#!/usr/bin/env python3 ''' Bulk SVD mode computation for compact scatterer 2D lattices ''' __TODOs__ = ''' BIG TODO: Use more efficient way to calculate the interaction sums: perhaps some customized Ewald-type summation? Small TODOs: - Implement a more user-friendly way to define the lattice base vectors and positions of the particles. cf. https://stackoverflow.com/questions/2371436/evaluating-a-mathematical-expression-in-a-string/2371789 - low priority: allow to perform some more custom operations on T-Matrix, using some kind of parsing from the previous point - Autodetect symmetries ''' import argparse, re, random, string import subprocess from scipy.constants import hbar, e as eV, pi, c import warnings def make_action_sharedlist(opname, listname): class opAction(argparse.Action): def __call__(self, parser, args, values, option_string=None): if (not hasattr(args, listname)) or getattr(args, listname) is None: setattr(args, listname, list()) getattr(args,listname).append((opname, values)) return opAction parser = argparse.ArgumentParser() #TODO? použít type=argparse.FileType('r') ? #TODO create some user-friendlier way to define lattice vectors, cf. https://stackoverflow.com/questions/2371436/evaluating-a-mathematical-expression-in-a-string/2371789 parser.add_argument('--lattice_base', nargs=4, action='store', type=float, required=True, help='Lattice basis vectors x1, y1, x2, y2') parser.add_argument('--particle', '-p', nargs='+', action=make_action_sharedlist('particle', 'particlespec'), help='Particle label, coordinates x,y, and (optionally) path to the T-Matrix.') parser.add_argument('--TMatrix', '-t', nargs='+', action=make_action_sharedlist('TMatrix_path', 'particlespec'), help='Path to TMatrix file') #parser.add_argument('--griddir', action='store', required=True, help='Path to the directory with precalculated translation operators') parser.add_argument('--output_prefix', action='store', required=True, help='Prefix to the npz output (will be appended frequency, hexside and chunkno)') #sizepar = parser.add_mutually_exclusive_group(required=True) #DEL parser.add_argument('--hexside', action='store', type=float, required=True, help='Lattice hexagon size length') parser.add_argument('--plot_TMatrix', action='store_true', help='Visualise TMatrix on the first page of the output') #parser.add_argument('--SVD_output', action='store', help='Path to output singular value decomposition result') parser.add_argument('--maxlayer', action='store', type=int, default=100, help='How far to sum the lattice points to obtain the dispersion') parser.add_argument('--scp_to', action='store', metavar='N', type=str, help='SCP the output files to a given destination') parser.add_argument('--background_permittivity', action='store', type=float, default=1., help='Background medium relative permittivity (default 1)') parser.add_argument('--eVfreq', action='store', required=True, type=float, help='Frequency in eV') parser.add_argument('--kdensity', '--k_density', action='store', type=int, default=33, help='Number of k-points per x-axis segment FIXME DESCRIPTION') parser.add_argument('--bz_coverage', action='store', type=float, default=1., help='Brillouin zone coverage in relative length (default 1 for whole 1. BZ)') parser.add_argument('--bz_edge_width', action='store', type=float, default=0., help='Width of the more densely covered belt along the 1. BZ edge in relative lengths') parser.add_argument('--bz_edge_factor', action='store', type=float, default=8., help='Relative density of the belt along the 1. BZ edge w.r.t. k_density (default==8)') parser.add_argument('--bz_edge_twoside', action='store_true', help='Compute also the parts of the densely covered edge belt outside the 1. BZ') parser.add_argument('--bz_corner_width', action='store', type=float, default=0., help='Size of the more densely covered subcell along the 1. BZ corners in relative