((3 - 2*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) - (2*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3)/k^2 + (5*(-3 + 2*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0))/2 + (5*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3)/k^2 + (10*(3 - 2*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0))/3 - (20*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3)/(3*k^2) + (5*(-3 + 2*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0))/2 + (5*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3)/k^2 + (3 - 2*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) - (2*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3)/k^2 + ((-3 + 2*Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0))/6 + ((-1 + Sqrt[1 + k^2/(6*c - I*k0)^2])*(6*c - I*k0)^3)/(3*k^2) + (k0*Sqrt[Pi]*(Piecewise[{{0, k^2/k0^2 <= 1}}, (4*(k^2 - k0^2)^(3/2))/(3*k^2*k0*Sqrt[Pi])] + I*Piecewise[{{(-2*(2*k0*(k0 - Sqrt[-k^2 + k0^2]) + k^2*(-3 + (2*Sqrt[-k^2 + k0^2])/k0)))/(3*k^2*Sqrt[Pi]), k^2/k0^2 < 1}, {(2*(1 - (2*k0^2)/(3*k^2)))/Sqrt[Pi], k^2/k0^2 > 1}}, 0]))/4)/k0^3
SeriesData[k, Infinity, {(-15*c^6)/k0^3, 0, (315*(19*c^8 - (12*I)*c^7*k0 - 2*c^6*k0^2))/(4*k0^3), 0, (-945*(1087*c^10 - (1260*I)*c^9*k0 - 570*c^8*k0^2 + (120*I)*c^7*k0^3 + 10*c^6*k0^4))/(16*k0^3)}, 5, 11, 1]