#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 584 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass article \use_default_options true \maintain_unincluded_children false \language finnish \language_package default \inputencoding utf8 \fontencoding auto \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf false \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Standard \begin_inset FormulaMacro \newcommand{\ud}{\mathrm{d}} \end_inset \begin_inset Formula \begin{equation} \Delta_{n}(x,z)\equiv\int_{x}^{\infty}t^{-\frac{1}{2}-n}e^{-t+\frac{z^{2}}{4t}}\ud t\label{eq:Delta definition} \end{equation} \end_inset \end_layout \begin_layout Standard Integration per partes: \end_layout \begin_layout Standard \begin_inset Formula \[ \int t^{-\frac{1}{2}-n}\ud t=\frac{t^{\frac{1}{2}-n}}{\frac{1}{2}-n}; \] \end_inset \begin_inset Formula \[ \frac{\ud}{\ud t}e^{-t+\frac{z^{2}}{4t}}=\left(-1-\frac{z^{2}}{4t^{2}}\right)e^{-t+\frac{z^{2}}{4t}} \] \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{align*} \left(\frac{1}{2}-n\right)\Delta_{n} & =-x^{\frac{1}{2}-n}e^{-x+\frac{z^{2}}{4x}}+\int_{x}^{\infty}t^{\frac{1}{2}-n}e^{-t+\frac{z^{2}}{4t}}\ud t+\frac{z^{2}}{4}\int_{x}^{\infty}t^{\frac{-3}{2}-n}e^{-t+\frac{z^{2}}{4t}}\ud t\\ & =-x^{\frac{1}{2}-n}e^{-x+\frac{z^{2}}{4x}}+\Delta_{n-1}+\frac{z^{2}}{4}\Delta_{n+1}, \end{align*} \end_inset \begin_inset Formula \begin{equation} \Delta_{n+1}=\frac{4}{z^{2}}\left(\left(\frac{1}{2}-n\right)\Delta_{n}-\Delta_{n-1}+x^{\frac{1}{2}-n}e^{-x+\frac{z^{2}}{4x}}\right).\label{eq:Delta recurrence} \end{equation} \end_inset There are obviously wrong signs in Kambe II, (A 3.3). \end_layout \begin_layout Standard Eq. \begin_inset CommandInset ref LatexCommand eqref reference "eq:Delta recurrence" plural "false" caps "false" noprefix "false" \end_inset is obviously unsuitable for numerical computation when \begin_inset Formula $z$ \end_inset approaches 0. However, the definition \begin_inset CommandInset ref LatexCommand eqref reference "eq:Delta definition" plural "false" caps "false" noprefix "false" \end_inset suggests that the function should be analytical around \begin_inset Formula $z=0$ \end_inset . If \begin_inset Formula $z=0$ \end_inset , one has (by definition of incomplete Г function) \begin_inset Formula \begin{equation} \Delta_{n}(x,0)=\Gamma\left(\frac{1}{2}-n,x\right).\label{eq:Delta:z = 0} \end{equation} \end_inset For convenience, label \begin_inset Formula $w=z^{2}/4$ \end_inset and \begin_inset Formula \[ \Delta'_{n}\left(x,w\right)\equiv\int_{x}^{\infty}t^{-\frac{1}{2}-n}e^{-t+\frac{w}{t}}\ud t. \] \end_inset Differentiating by parameter \begin_inset Formula $w$ \end_inset (which should be fine as long as the integration contour does not go through zero) gives \begin_inset Formula \[ \frac{\partial\Delta'_{n}\left(x,w\right)}{\partial w}=\Delta'_{n+1}\left(x,w\right), \] \end_inset so by recurrence \begin_inset Formula \[ \frac{\partial^{k}}{\partial w^{k}}\Delta'_{n}\left(x,w\right)=\Delta'_{n+k}\left(x,w\right). \] \end_inset Together with \begin_inset CommandInset ref LatexCommand eqref reference "eq:Delta:z = 0" plural "false" caps "false" noprefix "false" \end_inset , this gives an expansion around \begin_inset Formula $w=0$ \end_inset : \begin_inset Formula \[ \Delta_{n}'\left(x,w\right)=\sum_{k=0}^{\infty}\Gamma\left(\frac{1}{2}-n-k,x\right)\frac{w^{k}}{k!}, \] \end_inset \begin_inset Formula \[ \Delta_{n}\left(x,z\right)=\sum_{k=0}^{\infty}\Gamma\left(\frac{1}{2}-n-k,x\right)\frac{\left(z/2\right)^{2k}}{k!}. \] \end_inset The big negative first arguments in incomplete \begin_inset Formula $\Gamma$ \end_inset functions should be good (at least I think so, CHECKME), as well as the \begin_inset Formula $1/k!$ \end_inset factor (of course). I am not sure what the convergence radius is, but for \begin_inset Formula $\left|z\right|<2$ \end_inset there seems to be absolutely no problem in using this formula. \end_layout \end_body \end_document