lengths') parser.add_argument('--bz_corner_factor', action='store', type=float, default=16., help='Relative density of the subcell along the 1. BZ corner w.r.t. k_density (default==16)') parser.add_argument('--bz_corner_twoside', action='store_true', help='Compute also the parts of the densely covered subcell outside the 1. BZ') parser.add_argument('--chunklen', action='store', type=int, default=1000, help='Number of k-points per output file (default 1000)') parser.add_argument('--lMax', action=make_action_sharedlist('lMax', 'particlespec'), nargs=+, help='Override lMax from the TMatrix file') #TODO some more sophisticated x axis definitions parser.add_argument('--gaussian', action='store', type=float, metavar='σ', help='Use a gaussian envelope for weighting the interaction matrix contributions (depending on the distance), measured in unit cell lengths (?) FIxME).') parser.add_argument('--verbose', '-v', action='count', help='Be verbose (about computation times, mostly)') popgrp=parser.add_argument_group(title='Operations') popgrp.add_argument('--tr', dest='ops', nargs='+', action=make_action_sharedlist('tr', 'ops'), default=list()) # the default value for dest can be set once popgrp.add_argument('--sym', dest='ops', nargs='+', action=make_action_sharedlist('sym', 'ops')) #popgrp.add_argument('--mult', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult', 'ops')) #popgrp.add_argument('--multl', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl', 'ops')) parser.add_argument('--frequency_multiplier', action='store', type=float, default=1., help='Multiplies the frequencies in the TMatrix file by a given factor.') pargs=parser.parse_args() print(pargs) exit(0) ### maxlayer=pargs.maxlayer #DEL hexside=pargs.hexside eVfreq = pargs.eVfreq freq = eVfreq*eV/hbar verbose=pargs.verbose #DEL TMatrix_file = pargs.TMatrix epsilon_b = pargs.background_permittivity #2.3104 gaussianSigma = pargs.gaussian if pargs.gaussian else None # hexside * 222 / 7 interpfreqfactor = pargs.frequency_multiplier scp_dest = pargs.scp_to if pargs.scp_to else None kdensity = pargs.kdensity chunklen = pargs.chunklen #### Nanoparticle position and T-matrix path parsing #### TMatrix_paths = dict() lMax_overrides = dict() default_TMatrix_path = None default_lMax_override = None if not any((arg_type == 'particle') in (arg_type, arg_content) for in pargs.particlespec): # no particles positions given: suppose only one per unit cell, in the cell origin positions = {None: (0.0)} else: positions = dict() for arg_type, arg_content in pargs.particlespec: if arg_type == 'particle' # --particle option if 3 <= len(arg_content) <= 4: try: positions[arg_content[0]] = (float(arg_content[1]), float(arg_content[2])) except ValueError as e: e.args += ("second and third argument of --particle must be valid floats, given: ", arg_content) raise if len(arg_content == 4): if arg_content[0] in TMatrix_paths: warnings.warn('T-matrix path for particle \'%s\' already specified.' 'Overriding with the last value.' % arg_content[0], SyntaxWarning) TMatrix_paths[arg_content[0]] = arg_content[3] else: raise ValueError("--particle expects 3 or 4 arguments, %d given: " % len(arg_content), arg_content) elif arg_type == 'TMatrix_path': # --TMatrix option if len(arg_content) == 1: # --TMatrix default_path if default_TMatrix_path is not None: warnings.warn('Default T-matrix path already specified. Overriding with the last value.', SyntaxWarning) default_TMatrix_path = arg_content[0] elif len(arg_content) > 1: # --TMatrix label [label2 [...]] path for label in arg_content[:-1]: if label in TMatrix_paths.keys(): warnings.warn('T-matrix path for particle \'%s\' already specified.' 'Overriding with the last value.' % label, SyntaxWarning) TMatrix_paths[label] = arg_content[-1] elif arg_type == 'lMax': # --lMax option if len(arg_content) == 1: # --lMax default_lmax_override if default_lMax_override is not None: warnings.warn('Default lMax override value already specified. Overriding the last value.', SyntaxWarning) default_lMax_override = int(arg_content[-1]) else: for label in arg_content[:-1]: if label in lMax_overrides.keys: warnings.warn('lMax override for particle \'%s\' already specified.' 