#LyX 2.1 created this file. For more info see http://www.lyx.org/ \lyxformat 474 \begin_document \begin_header \textclass article \use_default_options true \maintain_unincluded_children false \language finnish \language_package default \inputencoding auto \fontencoding global \font_roman TeX Gyre Pagella \font_sans default \font_typewriter default \font_math auto \font_default_family default \use_non_tex_fonts true \font_sc false \font_osf true \font_sf_scale 100 \font_tt_scale 100 \graphics default \default_output_format pdf4 \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref true \pdf_title "Sähköpajan päiväkirja" \pdf_author "Marek Nečada" \pdf_bookmarks true \pdf_bookmarksnumbered false \pdf_bookmarksopen false \pdf_bookmarksopenlevel 1 \pdf_breaklinks false \pdf_pdfborder false \pdf_colorlinks false \pdf_backref false \pdf_pdfusetitle true \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \quotes_language swedish \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Standard \lang english \begin_inset FormulaMacro \newcommand{\vect}[1]{\mathbf{#1}} \end_inset \begin_inset FormulaMacro \newcommand{\ush}[2]{Y_{#1,#2}} \end_inset \begin_inset FormulaMacro \newcommand{\svwfr}[3]{\mathbf{u}_{#1,#2}^{#3}} \end_inset \begin_inset FormulaMacro \newcommand{\svwfs}[3]{\mathbf{v}_{#1,#2}^{#3}} \end_inset \begin_inset FormulaMacro \newcommand{\coeffsi}[3]{a_{#1,#2}^{#3}} \end_inset \begin_inset FormulaMacro \newcommand{\coeffsip}[4]{a_{#1}^{#2,#3,#4}} \end_inset \begin_inset FormulaMacro \newcommand{\coeffri}[3]{p_{#1,#2}^{#3}} \end_inset \begin_inset FormulaMacro \newcommand{\coeffrip}[4]{p_{#1}^{#2,#3,#4}} \end_inset \end_layout \begin_layout Standard In this approach, scattering properties of single nanoparticles are first computed in terms of vector sperical wavefunctions (VSWFs)—the field incident onto the \begin_inset Formula $n$ \end_inset -th nanoparticle from external sources can be expanded as \begin_inset Formula \[ \vect E_{n}^{\mathrm{inc}}(\vect r)=\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{t=\mathrm{E},\mathrm{M}}\coeffrip nlmt\svwfr lmt\left(\vect r_{n}\right) \] \end_inset where \begin_inset Formula $\vect r_{n}=\vect r-\vect R_{n}$ \end_inset , \begin_inset Formula $\vect R_{n}$ \end_inset being the position of the centre of \begin_inset Formula $n$ \end_inset -th nanoparticle and \begin_inset Formula $\svwfr lmt$ \end_inset are the regular VSWFs which can be expressed in terms of regular spherical Bessel functions of \begin_inset Formula $j_{k}\left(\left|\vect r_{n}\right|\right)$ \end_inset and spherical harmonics \begin_inset Formula $\ush km\left(\hat{\vect r}_{n}\right)$ \end_inset ; the expressions can be found e.g. in REF \begin_inset Note Note status open \begin_layout Plain Layout few words about different conventions? \end_layout \end_inset . On the other hand, the field scattered by the particle can be expanded in terms of singular VSWFs \begin_inset Formula $\svwfs lmt$ \end_inset which differ from the regular ones by regular spherical Bessel functions being replaced with spherical Hankel functions \begin_inset Formula $h_{k}^{(1)}\left(\left|\vect r_{n}\right|\right)$ \end_inset , \begin_inset Formula \[ \vect E_{n}^{\mathrm{scat}}=\sum_{l,m,t}\coeffsip nlmt\svwfs lmt\left(\vect r_{n}\right). \] \end_inset The expansion coefficients \begin_inset Formula $\coeffsip nlmt$ \end_inset , \begin_inset Formula $t=\mathrm{E},\mathrm{M}$ \end_inset are related to the electric and magnetic multipole polarisation amplitudes of the nanoparticle. \end_layout \begin_layout Standard At a given frequency, assuming the system is linear, the relation between the expansion coefficients in the VSWF bases is given by the so-called \begin_inset Formula $T$ \end_inset -matrix, \begin_inset Formula \[ \coeffsip nlmt=\sum_{l,m,t}T_{n}^{l,m,t;l',m',t'}\coeffrip n{l'}{m'}{t'}. \] \end_inset The \begin_inset Formula $T$ \end_inset -matrix is given by the shape and composition of the particle and fully describes its scattering properties. In theory it is infinite-dimensional, but in practice (at least for subwaveleng th nanoparticles) its elements drop very quickly to negligible values with growing degree indices \begin_inset Formula $l,l'$ \end_inset , enabling to take into account only the elements up to some finite degree, \begin_inset Formula $l,l'\le l_{\mathrm{max}}$ \end_inset . \end_layout \end_body \end_document