/* * This is a dirty implementation of lrhankel_recpart_fill() that calculates * the (cylindrical) Hankel transforms of the regularised part of the spherical Hankel * functions that are to be summed in the reciprocal space. * * For now, only the regularisation with κ == 5 && q <= 2 && n <= 5 is implemented * by writing down the explicit formula for each q,n pair and k>k0 vs k= 3, probably due to catastrophic cancellation (hopefully not due * to an error in the formula!). On the other hand, * these numbers are tiny in their absolute value, so their contribution to the * lattice sum should be negligible. * * Therefore TODO use kahan summation. * */ #define MAXQM 1 #define MAXN 5 #define MAXKAPPA 5 #include "bessels.h" //#include "mdefs.h" #include #include #include #define SQ(x) ((x)*(x)) #define P4(x) (((x)*(x))*((x)*(x))) /* * General form of the κ == 5 transforms. One usually has to put a (-1) factor * to some part of the zeroth term of one of the cases k < k0 or k > k0 in order * to stay on the correct branch of complex square root... */ #define KAPPA5SUM(form) (\ (form(0, 1)) \ - 5*(form(1, 1)) \ +10*(form(2, 1)) \ -10*(form(3, 1)) \ + 5*(form(4, 1)) \ - (form(5, 1)) \ ) #define KAPPA5SUMFF(form) (\ (form(0, (-1))) \ - 5*(form(1, 1)) \ +10*(form(2, 1)) \ -10*(form(3, 1)) \ + 5*(form(4, 1)) \ - (form(5, 1)) \ ) /* * Prototype for the individual (per q,n) Bessel transform calculating functions. * a, b, d, e, ash are recurring pre-calculated intermediate results, see the definition * of lrhankel_recpart_fill() below to see their meaning */ #define LRHANKELDEF(fname) complex double fname(const double c, const double k0, const double k, \ const complex double *a, const complex double *b, const complex double *d, \ const complex double *e, const complex double *ash) typedef complex double (*lrhankelspec)(const double, const double, const double, const complex double *, const complex double *, const complex double *, const complex double *, const complex double *); // complex double fun(double c, double k0, double k, ccd *a, ccd *b, ccd *d, ccd *e) #define FORMK5Q1N0(i,ff) (ff*e[i]) LRHANKELDEF(fk5q1n0l){ return (KAPPA5SUMFF(FORMK5Q1N0))/k0; } LRHANKELDEF(fk5q1n0s){ return (KAPPA5SUM(FORMK5Q1N0))/k0; } #undef FORMK5Q1N0 #define FORMK5Q1N1(i,ff) (-ff*d[i]) LRHANKELDEF(fk5q1n1l){ return (KAPPA5SUMFF(FORMK5Q1N1))/(k0*k); } LRHANKELDEF(fk5q1n1s){ return (KAPPA5SUM(FORMK5Q1N1))/(k0*k); } #undef FORMK5Q1N1 #define FORMK5Q1N2(i,ff) (ff*e[i] - t*a[i] + ff*t*d[i]*a[i]) LRHANKELDEF(fk5q1n2l){ double t = 2/(k*k); return (KAPPA5SUMFF(FORMK5Q1N2))/k0; } LRHANKELDEF(fk5q1n2s){ double t = 2/(k*k); return (KAPPA5SUM(FORMK5Q1N2))/k0; } #undef FORMK5Q1N2 #define FORMK5Q1N3(i,ff) (-ff*d[i] * (kk3 + 4*a[i]*a[i])) LRHANKELDEF(fk5q1n3l){ double kk3 = 3*k*k; return (KAPPA5SUMFF(FORMK5Q1N3))/(k0*k*k*k); } LRHANKELDEF(fk5q1n3s){ double kk3 = 3*k*k; return (KAPPA5SUM(FORMK5Q1N3))/(k0*k*k*k); } #undef FORMK5Q1N3 #define FORMK5Q1N4(i,ff) (ff*e[i] * (kkkk + kk8*a[i]*a[i] + 8*P4(a[i]))) LRHANKELDEF(fk5q1n4l){ double kk8 = k*k*8, kkkk = P4(k); return (KAPPA5SUMFF(FORMK5Q1N4))/(k0*kkkk); } LRHANKELDEF(fk5q1n4s){ double kk8 = k*k*8, kkkk = P4(k); return (KAPPA5SUM(FORMK5Q1N4))/(k0*kkkk); } #undef FORMK5Q1N4 #define FORMK5Q1N5(i,ff) (d[i]*(kkkk*(-5*ff+b[i])-ff*kk20*a[i]*a[i]-ff*16*P4(a[i]))) LRHANKELDEF(fk5q1n5l){ double kk20 = k*k*20, kkkk = P4(k); return (KAPPA5SUMFF(FORMK5Q1N5))/(k0*kkkk*k); } LRHANKELDEF(fk5q1n5s){ double kk20 = k*k*20, kkkk = P4(k); return (KAPPA5SUM(FORMK5Q1N5))/(k0*kkkk*k); } #undef FORMK5Q1N5 #define FORMK5Q2N0(i,ff) (-ash[i]) LRHANKELDEF(fk5q2n0){ return (KAPPA5SUM(FORMK5Q2N0)) / (k0*k0); } const lrhankelspec fk5q2n0s = fk5q2n0, fk5q2n0l = fk5q2n0; #undef FORMK5Q2N0 #define FORMK5Q2N1(i,ff) (ff*b[i]*a[i]) LRHANKELDEF(fk5q2n1l){ return (KAPPA5SUMFF(FORMK5Q2N1))/(k*k0*k0); } LRHANKELDEF(fk5q2n1s){ return (KAPPA5SUM(FORMK5Q2N1))/(k*k0*k0); } #undef FORMK5Q2N1 #define FORMK5Q2N2(i,ff) (-ff*b[i]*a[i]*a[i]) LRHANKELDEF(fk5q2n2l){ return (KAPPA5SUMFF(FORMK5Q2N2)) / (k*k*k0*k0); } LRHANKELDEF(fk5q2n2s){ return (KAPPA5SUM(FORMK5Q2N2)) / (k*k*k0*k0); } #if 0 complex double fk5q3n0l(double c, double k0, double k, const complex double *a, const complex double *b, const complex double *d, const complex double *e, const complex double *ash) { // FIXME return ( /* FIXME */ - k*b[0] + a[0] * ash[0] + 5 * k*b[1] + a[1] * ash[1] -10 * k*b[2] + a[2] * ash[2] +10 * k*b[3] + a[3] * ash[3] - 5 * k*b[4] + a[4] * ash[4] + k*b[5] + a[5] * ash[5] )/(k0*k0*k0); } #endif #define FORMK5Q2N3(i,ff) (ff*a[i]*b[i]*(kk + 4*a[i]*a[i])) LRHANKELDEF(fk5q2n3l){ double kk = k*k; return (KAPPA5SUMFF(FORMK5Q2N3))/(3*k0*k0*kk*k); } LRHANKELDEF(fk5q2n3s){ double kk = k*k; return (KAPPA5SUM(FORMK5Q2N3))/(3*k0*k0*kk*k); } #undef FORMK5Q2N3 #define FORMK5Q2N4(i,ff) (-ff*b[i]*a[i]*a[i]*(kk+2*a[i]*a[i])) LRHANKELDEF(fk5q2n4l){ double kk = k*k; return (KAPPA5SUMFF(FORMK5Q2N4))/(k0*k0*kk*kk); } LRHANKELDEF(fk5q2n4s){ double kk = k*k; return (KAPPA5SUM(FORMK5Q2N4))/(k0*k0*kk*kk); } #undef FORMK5Q2N4 #define FORMK5Q2N5(i,ff) (ff*a[i]*b[i]*(kkkk+12*kk*(a[i]*a[i])+16*P4(a[i])) ) LRHANKELDEF(fk5q2n5l){ double kk = k*k; double kkkk = kk * kk; return ( KAPPA5SUMFF(FORMK5Q2N5) +16*120*P4(c)*c // Stirling S2(5,5) is no longer zero )/(5*k0*k0*kkkk*k); } LRHANKELDEF(fk5q2n5s){ double kk = k*k; double kkkk = kk * kk; return ( KAPPA5SUM(FORMK5Q2N5) +16*120*P4(c)*c // Stirling S2(5,5) is no longer zero )/(5*k0*k0*kkkk*k); } #undef FORMK5Q2N5 static const lrhankelspec transfuns_f[MAXKAPPA+1][MAXQM+1][MAXN+1] = { {{NULL,NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL,NULL}}, {{NULL,NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL,NULL}}, {{NULL,NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL,NULL}}, {{NULL,NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL,NULL}}, {{NULL,NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL,NULL}}, {{fk5q1n0l,fk5q1n1l,fk5q1n2l,fk5q1n3l,fk5q1n4l,fk5q1n5l},{fk5q2n0,fk5q2n1l,fk5q2n2l,fk5q2n3l,fk5q2n4l,fk5q2n5l}} }; static