#!/usr/bin/env python3 import argparse, re, random, string import subprocess from scipy.constants import hbar, e as eV, pi, c def make_action_sharedlist(opname, listname): class opAction(argparse.Action): def __call__(self, parser, args, values, option_string=None): if (not hasattr(args, listname)) or getattr(args, listname) is None: setattr(args, listname, list()) getattr(args,listname).append((opname, values)) return opAction parser = argparse.ArgumentParser() #TODO? použít type=argparse.FileType('r') ? parser.add_argument('--TMatrix', action='store', required=True, help='Path to TMatrix file') #parser.add_argument('--griddir', action='store', required=True, help='Path to the directory with precalculated translation operators') parser.add_argument('--output_prefix', action='store', required=True, help='Prefix to the npz output (will be appended frequency, hexside and chunkno)') #sizepar = parser.add_mutually_exclusive_group(required=True) parser.add_argument('--hexside', action='store', type=float, required=True, help='Lattice hexagon size length') parser.add_argument('--plot_TMatrix', action='store_true', help='Visualise TMatrix on the first page of the output') #parser.add_argument('--SVD_output', action='store', help='Path to output singular value decomposition result') parser.add_argument('--maxlayer', action='store', type=int, default=100, help='How far to sum the lattice points to obtain the dispersion') parser.add_argument('--scp_to', action='store', metavar='N', type=str, help='SCP the output files to a given destination') parser.add_argument('--background_permittivity', action='store', type=float, default=1., help='Background medium relative permittivity (default 1)') parser.add_argument('--eVfreq', action='store', required=True, type=float, help='Frequency in eV') parser.add_argument('--kdensity', action='store', type=int, default=33, help='Number of k-points per x-axis segment') parser.add_argument('--chunklen', action='store', type=int, default=1000, help='Number of k-points per output file (default 1000)') parser.add_argument('--lMax', action='store', type=int, help='Override lMax from the TMatrix file') #TODO some more sophisticated x axis definitions parser.add_argument('--gaussian', action='store', type=float, metavar='σ', help='Use a gaussian envelope for weighting the interaction matrix contributions (depending on the distance), measured in unit cell lengths (?) FIxME).') parser.add_argument('--verbose', '-v', action='count', help='Be verbose (about computation times, mostly)') popgrp=parser.add_argument_group(title='Operations') popgrp.add_argument('--tr', dest='ops', action=make_action_sharedlist('tr', 'ops'), default=list()) # the default value for dest can be set once popgrp.add_argument('--tr0', dest='ops', action=make_action_sharedlist('tr0', 'ops')) popgrp.add_argument('--tr1', dest='ops', action=make_action_sharedlist('tr1', 'ops')) popgrp.add_argument('--sym', dest='ops', action=make_action_sharedlist('sym', 'ops')) popgrp.add_argument('--sym0', dest='ops', action=make_action_sharedlist('sym0', 'ops')) popgrp.add_argument('--sym1', dest='ops', action=make_action_sharedlist('sym1', 'ops')) #popgrp.add_argument('--mult', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult', 'ops')) #popgrp.add_argument('--mult0', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult0', 'ops')) #popgrp.add_argument('--mult1', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult1', 'ops')) popgrp.add_argument('--multl', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl', 'ops')) popgrp.add_argument('--multl0', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl0', 'ops')) popgrp.add_argument('--multl1', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl1', 'ops')) parser.add_argument('--frequency_multiplier', action='store', type=float, default=1., help='Multiplies the frequencies in the TMatrix file by a given factor.') # TODO enable more flexible per-sublattice specification pargs=parser.parse_args() print(pargs) maxlayer=pargs.maxlayer hexside=pargs.hexside eVfreq = pargs.eVfreq freq = eVfreq*eV/hbar verbose=pargs.verbose TMatrix_file = pargs.TMatrix epsilon_b = pargs.background_permittivity #2.3104 gaussianSigma = pargs.gaussian if pargs.gaussian else None # hexside * 222 / 7 interpfreqfactor = pargs.frequency_multiplier scp_dest = pargs.scp_to if pargs.scp_to else None kdensity = pargs.kdensity chunklen = pargs.chunklen ops = list() opre = re.compile('(tr|sym|copy|multl|mult)(\d*)') for oparg in pargs.ops: opm = opre.match(oparg[0]) if opm: ops.append(((opm.group(2),) if opm.group(2) else (0,1), opm.group(1), oparg[1])) else: raise # should not happen print(ops) # -----------------finished basic CLI parsing (except for op arguments) ------------------ from qpms.timetrack import _time_b, _time_e btime=_time_b(verbose) import qpms import numpy as np import os, sys, warnings, math from scipy import interpolate