// c99 -o ew_gen_kin -Wall -I ../.. -I ../../amos/ -O2 -ggdb -DQPMS_VECTORS_NICE_TRANSFORMATIONS -DLATTICESUMS32 2dlattice_ewald.c ../translations.c ../ewald.c ../ewaldsf.c ../gaunt.c ../lattices2d.c ../latticegens.c ../bessel.c -lgsl -lm -lblas ../../amos/libamos.a -lgfortran ../error.c #ifdef HAVE_CONFIG_H #include #endif #include "transop_ewald_cmdline.h" #include #include #include #include #define LATTICESUMS32 #include #include #include #include #include // Command line args parsing progress: // output // base-vector DONE 2D // error-estimate-output // normalisation // csphase // Ewald-parameter // frequency-unit // lMax DONE // refractive-index DONE // particle DONE // pointfile // point // omegafile DONE, TODO unit conversion // omega DONE, TODO unit conversion // kfile DONE 2D // k DONE 2D #define MAXKCOUNT 200 // 200 // serves as klist default buffer size //#define KMINCOEFF 0.783 //0.9783 // 0.783 // not used if KSTDIN defined //#define KMAXCOEFF 1.217 //1.0217 // 1.217 // not used if KSTDIN defined #define KLAYERS 20 #define RLAYERS 20 const double s3 = 1.732050807568877293527446341505872366942805253810380628055; //const qpms_y_t lMax = 3; //const double REFINDEX = 1.52; static const double SCUFF_OMEGAUNIT = 3e14; static const double hbar = GSL_CONST_MKSA_PLANCKS_CONSTANT_HBAR; static const double eV = GSL_CONST_MKSA_ELECTRON_CHARGE; static const double c0 = GSL_CONST_MKSA_SPEED_OF_LIGHT; int main (int argc, char **argv) { struct gengetopt_args_info args_info; int retval = cmdline_parser(argc, argv, *args_info); if (retval) return retval; // Parse lattice vectors const int latdim = args_info.base_vector_given; QPMS_ENSURE(latdim == 2, "Sorry, only 2d lattices supported, but %d basis vectors were given\n", latdim); cart2_t b[latdim]; for (int i = 0; i < latdim; ++i) { const int gotnumbers = qpms_parse_ndoubles( (*double) &(b[i].x), latdim, args_info.base_vector_arg[i]); QPMS_ENSURE(latdim == gotnumbers, "%d. base vector contained %d numbers, expected %d\n", i, gotnumbers, latdim); } // N.B. this is 2D specific, TODO generalize when Nd sum supported const double unitcell_area = l2d_unitcell_area(b[0], b[1]); l2d_reduceBasis(b[0], b[1], b, b+1); const qpms_l_t lMax = args_info.lMax_arg; QPMS_ENSURE(lMax > 0, "invalid value of lMax: %d", (int)lMax); const double refindex = args_info.refractive_index_arg; // Parse all particle positions const int npart = args_info.particle_given; if(!npart) ++npart; cart2_t part_positions[npart]; if(!args_info.particle_given) part_positions[0].x = part_positions[0].y = 0; else for (int i = 0; i < npart; ++i) { const int gotnumbers = qpms_parse_ndoubles( (*double) &(part_positions[i].x), latdim, args_info.particle_arg[i]); QPMS_ENSURE(latdim == gotnumbers, "%d. particle position contained %d coordinates, expected %d\n", i, gotnumbers, latdim); } QPMS_ENSURE(!args_info.k_omega_meshgrid_mode_counter != !args_info.k_omega_points_mode_counter, "THIS IS A BUG. Only one mode ((k, ω) tuples, or k, ω lists) allowed."); // ===================== k, ω grid mode ===================== if (args_info.k_omega_meshgrid_mode_counter) { size_t omegacount = 0; double *omegalist = NULL; for (int i = 0; i < args_info.omega_given; ++i) // freqs from command line omegacount = qpms_parse_doubles(&omegalist, omegacount, args_info.omega_arg[i]); for (int i = 0; i < args_info.omegafile_given; ++i) // freqs from file omegacount = qpms_parse_doubles_fromfile(&omegalist, omegacount, args_info.omegafile_arg[i]); size_t kc_count = 0; double *kclist = NULL; for (int i = 0; i < args_info.k_given; ++i) {// ks from command line kc_count = qpms_parse_doubles(&kclist, kc_count, args_info.k_arg[i]); QPMS_ENSURE(0 == kc_count % latdim, "Provided number of k components (cum. %zd) not compatible with the " "lattice dimension (%d): %s", kc_count, latdim, args_info.k_arg[i]); } for (int i = 0; i < args_info.kfile_given; ++i) {//ks from file kc_count = qpms_parse_doubles_fromfile(&kclist, kc_count, args_info.kfile_arg[i]); QPMS_ENSURE(0 == kc_count % latdim, "Provided number of k components (cum. %zd) not compatible with the " "lattice dimension (%d) in file %s", kc_count, latdim, args_info.kfile_arg[i]); } // 2D specific, TODO generalize when Nd supported cart2_t klist[kc_count/2]; for (size_t i = 0; i < kc_count/2; ++i) klist[i] = {kclist[2*i], kclist[2*i+1]}; free(kclist); TODO; } else if (args_info.k_omega_points_mode_counter) { // explic. point mode TODO; } const double scuffomega = strtod(argv[7], NULL); //#ifdef KSTDIN size_t kcount = 0; size_t klist_capacity = MAXKCOUNT; cart2_t *klist = malloc(sizeof(cart2_t) * klist_capacity); while (scanf("%lf %lf", &(klist[kcount].x), &(klist[kcount].y)) == 2) { ++kcount; if(kcount >= klist_capacity) { klist_capacity *= 2; klist = realloc(klist, sizeof(cart2_t) * klist_capacity); if (klist == NULL) abort(); } } //#else #if 0 cart2_t klist[MAXKCOUNT]; int kcount = MAXKCOUNT; for (int i = 0; i < kcount; ++i) { // TODO this should depend on orientation... klist[i].x = 0; klist[i].y = (4.* M_PI / 3. / LATTICE_A) * (KMINCOEFF + (KMAXCOEFF-KMINCOEFF)/kcount*i); } #endif // TODO more clever way of determining the cutoff const double a = sqrt(unitcell_area); // N.B. different meaning than before const double maxR = 25 * a; const double maxK = 25 * 2*M_PI/a; qpms_trans_calculator *c = qpms_trans_calculator_init(lMax, QPMS_NORMALISATION_POWER_CS); // vai POWER_CS? FILE *out, *ferr = NULL; if (args_info.error_estimate_output_given) { if (!strcmp(args_info.error_estimate_output_arg, "-")) ferr = stdout; else ferr = fopen(args_info.error_estimate_output_arg, "w"); QPMS_ENSURE(ferr, "Could not open error output file %s", args_info.error_estimate_output_arg); if (args_info.output_given && !strcmp(args_info.output_arg, "-") && args_info.output_arg[0]) { out = fopen(args_info.output_arg, "w"); QPMS_ENSURE(out, "Could not open output file %s", args_info.output_arg); } else out = stdout; { const double omega = scuffomega * SCUFF_OMEGAUNIT; const double EeV = omega * hbar / eV; const double k0_vac = omega / c0; const double k0_eff = k0_vac * refindex; const double eta = 5.224/a; // FIXME quite arbitrary, but this one should work // indices : destpart (A/B-particle), srcpart (A/B-particle), coeff type (A/B- type), desty, srcy complex double W[npart][npart][2][c->nelem][c->nelem]; double Werr[npart][npart][npart][c->nelem][c->nelem]; for (size_t ki = 0; ki < kcount; ++ki) { cart2_t beta = klist[ki]; memset(W, 0, sizeof(W)); if(ferr) memset(Werr, 0, sizeof(Werr)); const ptrdiff_t deststride = &(W[0][0][0][1][0]) - &(W[0][0][0][0][0]); const ptrdiff_t srcstride = &(W[0][0][0][0][1]) - &(W[0][0][0][0][0]); assert (srcstride == 1 && deststride == c->nelem); for (size_t ps = 0; ps < npart; ++ps) for (size_t pd = 0; pd < npart; ++pd) // TODO optimize (calculate only once for each particle shift; especially if pd == ps) qpms_trans_calculator_get_AB_arrays_e32(c, &(W[pd][ps][0][0][0]), ferr ? &(Werr[pd][ps][0][0][0]) : NULL, // Adest, Aerr, &(W[pd][ps][1][0][0]), ferr ? &(Werr[pd][ps][1][0][0]) : NULL, // Bdest, Berr, deststride, srcstride, eta, k0_eff, b1, b2, beta, cart2_substract(part_positions[pd], part_positions[ps]), // CHECKSIGN maxR, maxK ); // TODO CHECK B<-A vs. A<-B relation fprintf(out, "%.16g\t%.16g\t%.16g\t%.16g\t%.16g\t", scuffomega, EeV, k0_eff, beta.x, beta.y); if(ferr) fprintf(ferr, "%.16g\t%.16g\t%16g\t%.16g\t%.16g\t", scuffomega, EeV, k0_eff, beta.x, beta.y); size_t totalelems = sizeof(W) / sizeof(complex double); for (size_t i = 0; i < totalelems; ++i) { complex double w = ((complex double *)W)[i]; fprintf(out, "%.16g\t%.16g\t", creal(w), cimag(w)); if (ferr) fprintf(ferr, "%.3g\t", ((double *)Werr)[i]); } fputc('\n', out); if(ferr) fputc('\n', ferr); } } fclose(out); if(ferr) fclose(ferr); //#ifdef KSTDIN free(klist); //#endif qpms_trans_calculator_free(c); }