(-(k^6*(-35 + 8*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^7)/(168*k^5) + (k^6*(-35 + 8*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^7)/(84*k^5) - (k^6*(-35 + 8*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^7)/(84*k^5) + (k^6*(-35 + 8*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^7)/(168*k^5) - (k^6*(-35 + 8*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^7)/(840*k^5) + (I/840*(k^6*(35*k0 - 8*Sqrt[-k^2 + k0^2]) + 64*k0^6*(-k0 + Sqrt[-k^2 + k0^2]) + 20*k^4*k0^2*(-7*k0 + 4*Sqrt[-k^2 + k0^2]) - 8*k^2*k0^4*(-21*k0 + 17*Sqrt[-k^2 + k0^2])))/k^5)/k0^4
(-(Power(k,6)*(-35 + 8*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*(c - Complex(0,1)*k0) + 20*Power(k,4)*(-7 + 4*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-21 + 17*Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,5) + 64*(-1 + Sqrt(1 + Power(k,2)/Power(c - Complex(0,1)*k0,2)))*Power(c - Complex(0,1)*k0,7))/(168.*Power(k,5)) + (Power(k,6)*(-35 + 8*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*(2*c - Complex(0,1)*k0) + 20*Power(k,4)*(-7 + 4*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-21 + 17*Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,5) + 64*(-1 + Sqrt(1 + Power(k,2)/Power(2*c - Complex(0,1)*k0,2)))*Power(2*c - Complex(0,1)*k0,7))/(84.*Power(k,5)) - (Power(k,6)*(-35 + 8*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*(3*c - Complex(0,1)*k0) + 20*Power(k,4)*(-7 + 4*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-21 + 17*Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,5) + 64*(-1 + Sqrt(1 + Power(k,2)/Power(3*c - Complex(0,1)*k0,2)))*Power(3*c - Complex(0,1)*k0,7))/(84.*Power(k,5)) + (Power(k,6)*(-35 + 8*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*(4*c - Complex(0,1)*k0) + 20*Power(k,4)*(-7 + 4*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-21 + 17*Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,5) + 64*(-1 + Sqrt(1 + Power(k,2)/Power(4*c - Complex(0,1)*k0,2)))*Power(4*c - Complex(0,1)*k0,7))/(168.*Power(k,5)) - (Power(k,6)*(-35 + 8*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*(5*c - Complex(0,1)*k0) + 20*Power(k,4)*(-7 + 4*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,3) + 8*Power(k,2)*(-21 + 17*Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,5) + 64*(-1 + Sqrt(1 + Power(k,2)/Power(5*c - Complex(0,1)*k0,2)))*Power(5*c - Complex(0,1)*k0,7))/(840.*Power(k,5)) + (Complex(0,0.0011904761904761906)*(Power(k,6)*(35*k0 - 8*Sqrt(-Power(k,2) + Power(k0,2))) + 64*Power(k0,6)*(-k0 + Sqrt(-Power(k,2) + Power(k0,2))) + 20*Power(k,4)*Power(k0,2)*(-7*k0 + 4*Sqrt(-Power(k,2) + Power(k0,2))) - 8*Power(k,2)*Power(k0,4)*(-21*k0 + 17*Sqrt(-Power(k,2) + Power(k0,2)))))/Power(k,5))/Power(k0,4)
SeriesData[k, Infinity, {(24*c^5)/k0^4, (-525*c^6)/(2*k0^4) + ((105*I)*c^5)/k0^3, (1280*c^7)/k0^4 - ((960*I)*c^6)/k0^3 - (192*c^5)/k0^2, (-315*(75*c^8 - (80*I)*c^7*k0 - 30*c^6*k0^2 + (4*I)*c^5*k0^3))/(8*k0^4), 0, (231*(2025*c^10 - (3310*I)*c^9*k0 - 2250*c^8*k0^2 + (800*I)*c^7*k0^3 + 150*c^6*k0^4 - (12*I)*c^5*k0^5))/(32*k0^4), 0, (-429*(20900*c^12 - (44860*I)*c^11*k0 - 42525*c^10*k0^2 + (23170*I)*c^9*k0^3 + 7875*c^8*k0^4 - (1680*I)*c^7*k0^5 - 210*c^6*k0^6 + (12*I)*c^5*k0^7))/(64*k0^4)}, 3, 11, 1]
-(5*(k^6*(-35 + 8*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(c - I*k0)^2])*(c - I*k0)^7) - 10*(k^6*(-35 + 8*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(2*c - I*k0)^2])*(2*c - I*k0)^7) + 10*(k^6*(-35 + 8*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(3*c - I*k0)^2])*(3*c - I*k0)^7) - 5*(k^6*(-35 + 8*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(4*c - I*k0)^2])*(4*c - I*k0)^7) + k^6*(-35 + 8*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0) + 20*k^4*(-7 + 4*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^3 + 8*k^2*(-21 + 17*Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^5 + 64*(-1 + Sqrt[1 + k^2/(5*c - I*k0)^2])*(5*c - I*k0)^7 - I*(k^6*(35*k0 - 8*Sqrt[-k^2 + k0^2]) + 64*k0^6*(-k0 + Sqrt[-k^2 + k0^2]) + 20*k^4*k0^2*(-7*k0 + 4*Sqrt[-k^2 + k0^2]) - 8*k^2*k0^4*(-21*k0 + 17*Sqrt[-k^2 + k0^2])))/(840*k^5*k0^4)