nx = None s3 = math.sqrt(3) # specifikace T-matice zde cdn = c/ math.sqrt(epsilon_b) TMatrices_orig, freqs_orig, freqs_weirdunits_orig, lMaxTM = qpms.loadScuffTMatrices(TMatrix_file) lMax = lMaxTM if pargs.lMax: lMax = pargs.lMax if pargs.lMax else lMaxTM my, ny = qpms.get_mn_y(lMax) nelem = len(my) if pargs.lMax: #force commandline specified lMax TMatrices_orig = TMatrices_orig[...,0:nelem,:,0:nelem] TMatrices = np.array(np.broadcast_to(TMatrices_orig[:,nx,:,:,:,:],(len(freqs_orig),2,2,nelem,2,nelem)) ) #TMatrices[:,:,:,:,:,ny==3] *= factor13inc #TMatrices[:,:,:,ny==3,:,:] *= factor13scat xfl = qpms.xflip_tyty(lMax) yfl = qpms.yflip_tyty(lMax) zfl = qpms.zflip_tyty(lMax) c2rot = qpms.apply_matrix_left(qpms.yflip_yy(3),qpms.xflip_yy(3),-1) reCN = re.compile('(\d*)C(\d+)') #TODO C nekonečno for op in ops: if op[0] == 'all': targets = (0,1) elif isinstance(op[0],int): targets = (op[0],) else: targets = op[0] if op[1] == 'sym': mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions if op[2] == 'σ_z': for t in targets: TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2 elif op[2] == 'σ_y': for t in targets: TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2 elif op[2] == 'σ_x': for t in targets: TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2 elif op[2] == 'C2': # special case of the latter for t in targets: TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1))/2 elif mCN: rotN = int(mCN.group(2)) TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_) for t in targets: for i in range(rotN): rotangle = 2*np.pi*i / rotN rot = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,rotangle])) rotinv = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,-rotangle])) TMatrix_contribs[i] = qpms.apply_matrix_left(rot,qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1) TMatrices[:,t] = np.sum(TMatrix_contribs, axis=0) / rotN else: raise elif op[1] == 'tr': mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions if op[2] == 'σ_z': for t in targets: TMatrices[:,t] = qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1)) elif op[2] == 'σ_y': for t in targets: TMatrices[:,t] = qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1)) elif op[2] == 'σ_x': for t in targets: TMatrices[:,t] = qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1)) elif op[2] == 'C2': for t in targets: TMatrices[:,t] = qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1) elif mCN: rotN = int(mCN.group(2)) power = int(mCN.group(1)) if mCN.group(1) else 1 TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_) for t in targets: rotangle = 2*np.pi*power/rotN rot = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,rotangle])) rotinv = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,-rotangle])) TMatrices[:,t] = qpms.apply_matrix_left(rot, qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1) else: raise elif op[1] == 'copy': raise # not implemented elif op[1] == 'mult': raise # not implemented elif op[1] == 'multl': incy = np.full((nelem,), False, dtype=bool) for incl in op[2][0].split(','): l = int(incl) incy += (l == ny) scaty = np.full((nelem,), False, dtype=bool) for scatl in op[2][1].split(','): l = int(scatl) scaty += (l == ny) for t in targets: TMatrices[np.ix_(np.arange(TMatrices.shape[0]),np.array([t]),np.array([0,1]),scaty,np.array([0,1]),incy)] *= float(op[2][2]) else: raise #unknown operation; should not happen TMatrices_interp = interpolate.interp1d(freqs_orig*interpfreqfactor, TMatrices, axis=0, kind='linear',fill_value="extrapolate") klist_full = qpms.generate_trianglepoints(kdensity, v3d=True, include_origin=True)*3*math.pi/(3*kdensity*hexside) TMatrices_om = TMatrices_interp(freq) chunkn = math.ceil(klist_full.shape[0] / chunklen) if verbose: print('Evaluating %d k-points in %d chunks' % (klist_full.shape[0], chunkn), file = sys.stderr) sys.stderr.flush() metadata = np.array({ 'lMax' : lMax, 'maxlayer' : maxlayer, 'gaussianSigma' : gaussianSigma, 'epsilon_b' : epsilon_b, 'hexside' : hexside, 'chunkn' : chunkn, 'TMatrix_file' : TMatrix_file, 'ops' : ops, }) for chunki in range(chunkn): svdout = '%s_%dnm_%.4f_c%03d.npz' % (pargs.output_prefix, hexside/1e-9, eVfreq, chunki) klist = klist_full[chunki * chunklen : (chunki + 1) * chunklen] svdres = qpms.hexlattice_zsym_getSVD(lMax=lMax, TMatrices_om=TMatrices_om, epsilon_b=epsilon_b, hexside=hexside, maxlayer=maxlayer, omega=freq, klist=klist, gaussianSigma=gaussianSigma, onlyNmin=False, verbose=verbose) #((svUfullTElist, svSfullTElist, svVfullTElist), (svUfullTMlist, svSfullTMlist, svVfullTMlist)) = svdres np.savez(svdout, omega = freq, klist = klist, metadata=metadata, uTE = svdres[0][0], vTE = svdres[0][2], sTE = svdres[0][1], uTM = svdres[1][0], vTM = svdres[1][2], sTM = svdres[1][1], ) svdres=None if scp_dest: if svdout: subprocess.run(['scp', svdout, scp_dest]) _time_e(btime, verbose) #print(time.strftime("%H.%M:%S",time.gmtime(time.time()-begtime)))