'overriding with the last value.' % label, SyntaxWarning) lMax_overrides[label] = int(arg_content[-1]) else: assert False, 'unknown option type' # Check the info from positions and TMatrix_paths and lMax_overrides if not set(TMatrix_paths.keys()) <= set(positions.keys()): raise ValueError("T-Matrix path(s) for particle(s) labeled %s was given, but not their positions" % str(set(TMatrix_paths.keys()) - set(positions.keys()))) if not set(lMax_overrides.keys()) <= set(positions.keys()): raise ValueError("lMax override(s) for particle(s) labeled %s was given, but not their positions" %str(set(lMax_overrides.keys()) - set(positions.keys()))) if (set(TMatrix_paths.keys()) != set(positions.keys())) and default_TMatrix_path is None: raise ValueError("Position(s) of particles(s) labeled %s was given without their T-matrix" " and no default T-matrix was specified" % str(set(positions.keys()) - set(TMatrix_paths_keys()))) for path in TMatrix_paths.values(): if not os.path.exists(path): raise ValueError("Cannot access T-matrix file %s. Does it exist?" % path) # Assign (pre-parse) the T-matrix operations to individual particles ops = dict() for label in positions.keys(): ops[label] = list() for optype, arg_content in pargs.ops: # if, no label given, apply to all, otherwise on the specifield particles for label in (positions.keys() if len(arg_content) == 1 else arg_content[:-1]): try: ops[label].append((optype, arg_content[-1])) except KeyError as e: e.args += 'Specified operation on undefined particle labeled \'%s\'' % label raise print(sys.stderr, "ops: ", ops) #DEBUG #### Collect all the info about the particles / their T-matrices into one list #### # Enumerate and assign all the _different_ T-matrices (without any intelligent group-theory checking, though) TMatrix_specs = dict((spec, number) for (number, spec) in enumerate(set( (lMax_overrides[label] if label in lMax_overrides.keys() else None, TMatrix_paths[label], tuple(ops[label])) for label in positions.keys() ))) # particles_specs contains (label, (xpos, ypos), tmspec_index per element) particles_specs = [(label, positions(label), TMatrix_specs[(lMax_overrides[label] if label in lMax_overrides.keys() else None, TMatrix_paths[label], tuple(ops[label]))] ) for label in positions.keys()] # -----------------finished basic CLI parsing (except for op arguments) ------------------ from qpms.timetrack import _time_b, _time_e btime=_time_b(verbose) import qpms import numpy as np import os, sys, warnings, math from scipy import interpolate nx = None s3 = math.sqrt(3) # specifikace T-matice zde cdn = c/ math.sqrt(epsilon_b) TMatrices_orig, freqs_orig, freqs_weirdunits_orig, lMaxTM = qpms.loadScuffTMatrices(TMatrix_file) lMax = lMaxTM if pargs.lMax: lMax = pargs.lMax if pargs.lMax else lMaxTM my, ny = qpms.get_mn_y(lMax) nelem = len(my) if pargs.lMax: #force commandline specified lMax TMatrices_orig = TMatrices_orig[...,0:nelem,:,0:nelem] TMatrices = np.array(np.broadcast_to(TMatrices_orig[:,nx,:,:,:,:],(len(freqs_orig),2,2,nelem,2,nelem)) ) #TMatrices[:,:,:,:,:,ny==3] *= factor13inc #TMatrices[:,:,:,ny==3,:,:] *= factor13scat xfl = qpms.xflip_tyty(lMax) yfl = qpms.yflip_tyty(lMax) zfl = qpms.zflip_tyty(lMax) c2rot = qpms.apply_matrix_left(qpms.yflip_yy(3),qpms.xflip_yy(3),-1) reCN = re.compile('(\d*)C(\d+)') #TODO C nekonečno for op in ops: if op[0] == 'all': targets = (0,1) elif isinstance(op[0],int): targets = (op[0],) else: targets = op[0] if op[1] == 'sym': mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions if op[2] == 'σ_z': for t in targets: TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2 elif op[2] == 'σ_y': for t in targets: TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2 elif op[2] == 'σ_x': for t in targets: TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2 elif op[2] == 'C2': # special case of the latter for t in targets: TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1))/2 elif mCN: rotN = int(mCN.group(2)) TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_) for t in targets: for i in range(rotN): rotangle = 2*np.pi*i / rotN rot = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,rotangle])) rotinv = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,-rotangle])) TMatrix_contribs[i] = qpms.apply_matrix_left(rot,qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1) TMatrices[:,t] = np.sum(TMatrix_contribs, axis=0) / rotN else: raise ValueError('\'%d\' is not an implemented symmetry operation' % op[2]) elif op[1] == 'tr': mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions if op[2] == 'σ_z': for t in targets: TMatrices[:,t] = qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1)) elif op[2] == 'σ_y': for t in targets: TMatrices[:,t] = qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1)) elif op[2] == 'σ_x': for t in targets: TMatrices[:,t] = qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1)) elif op[2] == 'C2': for t in targets: TMatrices[:,t] = qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1) elif mCN: rotN = int(mCN.group(2)) power = int(mCN.group(1)) if mCN.group(1) else 1 TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_) for t in targets: rotangle = 2*np.pi*power/rotN rot = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,rotangle])) rotinv = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,-rotangle])) TMatrices[:,t] = qpms.apply_matrix_left(rot, qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1) else: raise ValueError('\'%d\' is not an implemented T-matrix transformation operation' % op[2]) elif op[1] == 'copy': raise # not implemented elif op[1] == 'mult': raise # not implemented elif op[1] == 'multl': incy = np.full((nelem,), False, dtype=bool) for incl in op[2][0].split(','): l = int(incl) incy += (l == ny) scaty = np.full((nelem,), False, dtype=bool) for scatl in op[2][1].split(','): l = int(scatl) scaty += (l == ny) for t in targets: TMatrices[np.ix_(np.arange(TMatrices.shape[0]),np.array([t]),np.array([0,1]),scaty,np.array([0,1]),incy)] *= float(op[2][2]) else: raise #unknown operation; should not happen TMatrices_interp = interpolate.interp1d(freqs_orig*interpfreqfactor, TMatrices, axis=0, kind='linear',fill_value="extrapolate") klist_full = qpms.generate_trianglepoints(kdensity, v3d=True, include_origin=True)*3*math.pi/(3*kdensity*hexside) TMatrices_om = TMatrices_interp(freq) chunkn = math.ceil(klist_full.shape[0] / chunklen) if verbose: print('Evaluating %d k-points in %d chunks' % (klist_full.shape[0], chunkn), file = sys.stderr) sys.stderr.flush() metadata = np.array({ 'lMax' : lMax, 'maxlayer' : maxlayer, 'gaussianSigma' : gaussianSigma, 'epsilon_b' : epsilon_b, 'hexside' : hexside, 'chunkn' : chunkn, 'TMatrix_file' : TMatrix_file, 'ops' : ops, }) for chunki in range(chunkn): svdout = '%s_%dnm_%.4f_c%03d.npz' % (pargs.output_prefix, hexside/1e-9, eVfreq, chunki) klist = klist_full[chunki * chunklen : (chunki + 1) * chunklen] svdres = qpms.hexlattice_zsym_getSVD(lMax=lMax, TMatrices_om=TMatrices_om, epsilon_b=epsilon_b, hexside=hexside, maxlayer=maxlayer, omega=freq, klist=klist, gaussianSigma=gaussianSigma, onlyNmin=False, verbose=verbose) #((svUfullTElist, svSfullTElist, svVfullTElist), (svUfullTMlist, svSfullTMlist, svVfullTMlist)) = svdres np.savez(svdout, omega = freq, klist = klist, metadata=metadata, uTE = svdres[0][0], vTE = svdres[0][2], sTE = svdres[0][1], uTM = svdres[1][0], vTM = svdres[1][2], sTM = svdres[1][1], ) svdres=None if scp_dest: if svdout: subprocess.run(['scp', svdout, scp_dest]) _time_e(btime, verbose) #print(time.strftime("%H.%M:%S",time.gmtime(time.time()-begtime)))