol_from_cart2, //NULL,//PGen_xyWeb_next_pol, PGen_next_sph_from_cart2, //NULL,//PGen_xyWeb_next_sph, PGen_xyWeb_next_cart2, // native PGen_next_cart3_from_cart2xy, //NULL,//PGen_xyWeb_next_cart3, PGen_xyWeb_destructor };