const lrhankelspec transfuns_n[MAXKAPPA+1][MAXQM+1][MAXN+1] = { {{NULL,NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL,NULL}}, {{NULL,NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL,NULL}}, {{NULL,NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL,NULL}}, {{NULL,NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL,NULL}}, {{NULL,NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL,NULL}}, {{fk5q1n0s,fk5q1n1s,fk5q1n2s,fk5q1n3s,fk5q1n4s,fk5q1n5s},{fk5q2n0,fk5q2n1s,fk5q2n2s,fk5q2n3s,fk5q2n4s,fk5q2n5s}} }; void lrhankel_recpart_fill(complex double *target, size_t maxp /* max. order of the Hankel transform */, size_t lrk_cutoff, complex double const *const hct, unsigned kappa, double c, double k0, double k) { assert(5 == kappa); // Only kappa == 5 implemented so far assert(maxp <= MAXN); // only n <= 5 implemented so far assert(lrk_cutoff <= MAXQM + 1); // only q <= 2 implemented so far; TODO shouldn't it be only MAXQM ??? const lrhankelspec (*funarr)[MAXQM+1][MAXN+1] = (k>k0) ? transfuns_f : transfuns_n; memset(target, 0, maxp*(maxp+1)/2*sizeof(complex double)); complex double a[kappa+1], b[kappa+1], d[kappa+1], e[kappa+1], ash[kappa+1]; for (size_t sigma = 0; sigma <= kappa; ++sigma) { a[sigma] = (sigma * c - I * k0); b[sigma] = csqrt(1+k*k/(a[sigma]*a[sigma])); d[sigma] = 1/b[sigma]; e[sigma] = d[sigma] / a[sigma]; ash[sigma] = casinh(a[sigma]/k); } for (size_t ql = 0; (ql <= maxp) && (ql < lrk_cutoff); ++ql) // ql is q-1, i.e. corresponds to the hankel term power for (size_t deltam = 0; deltam <= maxp; ++deltam){ complex double result = funarr[kappa][ql][deltam](c,k0,k,a,b,d,e,ash); for (size_t p = 0; p <= maxp; ++p) trindex_cd(target,p)[deltam] += result * hankelcoeffs_get(hct,p)[ql]; } } #ifdef TESTING #include int main() { double k0 = 0.7; double c = 0.1324; double kmin = 0.000; double kmax = 20; double kstep = 0.001; size_t kappa = 5; for (double k = kmin; k <= kmax; k += kstep) { printf("%f ", k); complex double a[kappa+1], b[kappa+1], d[kappa+1], e[kappa+1], ash[kappa+1]; for (size_t sigma = 0; sigma <= kappa; ++sigma) { a[sigma] = (sigma * c - I * k0); b[sigma] = csqrt(1+k*k/(a[sigma]*a[sigma])); d[sigma] = 1/b[sigma]; e[sigma] = d[sigma] / a[sigma]; ash[sigma] = casinh(a[sigma]/k); } for (size_t qm = 0; qm <= MAXQM; ++qm) for (size_t n = 0; n <= MAXN; ++n) { //if (/*!*/((qm==1)&&(n==0))){ // not skip q==2, n=0 for now // complex double fun(double c, double k0, double k, ccd *a, ccd *b, ccd *d, ccd *e) complex double result = (k < k0 ? transfuns_n : transfuns_f)[kappa][qm][n](c,k0,k,a,b,d,e,ash); printf("%.16e %.16e ", creal(result), cimag(result)); } printf("\n"); } return 0; } #endif